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Abstract  

Value-based decision-making is ubiquitous in every-day life, and critically depends on the contingency 

between choices and their outcomes. Only if outcomes are contingent on our choices can we make 

meaningful value-based decisions. Here, we investigate the effect of outcome contingency on the neural 

coding of rewards and tasks. Participants performed a reversal-learning task in which reward outcomes 

were contingent on trial-by-trial choices, and performed a ‘free choice’ task in which rewards were 

random and not contingent on choices. We hypothesized that contingent outcomes enhance the neural 

coding of rewards and tasks, which was tested using multivariate pattern analysis of fMRI data. Reward 

outcomes were encoded in a large network including the striatum, dmPFC and parietal cortex, and these 

representations were indeed amplified for contingent rewards. Tasks were encoded in the dmPFC at the 

time of decision-making, and in parietal cortex in a subsequence maintenance phase. We found no 

evidence for contingency-dependent modulations of task signals, demonstrating highly similar coding 

across contingency conditions. Our findings suggest selective effects of contingency on reward coding 

only, and further highlight the role of dmPFC and parietal cortex in value-based decision-making, as 

these were the only regions strongly involved in both reward and task coding.  
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Introduction  

Making decisions is an integral part of our life. Most of these choices are value-based, i.e. they 

are made with expected outcomes in mind. Value-based choices are made in separate stages: we first 

evaluate all options, and then select the option with the highest subjective value 1. After implementing 

the chosen behavior 2, predicted and experienced outcomes are compared, and prediction errors are 

computed 3–5. This dopamine-mediated learning signal 6 indicates the need to update our internal 

models of action-outcome contingencies, which then leads to an adaption of future behavior.  

This process is modulated by various properties of choice outcomes, e.g. their magnitude 7. 

However, one crucial aspect has received little attention in the past: to which degree our choices 

directly control possible outcomes. Clearly, whether or not we believe our choices to directly cause their 

outcomes affects decision-making considerably. If we know that a specific behavior predictably leads to 

a desired outcome, we will choose it more often 8. If we know that our behavior and desired outcomes 

are only weakly correlated, or not correlated at all, we might not prioritize any specific behavior. Here, 

we focus on investigating the effects of high vs low control of the outcomes of one’s own choices.  

In principle, varying degrees of control of choice outcomes can affect two key processes: 

outcome valuation and the implementation of chosen behavior. Some previous research in non-human 

primates 9, and humans 10,11 demonstrated that choice-contingent outcomes are processed differently 

than non-contingent outcomes. Importantly, one might expect similar effects on neural representations 

of the chosen behavior that is operational for receiving the reward as well. One might expect, for 

example, chosen behaviors to be shielded more strongly against interference if outcomes are contingent 

on them 12, as not performing the behavior as intended is potentially costly. For non-contingent 

outcomes the need for shielding is lower, as e.g. executing the wrong behavior has no effect on received 

outcomes (see 13 for a related argument, but 14). Previous work demonstrated that implementation of 
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chosen actions, is supported by a brain network including the frontopolar 15, lateral prefrontal and 

parietal cortex 16–18. Some initial evidence suggests that rewarding correct performance indeed 

enhances neural task representations 19, but this work did not address the issue of varying degrees of 

control over choice outcomes.  

Here, we report an experiment investigating the effects of control over choice outcomes on 

value-based decision making. We used a value-based decision task and multivariate pattern analysis 

methods (MVPA 20) to assess the effects of reward contingency (choice-contingent vs. non-contingent 

rewards) on valuation and, more importantly, on choice implementation. We first hypothesized that 

reward contingency affects the neural coding of outcomes 9,11. We further assessed whether 

implementation of chosen behavior (i.e. coding of chosen tasks) is similarly affected by contingency. We 

hypothesized that the lateral prefrontal cortex, and especially the parietal cortex to play a key role in the 

implementation of chosen behavior. The parietal cortex represents chosen tasks and actions 1,17, 

subjective stimulus and action values 21,22, as well as associations between choice options and their 

outcomes 23. Here, we tested whether task representations in these brain regions were enhanced when 

rewards were choice-contingent vs when they were not.  

Results 

Participants in this experiment implemented two different sets of stimulus-response (SR) 

mappings (labelled task X and task Y, Figure 1). In half of the trials, they performed a probabilistic 

reward reversal-learning task (contingent reward (CR), see 24), choosing between performing two 

different tasks that led to either high or low reward outcomes in each trial. Crucially, these reward 

outcomes were contingent on the specific choices made in each trial, and contingencies changed across 

the course of the experiment. In the other half of the trials, participants performed a ‘free choice’ task 

(non-contingent reward, NCR). After each trial, they again received high or low rewards, but the 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 15, 2019. ; https://doi.org/10.1101/375642doi: bioRxiv preprint 

https://doi.org/10.1101/375642
http://creativecommons.org/licenses/by/4.0/


5 
 

outcomes were uncorrelated with the choices and participants had no means of controlling the reward 

outcomes in these trials.  

Behavioral results 

We first assessed whether error rates or reaction times (RT) differed between the two sets of 

SR mappings (labelled task X, Y), or the reward contingency condition (CR, NCR). The average error rate 

across all subjects was 5.89% (SEM = 0.74%). Thus, subjects were able to perform the task accurately. 

There was no evidence for an effect of reward condition on error rates (Bayes Factor (BF10) = 0.88). 

Error trials were removed from all further analyses. A repeated-measures ANOVA on RTs including the 

factors SR mapping and contingency revealed evidence for the absence of any RT differences between 

the two contingency conditions (BF10 = 0.01, Figure 2A). We further found evidence for the absence of 

RT differences between the specific SR-mappings implemented in each trial (Figure 1, BF10 = 0.01), 

showing that both SR-mappings were equally difficult to perform. There was moderate evidence for the 

absence of an interaction between task and reward contingency (BF10 = 0.23).  

We then assessed whether subjects showed choice biases towards one of the two SR-

mappings, which might indicate stable preferences and in turn affect fMRI analyses (see below). We 

found no choice bias in CR trials, 50.35% (SEM = 1.49%), which did not differ from 50%, BF10 = 0.18, 

BF10r=1.41 = 0.09). The same was true for NCR trials, 51.40% (SEM = 1.75%), BF10 = 0.24, BF10r=1.41 = 0.12, 

indicating that subjects did not exhibit strong preferences for specific SR mappings. Next, we assessed 

performance in the reversal learning (CR) task. For this purpose, we computed how often subjects chose 

the highly reward (HR) task, and this value should be above 50% if they succeeded in learning the 

changing reward contingencies. Subjects chose the HR task in 61.10% (SEM = 1.74%) of the CR trials, 

which was above 50% (BF10 >150). As a control analysis, we computed the number of HR outcomes in 

NCR trials, which should be 50% if choices were uncorrelated with outcomes. This was indeed the case, 
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HR outcomes = 49.47% (SEM = 0.84%), t-test vs 50% (BF10 = 0.21). Importantly, we found CR trials to 

lead to HR outcomes more often than NCR trials (56.4%, SEM = 1.15%, BF10 > 150), demonstrating that 

subjects succeeded in choosing tasks strategically in CR trials to maximize their reward outcomes. In 

order to assess how they maximized their outcomes, we computed the probability to switch to a 

different task just after receiving a high or a low reward (pswitchHR, pswitchLR). As expected, we found 

subjects to stay in the task that led to a high reward on the previous trial, pswitchHR = 15.71% (SEM = 

2.60%), and switch away from the task that led to a low reward on the previous trial, pswitchLR = 71.08% 

(SEM = 3.20%, Figure 2B). We found no such difference in NCR trials, pswitchHR = 53.12% (SEM = 2.83%), 

pswitchLR = 52.85% (SEM = 2.46%). An ANOVA with the factors reward contingency (CR, NCR) and reward 

outcome (HR, LR) identified a main effect of reward outcome on pswitch (BF10 > 150), no main effect of 

contingency (BF10 = 1.85), and a strong interaction (BF10 > 150). This demonstrates that subjects 

employed a win-stay loose-switch strategy and had clear reward-expectations selectively in CR trials, 

and that reward outcomes in NCR trials had no immediate effect on task choices. Next, we assessed 

learning of changing reward contingencies in CR trials, by computing the probability to choose the highly 

rewarded task (pHR), as a function of trials passed since the last contingency change. We expected 

subjects to systematically choose the LR task immediately following such a change (‘perseveration’), but 

then quickly learn about the new contingency mapping. Our results confirmed these expectations 

(Figure 2C). While subjects rarely picked the HR task immediately following a contingency switch (pHR = 

32.48%, SEM = 2.28%), this value increased dramatically already on the subsequent trial (pHR = 65.65%, 

SEM = 2.88%, paired t-test, BF10 > 150). There was no evidence for changes in pHR on the following four 

trials, all BF10s < 0.36, demonstrating that learning occurred mostly within the first trial following a 

contingency switch. Lastly, we hypothesized that subjects stayed in the same task longer in CR trials, as 

compared to NCR trials, and found this to be the case (Supplementary Analysis 1).  
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Multivariate decoding of reward outcome values 

Baseline analysis: We first set out to determine whether outcome contingency affects the neural 

coding of outcome magnitude. For this purpose, we identified brain regions encoding outcome values 

(high vs low) at the time of feedback presentation (baseline decoding, collapsing across CR and NCR 

trials). We found an extensive network to encode outcome values including striatal subcortical brain 

regions, as well as large parts of the prefrontal and parietal cortex (Figure 3A, mean accuracy = 60.52%, 

SEM = 1.11%). This contrast does not only capture specific reward value signals, it might also reflect 

effects caused by differences in reward outcomes, like attention or motor preparation. In order to 

address at least some of these confounding factors, we regressed out RTs out of the data before 

performing MVPA 25, but found no effect strong effects on our results (Supplementary Figure 1).  

