1 High-level expression of STING restricts susceptibility to HBV by mediating type

2 **III IFN induction**

- 3
- 4 Running title: STING-mediated restriction of HBV
- $\mathbf{5}$
- 6 Hiromichi Dansako^{*,1}, Hirotaka Imai¹, Youki Ueda¹, Shinya Satoh¹, Kunitada
- 7 Shimotohno², Nobuyuki Kato¹
- 8
- ⁹ ¹Department of Tumor Virology, Okayama University Graduate School of Medicine,

10 Dentistry and Pharmaceutical Sciences, Okayama, Japan

¹¹ ²Research Center for Hepatitis and Immunology, National Center for Global Health and

- 12 Medicine, Chiba, Japan.
- ^{*}Corresponding author. Tel: +81 86 235 7386; E-mail: <u>dansako@md.okayama-u.ac.jp</u>
- 14
- 15 Keywords: hepatitis B virus, hepatocellular carcinoma, host innate immune response,
- 16 STING, type III interferon

17

18 Abstract

19	Hepatitis B virus (HBV) is a hepatotropic DNA virus causing hepatic diseases such as
20	chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. To study HBV, human
21	hepatoma HepG2 cells are currently used as an HBV infectious cell culture model
22	worldwide. HepG2 cells exhibit susceptibility to HBV by exogenously expressing
23	sodium taurocholate cotransporting polypeptide (NTCP). We herein demonstrated that
24	human immortalized hepatocyte NKNT-3 cells exhibited susceptibility to HBV by
25	exogenously expressing NTCP (NKNT-3/NTCP cells). By comparing the cGAS-STING
26	signaling pathway in several NKNT-3/NTCP cell-derived cell clones, we found that
27	STING was highly expressed in cell clones exhibiting resistance but not susceptibility
28	to HBV. High-level expression of STING was implicated in HBV-triggered induction of
29	type III IFN and a pro-inflammatory cytokine, IL-6. In contrast, RNAi-mediated
30	knockdown of STING inhibited type III IFN induction and restored the levels of HBV
31	total transcript in an HBV-infected cell clone exhibiting resistance to HBV. These
32	results suggest that STING regulates susceptibility to HBV by its expression levels.

33 STING may thus be a novel target for anti-HBV strategies.

```
35 Introduction
```

36	Hepatitis B virus (HBV) is a hepatotropic virus classified into the Hepadnaviridae
37	family. HBV infection causes chronic hepatitis, liver cirrhosis, and finally
38	hepatocellular carcinoma (HCC) [1, 2]. The progression of hepatic diseases is tightly
39	associated with the HBV-triggered host innate immune response and inflammatory
40	response. To prevent the progression of hepatic diseases, it is important to suppress the
41	HBV-triggered host innate immune response and inflammatory response.
42	The cytoplasmic DNA sensor, cyclic GMP-AMP synthetase (cGAS), is known to
43	recognize viral DNA and other non-self exogenous DNAs as pathogen-associated
44	molecular patterns (PAMPs) [3, 4]. After the recognition of non-self exogenous DNA,
45	cGAS produces cyclic GMP-AMP (cGAMP) and then uses cGAMP to activate a
46	stimulator of interferon genes (STING). STING mediates activation of the transcription
47	factor interferon regulatory factor 3 (IRF-3) and subsequently the induction of interferon
48	(IFN)- β (type I IFN) [5], IFN- λ 1, λ 2, and λ 3 (type III IFN) [6]. Both type I and type III

49	IFNs stimulate the induction of numerous IFN-stimulated genes (ISGs) such as ISG15
50	and ISG56 through the JAK-STAT signaling pathway [7]. On the other hand, STING
51	also mediates the induction of pro-inflammatory cytokines such as IL-6 and IL-8
52	through the NF-κB signaling pathway [8, 9]. As described here, both cGAS and STING
53	are required for the innate immune response and inflammatory response. We previously
54	reported that cGAS recognized HBV DNA and subsequently triggered an innate immune
55	response in human hepatoma Li23 cells [10]. However, in that study, we could not
56	examine the HBV-triggered inflammatory response, since Li23 cells were a human
57	hepatoma cell line. To study HBV-triggered inflammatory responses, it will be
58	necessary to establish an HBV infectious cell culture model from normal human hepatic
59	cells rather than human hepatoma cells.
60	Sodium taurocholate cotransporting polypeptide (NTCP) is a functional receptor for
61	HBV [11]. Human hepatoma HepG2 cells exhibit susceptibility to HBV by exogenously
62	expressing NTCP [11]. HepG2/NTCP cells (HepG2 cells stably expressing exogenous
63	NTCP) are currently used as an HBV infectious cell culture model for the study of HBV
64	worldwide. However, we previously reported that HepG2 cells exhibited defective

