Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

A method for genome editing in the anaerobic magnetotactic bacterium Desulfovibrio magneticus RS-1

Carly R. Grant, Lilah Rahn-Lee, Kristen N. LeGault, View ORCID ProfileArash Komeili
doi: https://doi.org/10.1101/375410
Carly R. Grant
aDepartment of Plant and Microbial Biology, University of California, Berkeley, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lilah Rahn-Lee
aDepartment of Plant and Microbial Biology, University of California, Berkeley, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kristen N. LeGault
aDepartment of Plant and Microbial Biology, University of California, Berkeley, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Arash Komeili
aDepartment of Plant and Microbial Biology, University of California, Berkeley, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Arash Komeili
  • For correspondence: komeili@berkeley.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

ABSTRACT Magnetosomes are complex bacterial organelles that serve as model systems for studying cell biology, biomineralization, and global iron cycling. Magnetosome biogenesis is primarily studied in two closely related Alphaproteobacterial Magnetospirillum spp. that form cubooctahedral-shaped magnetite crystals within a lipid membrane. However, chemically and structurally distinct magnetic particles have also been found in physiologically and phylogenetically diverse bacteria. Due to a lack of molecular genetic tools, the mechanistic diversity of magnetosome formation remains poorly understood. Desulfovibrio magneticus RS-1 is an anaerobic sulfate-reducing Deltaproteobacterium that forms bullet-shaped magnetite crystals. A recent forward genetic screen identified ten genes in the conserved magnetosome gene island of D. magneticus that are essential for its magnetic phenotype. However, this screen likely missed many interesting mutants with defects in crystal size, shape, and arrangement. Reverse genetics to target the remaining putative magnetosome genes using standard genetic methods of suicide vector integration has not been feasible due to low transconjugation efficiency. Here, we present a reverse genetic method for targeted mutagenesis in D. magneticus using a replicative plasmid. To test this method, we generated a mutant resistant to 5-fluorouracil by making a markerless deletion of the upp gene that encodes uracil phosphoribosyltransferase. We also used this method for targeted marker exchange mutagenesis by replacing kupM, a gene identified in our previous screen as a magnetosome formation factor, with a streptomycin resistance cassette. Overall, our results show that targeted mutagenesis using a replicative plasmid is effective in D. magneticus and may also be applied to other genetically recalcitrant bacteria.

IMPORTANCE Magnetotactic bacteria (MTB) are a group of organisms that form small, intracellular magnetic crystals though a complex process involving lipid and protein scaffolds. These magnetic crystals and their lipid membrane, termed magnetosomes, are model systems for studying bacterial cell biology and biomineralization as well as potential platforms for biotechnological applications. Due to a lack of genetic tools and unculturable representatives, the mechanisms of magnetosome formation in phylogenetically deeply-branching MTB remain unknown. These MTB contain elongated bullet-/tooth-shaped magnetite and greigite crystals that likely form in a manner distinct from the cubooctahedral-shaped magnetite crystals of the genetically tractable Alphaproteobacteria MTB. Here, we present a method for genome editing in the anaerobic Deltaproteobacterium Desulfovibrio magneticus RS-1, the first cultured representative of the deeply-branching MTB. This marks a crucial step in developing D. magneticus as a model for studying diverse mechanisms of magnetic particle formation by MTB.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted July 24, 2018.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A method for genome editing in the anaerobic magnetotactic bacterium Desulfovibrio magneticus RS-1
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A method for genome editing in the anaerobic magnetotactic bacterium Desulfovibrio magneticus RS-1
Carly R. Grant, Lilah Rahn-Lee, Kristen N. LeGault, Arash Komeili
bioRxiv 375410; doi: https://doi.org/10.1101/375410
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
A method for genome editing in the anaerobic magnetotactic bacterium Desulfovibrio magneticus RS-1
Carly R. Grant, Lilah Rahn-Lee, Kristen N. LeGault, Arash Komeili
bioRxiv 375410; doi: https://doi.org/10.1101/375410

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Microbiology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3583)
  • Biochemistry (7537)
  • Bioengineering (5491)
  • Bioinformatics (20717)
  • Biophysics (10272)
  • Cancer Biology (7944)
  • Cell Biology (11604)
  • Clinical Trials (138)
  • Developmental Biology (6577)
  • Ecology (10155)
  • Epidemiology (2065)
  • Evolutionary Biology (13565)
  • Genetics (9509)
  • Genomics (12806)
  • Immunology (7899)
  • Microbiology (19487)
  • Molecular Biology (7631)
  • Neuroscience (41957)
  • Paleontology (307)
  • Pathology (1253)
  • Pharmacology and Toxicology (2188)
  • Physiology (3255)
  • Plant Biology (7017)
  • Scientific Communication and Education (1292)
  • Synthetic Biology (1945)
  • Systems Biology (5415)
  • Zoology (1110)