Differences in outcome coding: Subsequently, we assessed whether these outcome signals were 

modulated by reward contingency, hypothesizing that contingent rewards showed stronger decoding 

results than non-contingent rewards. We repeated the same decoding analysis separately for CR and 

NCR trials and assessed whether any region from the baseline analysis showed stronger outcome coding 

in CR (mean accuracy = 64.17%, SEM = 2.01%) than in NCR trials (mean accuracy = 54.32%, SEM = 1.24%, 

using a within-subjects ANOVA and small-volume correction, p < 0.001 uncorrected, p < 0.05 FWE 

corrected). We found the striatum, bilateral lateral PFC, dACC, anterior medial PFC, and IPS to show 

stronger reward outcome coding for contingent rewards. The opposite contrast (NCR > CR) yielded no 

significant results (p < 0.001 uncorrected, p < 0.05 FWE corrected). This effect cannot be explained be 

differences in outcome value per se, as the reward magnitude did not differ across the conditions, only 

contingency did.  

Similarities in outcome coding: In a last step, we assessed whether any of the brain regions 

identified in the baseline analysis showed similar coding across contingency conditions, using a cross-

classification approach (see Materials and Methods for more details, 26). We trained a classifier on CR 
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trials, and tested it on NCR trials, and vice versa, and found the striatum, lateral and medial PFC, dACC, 

and IPS to encode rewards similarly across conditions (mean accuracy = 55.52%, SEM = 1.10%). This 

pattern of results suggests that the neural code for different reward outcomes did not change across 

contingency conditions, yet outcome signals were still stronger in CR than in NCR trials. This points to an 

amplification or gain-increase of reward-related signals through contingency 27. Interestingly, post-hoc 

analyses revealed that the difference in decoding accuracies between CR and NCR trials (i.e. the strength 

of the signal-amplification), correlated positively with successful performance in CR trials (Figure 3C), r = 

0.52, 95%CI = [0.26, 0.76] (for more details see Supplementary Analysis 2). The more subjects amplified 

their contingent reward-representations, the more they succeeded in performing the reversal-learning 

task, which links outcome coding to behavior.  

Multivariate decoding of tasks  

Maintenance period  

Baseline analysis: For the task coding, we expected to see similar effects as for the reward 

outcome signals. In a first analysis, we focused on the task maintenance period (from ‘choose’ cue onset 

to task screen onset, see Materials and Methods for more details, and 28 for a similar approach). During 

this time, subjects maintain the abstract SR mapping they want to implement, without yet being able to 

implement specific motor actions. As in the outcome decoding analysis, we first combine CR and NCR 

trials to identify all regions encoding tasks (baseline decoding, see also 16). We found two brain regions 

to contain task information, the left posterior parietal cortex (mean accuracy = 54.61%, SEM = 0.65%), 

spanning over the midline into the right parietal cortex, and the right anterior middle frontal gyrus 

(aMFG, mean accuracy = 54.66%, SEM = 0.89%, see Figure 4A, Table 1). The parietal cluster identified 

here partly overlapped with the parietal cluster identified in the outcome decoding analysis, suggesting 

parietal involvement in both reward and task processing. 
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Differences in task coding: If contingent outcomes indeed enhance task coding, we should see 

higher accuracies in CR, than in NCR trials. To test this, we repeated the task decoding analysis 

separately for CR and NCR trials, and extracted accuracy values in the two ROIs found in the baseline 

task decoding analysis. We found no task information in the parietal cortex in these two analyses (CR: 

51.29%, SEM = 0.91%, BF10 = 1.06; NCR: 51.73%, SEM = 1.44%, BF10 = 0.64), found no evidence for 

stronger task coding in CR than in NCR trials (BF10 = 0.16), and no evidence for stronger task coding in 

NCR than in CR trials (BF10 = 0.19). A similar pattern of results was found in the right aMFG (CR: 51.79%, 

SEM = 1.37%, BF10 = 0.85; NCR: 50.48%, SEM = 1.35%, BF10 = 0.22; CR > NCR: BF10 = 0.40; NCR > CR: 

BF10 = 0.10). Thus, we find no evidence for an effect of reward contingency on task representations, 

despite the fact that behavior clearly differed between the two reward conditions, and that contingency 

has been found to modulate the coding of reward outcomes. As these two analyses are based on only 

half as many trials as the baseline analysis, a reduction in statistical power could explain the absence of 

any differences. In order to test this, we performed an additional control analysis, in which we showed 

that task coding is modulated by outcome magnitude (but not by outcome contingency), demonstrating 

that modulatory effects can be found in principle in this data-set with the same statistical power 

(Supplementary Analysis 3). 

Similarities in task coding: As in the outcome coding analysis, we also tested whether task 

representations were similar across the two contingency conditions, using a cross-classification 

approach. We found both the parietal cortex (54.03%, SEM = 0.76%, BF10 > 150), as well as the right 

aMFG (53.71%, SEM = 1.16%, BF10 = 49.39) to show similar task coding across contingency conditions. 

We also tested whether results from this cross-classification differed from the baseline accuracies, 

finding moderate evidence for an absence of any differences (parietal cortex BF10 = 0.23, aMFG BF10 = 

0.25). These results show that the parietal cortex and aMFG encode tasks using a general format that is 

similar across reward-contingency conditions.  
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Time of decision-making 

Our experimental design allows us to independently assess task-related signals both at the time 

of decision-making and the subsequent maintenance period as these were separated by a jittered delay 

period (see Materials and Methods for more details). We thus repeated the same task decoding 

analyses on the time of decision-making. For this purpose, we used the right dmPFC cluster found 

previously 29 as a ROI, which was found to encode task information at the time of decision-making. 

Despite the differences in experimental design, we found task information in the baseline analysis 

(53.76%, SEM = 1.07%, BF10 = 51.27, Figure 4B) here as well. Accuracies were not above chance in CR 

trials (51.95%, SEM = 1.83%, BF10 = 0.52) and NCR trials (52.45%, SEM = 1.71%, BF10 = 0.83), and did 

not differ from each other (BF10 = 0.15). We found anecdotal evidence for successful task cross-

classification in this region (52.03%, SEM = 0.98%, BF10 = 2.35), although the baseline and xclass 

analyses still did not differ (BF10 = 1.64). Interestingly, the dmPFC cluster partly overlapped with results 

from the reward outcome decoding. Additionally, we found a double dissociation in task coding 

between the right dmPFC and left parietal cortex (Figure 4B, both ROIs defined a priori from previous 

experiments 17,29), with the former only encoding tasks at the time of decision-making, and the latter 

only encoding tasks during intention maintenance. An ANOVA using the factors ‘time in trial’ (time of 

decision vs intention maintenance) and ‘ROI’ (right dmPFC vs left parietal cortex) revealed moderate 

evidence for a time x ROI interaction (BF10 = 5.39). Furthermore, the right dmPFC only encoded tasks at 

the time of decision (BF10 = 51.27), but not during intention maintenance (BF10 = 0.68). Conversely, the 

left parietal cortex only encoded tasks during intention maintenance (BF10 > 150), but not at the time of 

decision (BF10 = 0.19). This suggests a temporal order of task processing in the brain, with task 

information first being encoded in dmPFC, and then in parietal cortex (but see 30). Additionally, a post-

hoc analysis revealed that decoding accuracies in the dmPFC at the time of decision-making correlated 

positively with trait impulsivity (Supplementary Analysis 2).  
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Control analyses 

In order to test the generalizability of our results, we repeated the same analyses on several a-

priori ROIs, taken from two previous experiments 16,17, which tested for effects of cognitive control, and 

free choice on task coding (during a maintenance period), respectively. Overall, we were able to 

replicate the above effects in these a-priori defined ROIs, although findings were much more consistent 

in parietal than in prefrontal brain regions (Figure 4C, Supplementary Analysis 4). In a similar vein, we 

also assessed task information in the multiple demand network 31,32, and were able to replicate our 

findings in the parietal cortex (see Supplementary Analysis 5 for more information). 