65	expression of endogenous cGAS [10]. This result suggests that HepG2/NTCP cells
66	cannot be used for the study of endogenous cGAS-triggered innate immune response
67	and inflammatory response. Our previous study also showed that cGAS was expressed
68	in immortalized human hepatocyte NKNT-3 cells [10]. In the present study, we
69	established NKNT-3 cells exhibiting susceptibility to HBV by the exogenous expression
70	of NTCP. In addition, we obtained several NKNT-3/NTCP-derived cell clones
71	exhibiting susceptibility or resistance to HBV. Interestingly, STING was highly
72	expressed in a cell clone exhibiting resistance to HBV. Here, we show that STING is an
73	important host factor that regulates susceptibility to HBV by its expression levels. We
74	also show that NKNT-3/NTCP cells are a novel HBV infectious cell culture model for
75	the study of HBV-triggered innate immune responses and inflammatory responses.
76	
77	Results
78	The immortalized human hepatocyte NKNT-3 cells exhibited susceptibility to HBV
79	via their expression of exogenous NTCP.
80	Since HepG2 cells were a human hepatoma cell line and exhibited defective

81	expression of endogenous cGAS [10], we tried to establish HBV infectious cell culture
82	model from immortalized human hepatocyte NKNT-3 cells, which has been exhibited a
83	non-neoplastic phenotype [12] and the endogenous expression of cGAS [10]. HepG2
84	cells have been reported to exhibit susceptibility to HBV through their expression of
85	exogenous NTCP [11]. Therefore, to establish NKNT-3 cells exhibiting susceptibility to
86	HBV, we first prepared NKNT-3 cells stably expressing exogenous NTCP-myc
87	(designated NKNT-3/NTCP cells; Fig. 1A). The cell surface expression of NTCP was
88	detected in both NKNT-3/NTCP cells and HepG2/NTCP cells (HepG2 cells stably
89	expressing exogenous NTCP-myc), but not in NKNT-3/Control cells (NKNT-3 cells
90	stably expressing the control vector) (Fig. 1B). By using two kinds of inoculum,
91	HBV/NLuc (genotype C) [13] and HBV (the supernatant of HBV-replicating
92	HepG2.2.15 cells, genotype D) [14], we compared the levels of susceptibility to HBV in
93	NKNT-3/NTCP cells with that in NKNT-3/Control cells. After the infection with
94	HBV/NLuc or HBV, both level of NLuc activity and HBV total transcript were
95	increased in NKNT-3/NTCP cells in a time-dependent manner, but not in
96	NKNT-3/Control cells (Figs. 1C and 1D). We next compared the level of susceptibility

97	to HBV in NKNT-3/NTCP cells with that in HepG2/NTCP cells. The levels of NLuc
98	activity, HBV total transcript, and pgRNA in HBV/NLuc- or HBV-infected
99	NKNT-3/NTCP cells were almost ten times lower than those in HBV/NLuc- or
100	HBV-infected HepG2/NTCP cells (Figs. 1E and 1F). We further examined whether or
101	not the exogenous NTCP was functional in NKNT-3/NTCP cells. Cyclosporin A (CsA)
102	was previously reported to inhibit HBV entry by targeting NTCP [15]. When
103	administered before and during HBV inoculation, CsA inhibited the levels of HBV total
104	transcript in HBV-infected NKNT-3/NTCP cells as well as in HBV-infected
105	HepG2/NTCP cells (Fig. 1G). These results suggest that NKNT-3 cells exhibit
106	susceptibility to HBV by exogenously expressing functional NTCP.
107	
108	The level of susceptibility to HBV in NKNT-3/NTCP #28.3.8 cells approximated
109	that in HepG2/NTCP cells.
110	Since susceptibility to HBV in NKNT-3/NTCP cells was lower than that in
111	HepG2/NTCP cells (Figs. 1E and 1F), we next tried to select a subcloned cell line
112	exhibiting higher susceptibility to HBV than NKNT-3/NTCP cells (Fig. 2A). During