It has been shown previously that RTs might affect task decoding results, leading to false-

positive findings 25. Although others failed to replicate this effect 33, and we found no RT effects on the 

group level, we decided to conservatively control for RT effects on the single-subject level nonetheless,. 

After regressing RT-related effects out of the data for each subject, we still found the parietal cortex to 

encode tasks (54.61%, SEM = 0.65%, BF10 > 150), and also found the task coding in the cross-

classification analysis (54.03%, SEM = 0.76%, BF10 > 150). The same was true for the aMFG (54.66%, 

SEM = 0.89%, BF10 > 150; and 53.71%, SEM = 1.16%, BF10 = 23.38 respectively). Results in the baseline 

and xclass analysis were equal in both regions, BFs10 <= 0.30. These results thus mirror the main 

analysis above, showing that RT-related variance cannot explain task decoding results in our experiment.  

In order to validate the decoding procedure, we also extracted task decoding accuracies from a 

region not involved in performing this task, the primary auditory cortex. As expected, we found 

accuracies not to differ from chance level in this region (49.64%, SEM = 0.93%, BF10 = 0.13), showing 

that the task decoding analysis was not biased towards positive accuracy values and specific to the 

regions reported.  
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Lastly, we performed two control analyses to directly assess possible biases in our decoding 

procedure (Supplementary Analysis 6), and effects of error rates and/or choice biases on our task 

decoding results (Supplementary Analysis 7). None of the factors was found to affect our results.  

Discussion  

Here, we investigated whether controlling reward outcomes modulates the neural coding of 

either outcomes or tasks. Subjects performed a probabilistic reward reversal learning task, in which 

outcomes were contingent on specific choices. They also performed a free choice task with non-

contingent reward outcomes, in which outcomes were not under their direct control. Although we 

found reward contingency to modulate outcome valuation, contrary to our expectations we found no 

effects on choice implementation. Furthermore, we found two main brain regions to be crucial for 

encoding tasks and reward outcomes: the right dmPFC and the left parietal cortex (around the IPS). The 

dmPFC was found to encode chosen tasks at the time of decision-making, and simultaneously encoded 

reward outcome values, emphasizing its role in both value-related with intentional control processes.  

While the parietal cortex encoded reward outcomes at the time of decision-making, it encoded chosen 

tasks during a subsequent maintenance phase. We found a double dissociation between both regions, 

with the dmPFC encoding tasks only at the time of decision-making, and the parietal cortex only during 

intention maintenance.  

Much previous research on the effects of reward motivation on cognition investigated the 

effects of reward prospect 34. These findings demonstrated that positive reinforcement improves 

cognition, as compared to no reinforcement at all. However, an equally important and often overlooked 

property of reinforcement is the degree of control we have in reaching it. Sometimes, an action will 

cause outcomes in a fairly clear way (e.g. hitting a light switch), other times, that link will be less close 

(e.g. refreshing your Facebook timeline). Previous work has shown that the strength of such action-
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outcome contingencies modulates the neural processing of reward outcomes 11, and here we directly 

demonstrate how neural coding changes and how this change affects behavior. Outcomes (and 

correlated processes) are encoded more strongly if they are contingent on choices, as compared to 

when they are not. Their representational format further does not change strongly across contingency 

conditions. This is compatible with an amplification of outcome representations through contingency 

(Figure 3B), where representations do not change but become more separable in neural state space (see 

13 for a similar argument). This is in line with predictions from gain-theories of motivation, which suggest 

that subcortical dopaminergic neurons can modulate their gain 6, making them more or less sensitive to 

changes in rewards (see also 35). Here, we demonstrate such gain increases in subcortical dopaminergic 

regions and beyond. This effect is unlikely to reflect simple motor processes, as regressing RTs out of the 

data did not alter reward decoding results. It might be related to reward processing, but given the 

current data we cannot fully exclude that other related (e.g. attentional) processes contribute as well. 

Crucially, the strength of this gain increase was correlated with successful performance, the more 

subjects increased neural gain, the more successful they were in performing the reversal-learning task. 

Thus, our data demonstrates how reward-related signals changed, and that they are behaviorally 

relevant for successful performance.  

Importantly, in order for this value signal to lead to actual rewards, chosen behavior has to be 

implemented as intended first 36. One might thus expect contingency to lead to stronger task shielding 

and coding 12, as the costs of confusing the two highly similar tasks are potentially high. However, we 

found no evidence for such effects. On the contrary, we found evidence for a similar coding of tasks 

across both contingency conditions. This finding informs current debates on the nature of task coding in 

the brain 27. On the one hand, some have argued for flexible task coding especially in the fronto-parietal 

cortex 32,37, often based on the multiple-demand network theory 31. This account predicts that task 

coding should be stronger when task demands are high 32, or when correct performance is rewarded 19. 
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Despite our efforts to replicate these findings in our data-set, we found no evidence for an influence of 

reward contingency on task coding. This was despite the fact that behavior differed between these 

conditions and that value-related signals were affected by reward contingency. One might argue that 

our analysis had insufficient statistical power to detect true effects, but a control analysis revealed that 

we can in principle detect task coding differences in this data-set, making this explanation unlikely.  

On the other hand, others have argued that the same task representations could be used in 

multiple different situations (i.e. ‘multiplexing’ of task information), and that this allows us to flexibly 

react to novel and changing demands 14. Multiplexing predicts that task information should be invariant 

across different contexts, which has been shown previously 16–18. Here, we extend these findings, by 

showing that tasks are encoded in a format that is similar across contingency conditions in both frontal 

and parietal brain regions, strengthening the idea of multiplexing of task information in the brain. One 

possible alternative explanation for this finding might be that subjects were highly trained in performing 

the two tasks, and were at their performance ceiling. This might make a modulation of task coding too 

small to detect. Although we cannot fully exclude this interpretation, we want to point out that 

contingency did have robust effects on behavior. Also, most related previous experiments trained their 

subjects, those that found modulatory effects 19,32 and those that did not 17. We thus believe this 

alternative explanation to be unlikely. Overall, our task decoding results are in line with the idea of 

multiplexing of task information in the brain. Future research will have to test more systematically which 

environmental conditions lead to multiplexing of task information in the brain, and which do not.  

One key region identified here was the dmPFC. It is supports effort-based foraging choices 29, 

and here we show its involvement in a reward reversal learning task. The dmPFC is important for 

cognitive control, supporting rule and action selection 38, and processing uncertainty 39. It has further 

been associated with valuation processes, anticipating positive outcomes 40, and encoding reward 

prediction errors 41. In this experiment, we demonstrated that the dmPFC is specifically involved in 
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encoding tasks only at the time at which a choice is made, other regions later maintain that choice 

outcome until it can be executed. We also demonstrated the dmPFC to encode outcome values at the 

same time. Please note that we do not claim this value signal to only represent the magnitude of reward 

outcomes, it might also represent related processes (e.g. attention). Nevertheless, the cause of this 

effect are different outcome values, and this highlights the importance of dmPFC in linking valuation to 

strategic decision-making, suggesting how it might support goal-directed behavior 42.  

The second key region identified in this experiment was the left parietal cortex (IPS). The 

parietal cortex is a key region for cognitive control 43, and is part of the multiple demand network 31, a 

set of brain regions characterized by their high flexibility to adapt to changing demands. Previous work 

on non-human primates demonstrated that the prefrontal cortex flexibly switches between 

representing different control-related information within single trials 44. Our results show that the 

parietal cortex in humans exhibits similar flexibility 23, it encodes both control-related and value-related 

variables. This provides further evidence for its flexibility, and it will be interesting to assess how the 

parietal cortex links value-related and control-related variables in future experiments. Given its 

involvement in foraging behavior 22, the previous choice and outcome history might affects current 

choice representations in this brain region. Future studies optimized to investigate this question will 

help shedding more light on this issue. 

In sum, we assessed whether controlling outcomes affects outcome and task processing in the 

brain. By comparing choices that are informed by expected outcomes as well as choices that are not, we 

linked largely parallel research on ‘free choice’ and value-based decision-making. While we found strong 

effects on outcome processing, we found no such effects on choice implementation. Our results further 

highlight the importance of both the dmPFC and parietal cortex in bridging valuation and executive 

processes in the brain.  
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Materials and Methods 

Participants 

A total of 42 subjects participated in this experiment (20 males, 21 females, 1 other). The 

average age was 22.6 years (min = 18, max = 33 years), 41 subjects were right-handed, one was left-

handed. All subjects had normal or corrected-to-normal vision and volunteered to participate. Subjects 

gave written informed consent and received between 45€ and 55€ for their participation. The 

experiment was approved by the local ethics committee. Seven subjects showed excessive head 

movement in the MR scanner (>4mm) and were excluded.  

Experimental Design 

Trial structure 

The experiment was programmed using PsychoPy (version 1.85.2, psychopy.org, 

RRID:SCR_006571 45). Each trial started with the presentation of a fixation cross centrally on-screen 

(300ms, Figure 1A). This was followed by the presentation of a choice cue (‘CHOOSE’, 600ms), which 

instructed subjects to freely choose one of the two tasks to perform in this trial. After a variable delay 

period (2000-6000ms, mean duration = 4000ms), the task screen was presented for a total of 3000ms, 

irrespective or RT. Similar to 29, the task screen consisted of a visual object presented centrally on screen 

(Figure 1B). This object was picked pseudo-randomly out of a pool of 9 different objects in 3 categories: 

musical instruments, furniture, means of transportation. Below, 4 colored squares were presented 

(magenta, yellow, cyan, gray), with the square positions being mapped onto 4 buttons, operated using 

the left and right index and middle fingers. Subjects were given the option to choose which of two sets 

of stimulus-response (SR) mappings to apply to the presented object (e.g. labelled task ‘X’ = means of 

transportation  magenta, furniture  yellow, and musical instruments  cyan. task ‘Y’ = means of 
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transportation  cyan, furniture  magenta, and musical instruments  yellow, the grey button was 

never task-relevant and included merely to balance left and right button presses). Thus, one button was 

correct for each task in each trial, and subjects were instructed to react as quickly and accurately as 

possible. Choices were inferred from the pressed buttons. We use the term ‘task’ here to describe a 

specific link between stimuli and responses, and we do not claim that different cognitive processes are 

required to perform each task. Importantly, the position of the colored buttons on screen was pseudo-

randomized in each trial, preventing preparation of specific motor responses before the onset of the 

task screen. Furthermore, which set of S-R-mappings was called task ‘X’ and task ’Y’ was counter-

balanced across subjects. After the task screen offset, a reward feedback was presented (image of 1€ 

coin (high reward, HR), 10€cent coin (low reward, LR), or red circle (no reward), 400ms). After a variable 

inter-trial-interval (4000-14000ms, geometrically distributed, mean duration = 5860ms), the next trial 

began.  

Reward conditions 

Subjects were rewarded for correct performance on every trial. There were a total of two 

different reward conditions: contingent rewards (CR) and non-contingent rewards (NCR). In the NCR 

condition, the chosen reward in each trial was determined randomly. Irrespective of the chosen task, 

subjects had a 50% chance of receiving a high and a 50% chance of receiving a low reward (Figure 1C). 

Subjects were instructed to choose tasks randomly in this condition, by imagining flipping a coin in their 

head on each trial 18. In the CR condition, subjects performed a probabilistic reward reversal-learning 

task, similar to 24. In each trial, one task led to a high reward with an 80% and a low reward with a 20% 

probability (HR task). These probabilities were reversed for the other task (LR task). Subjects were 

merely instructed that reward contingencies were stable across a few trials, but could change over time, 

and needed to infer the current contingency from the trial-by-trial reward feedback. After choosing the 

HR task for 3 consecutive trials, reward contingencies reversed without warning with a chance of 50% in 
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each subsequent trial (similar to 24). At the end of the experiment, 15 trials were chosen randomly (both 

from CR and NCR trials), and whichever reward was earned in these trials was paid out as a bonus 

payment to the subjects. This ensured that subjects were motivated in each trial and condition. 

This reward manipulation was designed to vary the degree of control over choice outcomes. 

Choices in CR trials directly affected reward outcomes, which made expected outcomes a highly relevant 

task feature to take into account during decision-making. Choices in NCR trials were unrelated to reward 

outcomes, and expected outcomes were irrelevant for decision-making.  We ensured that the reward 

condition was uncorrelated to all other design variables (target stimulus, delay duration, button 

mapping, ITI duration), and previous trial conditions were not predictive of current trial conditions. This 

ensured that all trials were IID, and estimated neural signals were not confounded.  

Procedure and Design  

Subjects first performed a training session which lasted about 1h10min 1-5 days before the MR 

session. They learned to perform the task and completed 3 runs of the full experiment. This minimized 

learning effects during the MR session, which can be detrimental to MVPA. In the MR session, subjects 

performed 5 identical runs of this experiment, with 60 trials each. Each run contained 2 blocks with CR 

and 2 blocks with NCR trials. The length of each block was between 10 and 14 trials, and all trials were 

all separated by a long and variable ITI. CR and NCR blocks alternated and block order was 

counterbalanced across runs for each subject. Each block started with either ‘Contingent block now 

starting’ or ‘Non-contingent block now starting’ presented on screen (5000ms). This mixed blocked and 

event-related design minimized cross-talk and interference between the reward conditions. Reward 

contingencies did not carry over from a one to the next CR block, in order to make each block 

independent from previous performance. Each run also contained 20% (n=12) catch trials. In these trials, 

subjects were externally cued which task to perform, and the delay between cue and task execution was 

only 1000ms. Catch trials were included to prevent subjects from choosing all tasks in a block at its 
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beginning. For instance, in an NCR block, subjects could theoretically decide upon a whole sequence of 

tasks at the beginning of that block (e.g. X,X,X,Y,X,Y,Y,X,...), and then only implement that fixed 

sequence in each trial. In order to encourage subjects to make a conscious choice in each individual trial, 

catch trials were included to frequently disrupt any planned sequence of task choices, making such a 

strategy less feasible. To maximize the salience of catch trials, correct performance always led to a high 

reward. Catch trials were excluded from all analyses.  

Additional measures 

After completing the MR session, subjects filled in multiple questionnaires. They answered 

custom questions (e.g., How believable were the instructions? Was one task more difficult than the 

other?) and the following questionnaires: behavioral inhibition / activation scale (BISBAS 46), need for 

cognition (NFC 47), sensitivity to reward / punishment (SPSRQS 48), and impulsivity (BIS11 49). We also 

acquired pupil dilation data while subjects performed the experiment in the MR scanner. Pupil dilation 

data is not the focus of the current paper, and is not reported.  

Image acquisition 

fMRI data was collected using a 3T Magnetom Trio MRI scanner system (Siemens Medical 

Systems, Erlangen, Germany), with a standard thirty-two-channel radio-frequency head coil. A 3D high-

resolution anatomical image of the whole brain was acquired for co-registration and normalization of 

the functional images, using a T1-weighted MPRAGE sequence (TR = 2250 ms, TE = 4.18 ms, TI = 900 ms, 

acquisition matrix = 256 × 256, FOV = 256 mm, flip angle = 9°, voxel size = 1 × 1 × 1 mm). Furthermore, a 

field map was acquired for each participant, in order to correct for magnetic field inhomogeneities (TR = 

400 ms, TE1 = 5.19 ms, TE2 = 7.65 ms, image matrix = 64 x 64, FOV = 192 mm, flip angle = 60°, slice 

thickness = 3 mm, voxel size = 3 x 3 x 3 mm, distance factor = 20%, 33 slices). Whole brain functional 

images were collected using a T2*-weighted EPI sequence (TR = 2000 ms, TE = 30 ms, image matrix = 64 
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× 64, FOV = 192 mm, flip angle = 78°, slice thickness = 3 mm, voxel size = 3 x 3 x 3 mm, distance factor = 

20%, 33 slices). Slices were orientated along the AC-PC line for each subject.  

Statistical Analysis  

Data Analysis: Behavior  

All behavioral analyses were performed in R (RStudio version 1.1.383, RRID:SCR_000432, 

www.rstudio.com). We first characterized subjects’ performance by computing error rates and reaction 

times (RT). We tested for potential effects of reward condition on error rates using a Bayesian two-sided 

paired t-tests (using ttestBF from the BayesFactor package in R). Error trials (trials with wrong button 

presses, or with RTs <300ms) were then removed from the data analysis. In order to identify potential 

effects of the different SR mappings and reward contingency condition on RTs, we performed a Bayesian 

repeated measures ANOVA (using anovaBF from the BayesFactor package in R). This ANOVA included 

the factors SR mapping and reward contingency, and outputs Bayes Factors (BF) for all main effects and 

interaction terms. We did not expect to find RT differences between SR mappings, but did expect RTs to 

be lower in the CR condition, as compared to the NCR condition. All Bayesian tests were performed 

using the default prior (Cauchy prior, r=.707). We performed additional robustness checks using 

different priors (r=1, r=1.41), which did not change our results in most cases. When priors did affect the 

interpretation of results, these results are reported (e.g. BF10r=1.41), otherwise we only report results 

using the default prior.  