113	three-round serial limited dilution, we obtained three distinct cell clones (#28, #28.3,
114	and #28.3.8 cells, respectively; Fig. 2A) that met this criterion (Fig. 2B). Exogenous
115	NTCP was expressed on the cell surface in all three clones (Fig. 2C). Among them, the
116	NKNT-3/NTCP #28.3.8 cells exhibited the highest levels of HBV total transcript after
117	HBV infection (Fig. 2D). Therefore, we next compared the levels of susceptibility to
118	HBV in NKNT-3/NTCP #28.3.8 cells with those in HepG2/NTCP cells. Upon the
119	infection with HBV/NLuc or HBV, both levels of NLuc activity (Fig. 2E) and HBV
120	total transcript (Fig. 2F) in NKNT-3/NTCP #28.3.8 cells approximated those in
121	HepG2/NTCP cells. Consistent with these results, Northern blot analysis also showed
122	that the levels of HBV pregenomic RNA (pgRNA) and 2.1/2.3 kb RNA in
123	NKNT-3/NTCP #28.3.8 cells were roughly the same as those in HepG2/NTCP cells
124	after HBV infection (Fig. 2G). These results suggest that NKNT-3/NTCP #28.3.8 cells
125	are useful as an HBV infectious cell culture model in the manner of HepG2/NTCP cells.
126	
197	HRV triggered the induction of type III IFNs in NKNT-3/NTCP #28.3.25.13 cells

HBV triggered the induction of type III IFNs in NKNT-3/NTCP #28.3.25.13 cells
exhibiting resistance to HBV.

129	During the three-round limited dilution, we obtained NKNT-3/NTCP #28.3.8 cells
130	that exhibited higher susceptibility to HBV than the parent NKNT-3/NTCP cells (Figs.
131	2B and 2D). On the other hand, during the additional limited dilution (Fig. 3A), we
132	unexpectedly obtained a cell clone (#28.3.25.13) exhibiting greater resistance to HBV
133	compared with NKNT-3/NTCP #28.3.8 cells (Fig. 3B). We conjectured that the innate
134	immune response might be induced in cell clones exhibiting resistance to HBV. To
135	examine this possibility, we first compared the HBV-triggered innate immune responses
136	among cell clones exhibiting susceptibility or resistance to HBV. At 5 days after HBV
137	infection, ISG56 was strongly induced in NKNT-3/NTCP #28.3.25.13 cells, but not in
138	NKNT-3/NTCP #28.3.8 cells (Fig. 3C). Since HBV-triggered ISG56 induction in
139	NKNT-3/NTCP #28.3.25.13 cells was higher than that in #28.3. 30.20.3 cells (another
140	cell clone exhibiting resistance to HBV, Fig. 3B), we mainly focused the innate immune
141	response to HBV in NKNT-3/NTCP #28.3.25.13 cells. We first compared the time
142	course of ISG56 mRNA induction after HBV infection between NKNT-3/NTCP #28.3.8
143	and #28.3.25.13 cells (Fig. 3D). At 5 or 9 days after HBV infection, ISG56 mRNA was
144	strongly induced in NKNT-3/NTCP #28.3.25.13 cells, but not in #28.3.8 cells (Fig. 3D).

145	These results suggest that HBV infection induces the innate immune response in cell
146	clone exhibiting resistance but not susceptibility to HBV. We next examined whether
147	type I and/or type III IFN was required for ISG56 mRNA induction after HBV infection
148	in NKNT-3/NTCP #28.3.25.13 cells. Interestingly, at 9 days after HBV infection,
149	<i>IFN-$\lambda 1$</i> and <i>IFN-$\lambda 2/3$</i> (type III IFN) mRNA, but not <i>IFN-β</i> (type I IFN) mRNA, were
150	induced in NKNT-3/NTCP #28.3.25.13 cells (Figs. 3E and 3F). In addition, $IFN-\lambda I$
151	mRNA (Fig. 3G), ISG15 (Fig. 3H), and ISG56 (Fig. 3H) were induced at 9 days after
152	HBV infection, but not mock or ultraviolet-inactivated HBV (UV-HBV) infection, in
153	NKNT-3/NTCP #28.3.25.13 cells. Consistent with these results, HBV induced <i>IFN-λI</i>
154	and IFN- $\lambda 2/3$, but not IFN- β mRNA, in HBV-replicating HepG2.2.15 cGAS/STING
155	cells stably expressing both exogenous cGAS and STING [10] (Fig. 3I). In addition, the
156	induction levels of IFN- $\lambda 1$ and IFN- $\lambda 2/3$ mRNA in HepG2.2.15 cGAS/STING cells
157	were higher than those in HepG2.2.15 cGAS GSAA/STING cells stably expressing
158	both exogenous cGAS GSAA (the inactive mutant of cGAS) and STING [10]. These
159	results suggest that HBV induces type III IFN through the cGAS/STING signaling
160	pathway in NKNT-3/NTCP #28.3.25.13 cells, but not in #28.3.8 cells. These results also