The Bayesian hypothesis testing employed here allows quantifying the evidence in favor of the 

alternative hypothesis (BF10) and the null hypothesis, allowing us to conclude whether we find evidence 

for or against a hypothesized effect, or whether the current evidence remains inconclusive 50. We 

considered BFs between 1 and 0.3 as anecdotal evidence, BFs between 0.3 and 0.1 as moderate 

evidence, and BFs smaller than 0.1 as strong evidence against a hypothesis. BFs between 1 and 3 were 
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considered as anecdotal evidence, BFs between 3 and 10 as moderate evidence, and BFs larger than 10 

as strong evidence for a hypothesis.  

Given that subjects were free to choose between the two tasks, some subjects might have 

shown biases to choosing one of the two SR mappings more often (although that would not have led to 

a higher overall reward, if anything biases should lower overall rewards). In order to quantify biases, we 

computed the proportion of trials in which subjects chose each SR mapping, separately for the CR and 

NCR conditions, and tested whether this value differed from 50% using a two-sided Bayesian t-test. The 

output BF was interpreted in the same way as in the previous analysis.   

Choices in CR trials were assessed by quantifying how well subjects performed the probabilistic 

reversal learning task. If subjects were reliably able to determine which of the two tasks was currently 

the HR task, they should have chosen that task more often than expected by chance (50%). Thus the 

proportion of HR task choices (pHR) in CR trials is our main measure of how successful subjects were in 

performing the task. This measure was compared to chance level using a one-sided Bayesian t-test. We 

also computed this measure as a function of trials that passed since the last contingency switch. We 

expected subjects to systematically choose the LR task immediately following such a change 

(‘perseveration’), but then quickly learn about the new contingency mapping. We tested whether pHR 

changed across trials by using Bayesian paired t-tests. Furthermore, we assessed the earned reward 

outcomes, expecting pHR to be higher in CR, than in NCR trials (where it should be 50%). This was tested 

using a paired one-sided Bayesian t-test.  

In order to describe the strategies employed to maximize reward outcomes, we computed the 

probability to switch to a different task immediately following a high or a low reward (pswitchHR, pswitchLR). 

We expected subjects to follow a “win stay loose switch” strategy (WSLS), staying in a highly rewarded 

task and switching away from a lowly rewarded task. To test this, we performed a two-factorial Bayesian 

ANOVA, including the factors reward outcome (HR, LR) and reward contingency (CR, NCR). We expected 
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to see a main effect of outcome on pswitch, and an interaction, as WSLS should be specifically applied to 

CR trials only.  

Data Analysis: fMRI 

fMRI data analysis was performed using Matlab (version R2014b 8.4.0, RRID:SCR_001622, The 

MathWorks) and SPM12 (RRID:SCR_007037, www.fil.ion.ucl.ac.uk/spm/software/spm12/). Raw data 

was imported according to BIDS standards (RRID:SCR_016124, http://bids.neuroimaging.io/), and then 

was unwarped, realigned and slice time corrected.  

Multivariate decoding of reward outcomes 

In a first step, we assessed whether we can replicate previous findings demonstrating 

contingency effects on reward processing 10,11. For this purpose, we estimated a GLM 51 for each subject. 

For each of the 5 runs we added regressors for each combination of reward value (HR vs LR) and 

contingency (CR vs NCR). All regressors were locked to the reward feedback onset, the duration was set 

to 0. Regressors were convolved with a canonical haemodynamic response function (as implemented in 

SPM12). Estimated movement parameters were added as regressors of non-interest to this and all other 

GLMs reported here. 

Baseline decoding: In a next step, we performed a decoding analysis on the parameter estimates 

of the GLM. A linear support-vector classifier (SVC 52,53), as implemented in The Decoding Toolbox 54, was 

used using a fixed regularization parameter (C = 1).  We performed searchlight decoding 20,28, which 

looks for information in local spatial patterns in the brain and makes no a prior assumptions about 

informative brain regions. Searchlight radius was set to 3 voxels, and we employed run-wise cross-

validation. We contrasted HR trials (from both CR and NCR trials) with LR trials (again from CR and NCR 

trials). The resulting accuracy maps were normalized to a standard space (Montreal Neurological 

Institute template as implemented in SPM12), and smoothed (Gaussian kernel, FWHM = 6mm) in order 
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to account for potential differences in information localization across subjects. Group analyses were 

performed on the accuracy maps using voxel-by-voxel t-tests against chance level (50%). The chance 

level was subtracted from all reported accuracy values. A statistical threshold of p<0.0001 (uncorrected) 

at the voxel level, and p<0.05 (family-wise error corrected) at the cluster level was applied, which is 

sufficient to rule out inflated false-positive rates 55. Any regions surpassing this threshold were used as 

masks for the following decoding analyses (an approach used previously 16). The baseline reward 

decoding is likely partly driven by underlying univariate signal differences, and we do not claim that 

results reflect differences in response patterns only. This approach does allow us to compare results 

directly to task-related analyses, which employed the same analysis strategy. The main aim of this 

analysis was to identify all regions involved in processing reward outcomes. We are not interested in 

which regions will be found per se, but rather focus on whether reward-related signals will be modified 

by contingency.  

Differences in reward outcome coding: Although the baseline decoding analysis should have the 

maximum power to detect any outcome-related brain regions, results do not allow us to conclude 

whether outcome processing differed between CR and NCR trials. For this purpose, we performed an 

additional two searchlight decoding analyses. In the first, we again contrasted high and low reward 

trials, now only using data from CR trials. In the second, we used only data from NCR trials. If contingent 

rewards indeed enhance encoding of reward outcomes in the brain, we should see higher accuracies in 

the CR than in the NCR decoding analysis. Please note, that we only used half the number of trials as 

before, thus considerably reducing the signal-to-noise ratio in these analyses. We thus expected lower 

statistical power and smaller effects. Also, whereas the baseline decoding results themselves might be 

driven by e.g. differences in attentional processing between high and low rewards, looking at differences 

between CR and NCR trials much reduces the impact of any such unspecific differences on decoding 

results, which are driven more by differences between contingency. We still cannot fully exclude that 
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unspecific processes contribute to these results, however. Lastly, focusing on differences between 

conditions avoids potential issues with double dipping.    

Similarities in in reward outcome coding: Previous work demonstrated that not all brain regions 

show a contingency-related modulation of value signals 10, and we thus tested whether some brain 

regions encoded reward outcomes similarly across the contingency conditions. In an additional 

searchlight decoding analyses, we trained a classifier to discriminate between high and low reward 

outcomes in the CR condition, and tested its performance in the NCR condition, and vice versa. This 

resulted in two accuracy maps per subject, which were averaged and then entered into a group analysis 

just like in the previous analyses. Importantly, only brain regions where the same hyperplane can be 

used to differentiate neural patterns across both contingency conditions (i.e. in which patterns do not 

differ substantially) will show above-chance accuracies in this analysis. This so-called cross classification 

(xclass) analysis provides positive evidence to identify regions that encode reward outcomes 

independent of the contingency manipulation used here (see also 26).  

Multivariate decoding of tasks 

We then employed the same analysis strategy described above to investigate possible effects of 

outcome contingency on task coding as well. Two GLMs were estimated for each subject, one modelling 

task-related brain activity at the time of decision-making, and one modelling activity during a 

subsequent maintenance phase. It has been shown that formation and maintenance of intentions rely 

on partly dissociable brain networks 56, and our design allowed us to estimate independent signals 

related to both epochs as they were separated by a variable inter-trial-interval.  

In the first GLM (GLMmaintenance), for each of the 5 runs we added regressors for each combination 

of chosen task (task X, task Y) and reward contingency (CR, NCR). All 4 regressors were locked to the cue 

onset, the duration was set to cover the whole delay period, during which subjects maintained their task 

representations. Due to the jittered delay period duration, the modelled signals were dissociated from 
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the task execution and feedback presentation (see also 17). These boxcar regressors were then 

convolved with a canonical haemodynamic response function. A second GLM was estimated 

(GLMdecisiontime), in order to extract task-specific brain activity at the time subjects made their choice 

which of the two tasks to perform. This GLM only differed in the time to which regressors were locked. 

Although the cue suggested that subjects should make a task choice at that point in time, there is no 

strong way of controlling the exact point in time at which choices were made in any free-choice 

paradigm, and they might have been made earlier in principle. It has been shown before that under free 

choice conditions, subjects choose a task as soon as all necessary information to make a choice is 

available 24,29. In this experiment, this time point is the feedback presentation of the previous trial, and 

regressors in this analysis were locked to that event. At this point, subjects can judge whether they e.g. 

chose the HR or LR task and determine which of the two tasks to perform in the next trial. We used this 

approach successfully in a previous experiment 29, and all further task decoding analyses were 

performed on both GLMs.  

Baseline decoding: The task decoding analyses followed the same logic as the reward outcome 

analyses described above. We first performed a searchlight decoding analysis (radius = 3 voxels, C = 1), 

contrasting parameter estimates for tasks X and Y in all trials (CR and NCR combined). This analysis has 

the maximum power to detect any brain regions containing task information, which can be notoriously 

difficult 57. Resulting accuracy maps were normalized, smoothed (6mm FWHM), and entered into a 

group analysis (t-test vs chance level, 50%). Results were thresholded at p<0.001 (uncorrected) at the 

voxel level, and p<0.05 (family-wise error corrected) at the cluster level. Again, regions surpassing this 

threshold were used to define functional regions-of-interest for the following decoding analyses 16.  

Differences in task coding: In order to assess whether task coding is modulated by reward 

contingency, we repeated the decoding analysis separately for CR and NCR trials.  If contingent rewards 

indeed increase task shielding in the brain, we should see higher accuracies in the CR than in the NCR 
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decoding analysis. This effect should be especially pronounced if both tasks are similar and easily 

confused, which is the case in our experiment. Again, the power of these analyses is considerably lower 

than for the baseline analysis.  

Similarities in task coding: Some previous work suggests that tasks are encoded in a context-

independent format in the brain 17,18. Here, we again used cross-classification (xclass) by training a 

classifier on CR trials and then testing it on NCR trials (and vice versa). Any brain regions showing above 

chance decoding accuracies in this analysis provides positive evidence of task coding that is similar 

across contingent vs non-contingent reward conditions. This procedure also ensures that task-related 

signals are not confounded by potential differences in e.g. cognitive load or expected reward across the 

CR and NCR conditions, as classifiers are trained and tested only within one contingency condition. 

Control analyses: In order to further corroborate the validity of our results, we performed a 

number of control analyses. It has been pointed out before, that RT effects might partly explain task 

decoding results 25, although others were unable to show any such effects 29,33. Irrespective of the group-

level results of testing for RT differences between contingency conditions or tasks, we decided to 

conservatively control for RTs effects at the single-subjects level as well. First, we repeated the GLM 

estimation, only adding reaction times as an additional regressor of non-interest. We then repeated the 

main decoding analyses, and tested whether accuracy values differed significantly. If RTs indeed explain 

our task decoding results, we should see a reduction in decoding accuracies when RT effects were 

regressed out of the data.  

Then, we performed a ROI decoding analysis on a brain region that is not related to task-

performance in any way, expecting accuracies to be at chance level. We chose the primary auditory 

cortex for this purpose, defined using the WFU_pickatlas tool (https://www.nitrc.org/frs/?group_id=46, 

RRID: SCR_007378). If our analyses are not biased towards positive accuracies and are specific to 

cognitive-control related brain regions, we should see chance level results here.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 15, 2019. ; https://doi.org/10.1101/375642doi: bioRxiv preprint 

https://www.nitrc.org/frs/?group_id=46
https://doi.org/10.1101/375642
http://creativecommons.org/licenses/by/4.0/


27 
 

Additionally, we tested the generalizability of our results in a number of a priori defined ROIs 

(Supplementary Analysis 4 & 5), assessed whether our decoding procedure was biased towards positive 

accuracies (Supplementary Analysis 6), and tested whether error rates or potential choice biases 

affected task decoding results (Supplementary Analysis 7). Exploratory analyses were then performed to 

assess possible correlations between behavioral measures, questionnaires, and fMRI results 

(Supplementary Analysis 2).  
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Figures 

 

Figure 1. Experimental paradigm. A. Trial structure. Each trial started with the cue ‘choose’ presented 
on screen, indicating that subjects should decide which task to perform on that trial. After a variable 
delay, the task screen was presented for a fixed duration. Reward feedback was presented subsequently 
after each trial (high reward = 1€, low reward = 10€cents, no reward). All trials were separated by 
variable inter trial intervals. B. Tasks. Subjects were instructed to identify the visual object presented on 
screen randomly drawn out of 9 objects, belonging to 3 categories (means of transportation, furniture, 
musical instruments). Each category was associated with a colored button, and subjects were instructed 
to press the corresponding button. Two different sets of stimulus-response mappings were learned, and 
labelled task x and task y. On each trial, subjects had the free choice which of the two tasks to 
implement. C. Reward conditions. In contingent trials, subjects performed a probabilistic reversal-
learning task. In each trial one of the two tasks yielded a high reward with a high probability (80%), and 
a low reward with a low probability (20%). The other task had the opposite reward contingencies. Which 
task yielded higher rewards depended on the current task-reward-mapping, which changed across the 
experiment. In non-contingent trials, subjects also received high and low reward outcomes, which were 
assigned randomly (50%/50%) and were not contingent on specific task choices.  
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 Figure 2. Behavioral Results. A. Reaction Times 
(RT). The box plots depict reaction times for each 
combination of stimulus-response mapping and 
reward condition. Contingent (CR) trials are shown 
in dark grey, non-contingent (NCR) trials are 
shown in light grey. B. Switch probabilities. 
Probability to switch away from the current task 
as a function of previous reward (high = HR dark 
grey, low = LR light grey), separately for 
contingent (CR) and non-contingent (NCR) trials. 
C. Probability to choose the high reward task in CR 
trials (pHR), as a function of how many trials 
passed since the last reward contingency switch. 
Participants chose below chance (50%) on trials 
immediately following a contingency switch 
(‘perseveration’), and then quickly switched to 
choosing the HR task on subsequent trials. All 
error bars depict the SEM.  
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Figure 3: Reward-related brain activity. A. Multivariate decoding of reward outcome value. Above: 
baseline decoding. Depicted are regions that encoded the value of reward outcomes (high vs. low, 
combined across CR and NCR conditions). The regions identified were used as masks for the following 
analyses. Results are displayed at p < 0.05 (FWE corrected). Middle: regions showing stronger outcome 
coding in contingent (CR) than in non-contingent (NCR) trials. Below: regions encoding reward values in 
similar formats in both contingency conditions, as tested using a cross-classification (xclass) analysis. B. 
Amplification vs change of format of neural coding. Most regions identified in A showed both stronger 
decoding in CR trials, and similar formats across both contingency conditions. This is compatible with an 
amplification or gain increase of neural codes. In the middle, a hypothetical example of a pattern 
decoding is depicted. High reward trials are depicted as blue, low reward trials as orange dots. The 
classifier fits a decision boundary to separate the two distributions. If this code changes between the 
two contingency conditions (left), decoding is still possible at similar accuracy levels as before, but a 
classifier trained on NCR trials will be unsuccessful in classifying CR trials. If this code is amplified in the 
CR condition however (right), the same patterns become more easily separable. The same classifier will 
be will be successful in both conditions and accuracies will increase. See 27 for more information. C. 
Correlation of reward signal amplification and successful performance. This plot shows the correlation 
between the degree of reward signal amplification (accuracy in CR trials – accuracy in NCR trials), and 
successful performance in CR trials (probability to choose the high reward task, p(HR)). Each dot is one 
subject, and the line depicts a fitted linear function with 95% confidence intervals (gray area).  
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Figure 4: Task coding. A. Task coding 
during maintenance. Results from the 
baseline decoding analysis are depicted 
above. Two clusters passed the 
significance threshold (p < 0.001 
uncorrected at the voxel level, p < 0.05 
FWE corrected at the cluster level), one in 
the parietal cortex, and one in the right 
anterior MFG. Accuracies were then 
extracted for the contingent (CR), non-
contingent (NCR), and contingency cross-
classification (xclass) task decoding 
analyses. Results can be seen in the 
boxplots. Above the plots, Bayes factors 
(BF10) of a t-test vs. chance level are 
shown. BF10 for the baseline analysis is 
not reported, as this analysis was used to 
define the ROIs, and running additional 
statistical tests on this data would 
constitute double dipping. B. Task coding 
at the time of decision-making. Above, 
the dmPFC ROI used in this analysis (from 
29) is depicted. The box plot depicts 
results from our data in this ROI, for all 
four analyses performed (baseline, CR, 
NCR, xclass). The dissociation plot depicts 
a double dissociation between two ROIs 
(right dmPFC, as defined using data from 
29, and the left parietal cortex, as defined 
using data from 17), and two time points 
in the trial (time of decision-making, 
maintenance). All error bars represent 
SEM. C. Overlap with previous results. 
Results from the current study (red) are 
overlain on previous findings from 17 
(blue), and 16 (green). All results are based 
on task decoding analyses (searchlight 
decoding, radius = 3 voxels, C = 1, chance 
level = 50%), albeit with different specific 
tasks being contrasted in each study. 
Despite this fact, all three studies find 
task information around the intraparietal 
sulcus. Findings in the PFC are less 
consistent.  
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Tables 

Table 1: Baseline task decoding 

         MNI coordinates (peak) 

Brain region Side Cluster size Mean accuracy (SEM) X Y Z 

parietal cortex Bilateral 2427 54.61% (0.65%) -10 -60 60 

anterior MFG Right 955 54.66% (0.89%) 32 58 18 

Results are shown for a statistical threshold of p<0.001 (uncorrected) at the voxel level and p<0.05 (FWE 

corrected) at the cluster level. Chance level is 50%.  
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Supplementary Material 

Supplementary Analyses 

Supplementary Analysis 1 

In CR trials, subjects were incentivized to stay in the same task repeatedly, while this was not 

the case for NCR trials. In order to assess this, we computed the distribution of run lengths for each 

subject, i.e., the number of trials subjects chose to consecutively perform the same task, separately for 

CR and NCR trials. If task choices were not based on the random reward outcomes, this distribution can 

be expected to follow an exponential distribution 1. Conversely, the run length for CR trials should be 

longer than in NCR trials, as participants are expected to repeat a highly rewarding task more often. 

Differences in run lengths were tested using a one-sided Bayesian t-test.  

The average run length in CR trials was 2.54 trials (SEM = 0.08), which was indeed longer than 

in NCR trials (1.95 trials, SEM = 0.07, BF10 >150, see also Figure Supplementary Analysis 1). Interestingly, 

we found no evidence for repetition biases in NCR trials, which have been reported before 1. Run length 

in NCR trials was equal to what would be expected if subjects chose tasks randomly (BF10 = 0.20, 

BF10r=1.41 = 0.10), which is necessary, but not sufficient to demonstrate truly random task choices.  
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Figure Supplementary Analysis 1. Run length distributions. Depicted are the distributions of run lengths 

for CR (black) and NCR (dark grey) trials. The expected distribution if choices were random, or at least 

not guided by reward outcomes, is depicted in light grey.  

 

Supplementary Analysis 2 

An additional exploratory analysis was performed to correlate performance, questionnaire 

measures, and decoding accuracies. Several key correlations were assessed using Bayesian correlation 

analysis (using bayes.cor.test form the BayesianFirstAid package) in order to estimate whether they 

deviated from zero. We report the estimated correlation (r), the probability of the correlation being 

above or below zero (pr>0, pr<0), and the 95% credible intervals (95% CI). If the interval does not contain 

zero, the correlation is larger or smaller than zero.  

Correlating performance with decoding results: First, we assessed whether performance in the 

tasks was correlated with decoding results. We only found successful performance in CR trials to be 

correlated with the degree of reward signal amplification in CR trials (as compared to NCR trials), r = 
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0.52, pr>0 > 0.99, 95% CI = [0.26, 0.76]. The more reward signals were amplified, the more successful 

subjects were in performing the reversal learning task, which demonstrates the behavioral relevance of 

the reward signal amplification.  

Correlating performance with questionnaire results: We found success in CR trials to be 

negatively correlated with motor impulsivity, r = -0.37, pr<0 = 0.98, 95% CI = [-0.66,-0.08]. The relation 

to impulsivity was specific to motor impulsivity, we found no strong relation of CR performance with 

either attentional or non-planning impulsivity. This finding suggests that (motor) impulsive subjects 

were worse in performing the reversal-learning task (see also 2). We found no correlation of success 

with either sensitivity to reward (r = 0.11, pr>0 = 0.74, 95% CI = [-0.23, 0.44]), or the need for cognition (r 

=0.20, pr>0 = 0.87, 95% CI = [-0.12, 0.52]), despite the fact the need for cognition has previously been 

associated with reward decision-making 3. 

Correlating decoding with questionnaire results: We found task decoding accuracies in the 

dmPFC at the time of decision-making to be positively correlated with non-planning impulsivity, r = 0.33, 

pr>0 = 0.92, 95% CI = [0.018, 0.63], suggesting that impulsive subjects had stronger task representations 

right after all necessary information was presented to make a choice. Non-planning impulsivity has been 

linked to reward decision-making on the behavioral level previously 2, but this result suggests that a 

similar relation might be present at the neural level as well. Overall, the relation of impulsivity and 

performance / decoding results was unexpected, and future research should be targeted more at 

explaining how impulsivity affect the neural basis of reward decision-making.  
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Figure Supplementary Analysis 5: Correlation analysis. Depicted are pairwise correlations (estimated 

using bayes.cor.test form the BayesianFirstAid package) of: % high reward choices in CR trials 

(successCR), % high reward outcomes in NCR trials (successNCR), motor impulsivity (BIS11motor), 

attentional impulsivity (BIS11att), non-planning impulsivity (BIS11nonpl), behavioral inhibition (BIS), 

behavioral approach (BAS), need for cognition (NFC), sensitivity to reward (SR), sensitivity to punishment 

(SP), decoding accuracies in the baseline task decoding analysis in the dorso-medial PFC 

(acc_task_dmpfc) and parietal cortex (acc_task_parietal), and an index of reward signal amplification 

(acc_rew_amp). This index was computed by subtracting accuracy values from the reward outcome 

decoding in NCR trials, from the accuracy values in CR trials. Only regions that showed successful cross-

classification of reward signals across contingency conditions were included here. This procedure leads 

to a global measure of how strongly reward signals were amplified in the CR condition, as compared to 

the NCR condition. The plot was generated using the corrplot package in R. Number show the 

correlation coefficients. Correlations in white cells did not differ from zero (i.e. the 95% CI included 

zero), correlations in colored cells did.  
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Supplementary Analysis 3 

Given that decoding tasks separately in CR and NCR trials has considerably less power than 

decoding tasks in both CR and NCR trials together, we performed an additional control analysis to 

determine if the reduced power explains the absence of any differences between task coding in CR and 

NCR trials.  

Previous research demonstrated that task signals in the brain are modulated by associated 

reward outcome magnitude, i.e. tasks that lead to a high reward show stronger coding than tasks that 

lead to no reward 4. Based on this, we expected to find a similar effect in our experiment as well. We 

tested whether tasks directly following a HR outcome were encoded more strongly than tasks directly 

following a LR outcome. For this purpose, we estimated another set of GLMs for each subject, only now 

splitting trials into following HR vs LR (instead of CR vs NCR trials). In all other respects, this analysis was 

identical to the task decoding presented in the main body of the paper. We then extracted decoding 

accuracies from the parietal, right aMFG, and dmPFC clusters used in the main analysis, separately for 

HR task decoding and LR task decoding. Using Bayesian t-tests vs chance and a paired Bayesian t-test, 

we assessed whether there were any differences between these accuracies. We expected task coding to 

be stronger in HR trials especially at the time of decision making, as this time point is closer to the 

reward feedback presentation than the maintenance period.  

At the time of decision making, we found strong task coding in the dmPFC in HR trials (60.67%, 

BF10 > 150), but no task coding in LR trials (51.07%, BF10 = 0.33). Crucially, there was strong evidence 

for a difference between these values (BF10 = 31.89). During the maintenance period, the parietal 

cortex showed task coding in the HR condition (54.95%, BF10 = 5.83), but not in the LR condition 

(52.32%, BF10 =0.59). We found no evidence for any difference between these values however (BF10 = 

0.66). In the right aMFG a similar picture emerged. We found task coding in HR trials (56.07%, BF10 = 

14.36), but not in LR trials (52.82%, BF10 =1.51), and no difference between these values (BF10 = 1.03).  
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Thus, we find evidence for differences in task coding, although the evidence is stronger at the 

time of decision-making than the maintenance period. This demonstrates that our analysis approach can 

in principle detect differences in task coding in the current data-set, yet we still fail to find any such 

differences between contingent and non-contingent trials.   

Supplementary Analysis 4 

We assessed task information in a number of a priori defined ROIs. First, we attempted to 

replicate results from some previous experiments 5,6. Both of these experiments assessed whether task 

coding is modulated by external variables. While Wisniewski et al. (2016) looked into effects of free 

choice on task coding, Loose et al. (2017) looked into effects of cognitive control demands on task 

coding. Both studies found a fronto-parietal network to encode task sets and found them to be 

independent of the experimental manipulation employed. Given that the tasks employed in these 

studies were different from the one used here (e.g. addition vs subtraction of two numbers), a 

replication of these findings in the current dataset would show a strong generalizability of our results. 

We thus extracted functional ROIs from both papers (Wisniewski et al. 2016: left parietal cortex, left 

PFC, Brodman area 8; Loose et al. 2017: left parietal cortex, left PFC), and extracted accuracy values for 

all voxels within the ROI for all four decoding analyses performed (baseline, CR, NCR, xclass), which were 

then averaged. One-sided Bayesian t-tests across subjects were performed to assess whether they were 

above chance.  

We were able to replicate Loose and colleagues’ left parietal results (baseline BF10 = 133.69; CR 

BF10 = 0.68; NCR BF10 = 0.54; xclass BF10 = 33.17). Although somewhat weaker, we also replicated their 

right parietal results (baseline BF10 = 8.49; CR BF10 = 0.77; NCR BF10 = 0.14; xclass BF10 = 8.10). 

However, we were unable to detect task information in left PFC (baseline BF10 = 0.49; CR BF10 = 0.21; 

NCR BF10 = 0.44; xclass BF10 = 0.29), which is in line with the original paper, where PFC findings were 

also somewhat less robust. Additionally, we were able to replicate Wisniewski and colleagues’ left 
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parietal finding (baseline BF10 > 150; CR BF10 = 0.80; NCR BF10 = 0.47; xclass BF10 = 87.28), as well as 

left BA8 (baseline BF10 = 9.3; CR BF10 = 0.39; NCR BF10 = 0.36; xclass BF10 = 3.09), but not the left PFC 

(baseline BF10 = 0.59; CR BF10 = 0.37; NCR BF10 = 0.16; xclass BF10 = 0.38). Thus, we find task coding to 

be contingency-independent even in ROIs that were defined using independent datasets. We further 

show that task information is most consistently found in the parietal cortex, but less so in prefrontal 

cortex.  

Supplementary analysis 5 

Some previous work suggested that task information can be found in the multiple demand (MD) 

network 7, and that task coding in this network changes flexibly with changing task demands 8. In order 

to test whether this was also the case in our dataset, we extracted accuracy values for all four decoding 

analyses (from bilateral functional MD ROIs (provided by 9), specifically the anterior insula (aINS), 

cerebellum, inferior frontal gyrus pars opercularis (IFGop), intraparietal sulcus (IPS), middle frontal gyrus 

(MFG), pre-central gyrus (precG), supplementary and pre-supplementary motor area (SMA/preSMA), as 

well as thalamus. We then tested whether decoding accuracies were higher in CR than in NCR trials, 

and/or whether task coding was contingency-independent in these regions. Averaging across all MD 

regions, we found strong evidence for the presence of task information (52.23%, SEM = 0.61%, BF10 = 

69.08, see Figure below). We found no evidence for a higher accuracy in CR, as compared to NCR trials 

(BF10 = 0.37). Furthermore, we found task coding to be contingency-independent (52.02%, SEM = 

0.67%, BF10 = 14.52). Accuracies in the baseline and cross-classification analysis did not differ (BF10 = 

0.19). Looking at individual MD regions, we found task information in the aINS (52.25%, SEM = 1.00%, 

BF10 = 3.23), IPS (52.83%, SEM = 0.72%, BF10 = 131.02), MFG (52.44%, SEM = 0.90%, BF10 = 8.26), 

precentral gyrus (52.48%, SEM = 0.87, BF10 = 9.86), but not in the cerebellum (50.85%, SEM = 0.90%, 

BF10 = 0.44), IFGop (52.11%, SEM = 1.02%, BF10 = 2.31), SMA/preSMA (51.48%, SEM = 1.07%, BF10 = 

0.77), and thalamus (50.58%, SEM = 1.06%, BF10 = 0.29). None of these regions showed a higher 
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accuracy in CR than in NCR trials (BFs10 <= 0.60). However, in all of those regions the accuracy in the 

baseline and xclass analyses was equal (BFs10 <= 0.28). This suggests that the MD network encodes 

tasks in a contingency-independent fashion, and shows that the current context does not affect task 

coding in the MD network. Also, not all parts of the MD network seemed to be encoding tasks in our 

experiment.  

 

Figure Supplementary Analysis 2. Task information in the multiple demand (MD) network. Depicted are 

task decoding results in the bilateral functional ROIS provided by Fedorenko, Duncan, & Kanwisher 

(2013), specifically the anterior insula (aINS), cerebellum, inferior frontal gyrus pars opercularis (IFGop), 

intraparietal sulcus (IPS), middle frontal gyrus (MFG), pre-central gyrus (precG), supplementary and pre-

supplementary motor area (SMA/preSMA), as well as thalamus.  
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Supplementary analysis 6 

In order to assess whether our decoding procedure was biased towards positive accuracy 

values, we empirically estimated the chance level and tested if it was indeed 50% as we assumed. For 

this purpose, we performed a permutation analysis (n = 1000 permutations per subject, as implemented 

in the Decoding Toolbox, using the same regressors and contrasts as the baseline task decoding analysis) 

in order to estimate the null distribution of our data. We took the mean of the null distribution as our 

empirical estimate of the chance level, and tested whether it deviated from 50% (using a two-sided 

Bayesian t-test). If there were some global biases in our decoding procedure, chance level should 

deviate from 50%. The estimated chance level was 49.98%, which did not differ from 50% (BF01 > 150). 

Thus, comparing our decoding accuracies against a chance level of 50% was valid.  

 

Supplementary analysis 7 

Although overall error rates were very low, and we found no evidence for persistent choice 

biases across our sample, there might still be individual subjects that do show e.g. high error rates, 

which might affect our task decoding results by decreasing signal-to-noise ratio. Although the effect of 

few outlier subjects should be small given our large sample size, we still chose to conservatively control 

for such (unlikely) effects. We first excluded subjects with the highest error rates (more than 1.5*IQR 

above average, i.e. error rate > 13.92%), and then excluded subjects with the strongest choice biases 

(more than 1.5*IQR above average, i.e. percent task X choices > 61.99% or < 38.73%). We then tested 

whether each regressor in the task decoding analysis in all remaining subjects could be estimated from 

at least 6 trials. If a regressor could only be estimated from fewer trials, that run was excluded from the 

analysis due to the low signal-to-noise-ratio. Subjects in which more than 1 run was thusly excluded 

were altogether excluded from the analysis. These criteria were highly similar to the criterion used in 10, 
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which proved an effective control. After excluding these subjects, we repeated the main four analyses 

(baseline, CR, NCR, xclass) on the remaining subjects and tested whether they differed from the analysis 

including all subjects.  

Using these highly conservative exclusion criteria, we removed 2 subjects due to their error 

rate, 5 subjects due to their choice biases, and 4 subjects due to the small number of trials, leading to a 

sample size of 24 subjects. Even though statistical power was considerably lower because of the smaller 

sample size, we were still able to detect task information in the parietal cortex (55.09%, SEM = 0.78%, 

BF10 >150), which was again reward-independent (53.63%, SEM = 0.98%, BF10 = 60.25), and the same 

was true for the aMFG (54.74%, SEM = 1.09%, BF10 >150, and 53.53%, SEM = 1.35%, BF10 = 6.57, 

respectively). These results are even numerically larger than in the original analysis, and neither error 

rates not choice biases were found to affect the reported task decoding results.  
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Supplementary Figures 

Supplementary Figure 1 

 

Supplementary Figure 1. Controlling RT-effects in reward outcome decoding. We repeated the reward 

outcome decoding analysis, using a similar first-level GLM to estimate signals (4 regressors: high 

contingent reward, low contingent reward, high non-contingent reward, low non-contingent reward, all 

locked to feedback onset). Additionally, we now added parametric regressors of non-interest capturing 

RT-related variance in the data. The rest of the analysis was identical to the reward outcome decoding 

analysis presented in the main body of the text. Results from the reward outcome decoding analysis 

(red), and the same analysis with RT-related effects regressed out of the data (blue) are depicted. As can 

be seen, the overlap (magenta) between both analyses is substantial. Results depicted at p < 0.05 (FWE, 

corrected at the voxel level). This indicates that controlling for RT did not strongly alter our results.  
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