161	suggest that the expression levels of cGAS/STING signaling pathway-associated host
162	factor(s) are different between NKNT-3/NTCP #28.3.8 cells and #28.3.25.13 cells.
163	
164	High-level expression of STING was implicated in HBV-triggered type III IFN
165	induction in NKNT-3/NTCP #28.3.25.13 cells exhibiting resistance to HBV.
166	Since our results suggested that the expression levels of cGAS/STING signaling
167	pathway-associated host factor(s) were different between NKNT-3/NTCP #28.3.8 cells
168	and #28.3.25.13 cells, we next compared the levels of p-dGdC (the synthetic ligand for
169	the cGAS/STING signaling pathway)-triggered type III IFN induction. We found that
170	the p-dGdC-triggered ISG56 and IFN-lambda1 mRNA induction in NKNT-3/NTCP
171	#28.3.25.13 cells was several times higher than that in NKNT-3/NTCP #28.3.8 cells
172	(Fig. 4A). We next tried to identify the host factor(s) responsible for the higher
173	responsiveness to p-dGdC in NKNT-3/NTCP #28.3.25.13 cells. Among cGAS/STING
174	signaling pathway-associated host factor(s), we found that STING mRNA (Fig. 4B) and
175	STING protein (Fig. 4C) were highly expressed in NKNT-3/NTCP #28.3.25.13 cells.
176	These results suggest that the high-level expression of STING enhances

177	p-dGdC-triggered type III IFN induction in NKNT-3/NTCP #28.3.25.13 cells compared
178	with #28.3.8 cells. We further compared the phosphorylation levels of STING among
179	several NKNT-3/NTCP cell-derived cell clones. STING was highly phosphorylated in
180	p-dGdC-transfected NKNT-3/NTCP #28.3.25.13 cells, but not in #28.3.8 cells (Fig. 4D,
181	lower-left panel). In addition, STING was also highly phosphorylated in p-
182	dGdC-treated NKNT-3/NTCP #28.3.25 cells (the parent cells of #28.3.25.13) but not in
183	the parent cells, or in #28 and #28.3 cells (the common parent cells of #28.3.8, #28.3.25
184	and #28.3.25.13, respectively). <i>IFN-$\lambda 1$</i> mRNA was strongly induced in NKNT-3/NTCP
185	cells highly phosphorylating STING such as NKNT-3/NTCP #28.3.25 and #28.3.25.13
186	cells (Fig. 4D, upper-left panel). Consistent with these results, the knockdown of
187	STING reduced IFN- λI mRNA induction in p-dGdC-transfected NKNT-3/NTCP
188	#28.3.25.13 cells (Fig. 4D, upper-right panel). These results suggest that STING
189	regulate p-dGdC-triggered type III IFN induction by its expression level in
190	NKNT-3/NTCP cells.

We next examined whether high-level expression of STING was required for
HBV-triggered type III IFN induction in NKNT-3/NTCP #28.3.25.13 cells. We found

193	that knockdown of STING decreased the induction of IFN- $\lambda 1$ mRNA (Fig. 4E, upper
194	panel) and subsequently ISG56 (Fig. 4E, lower panel) in HBV-infected NKNT-3/NTCP
195	#28.3.25.13 cells. The knockdown of STING also increased the amounts of HBV total
196	transcript in HBV-infected NKNT-3/NTCP #28.3.25.13 cells (Fig. 4F). On the other
197	hand, the stable expression of exogenous STING, but not STING I200N which causes
198	the conformational disruption [16], increased the induction of $IFN-\lambda I$ mRNA (Fig. 4G,
199	upper panel) and subsequently ISG56 (Fig. 4G, lower panel) in HBV-infected
200	NKNT-3/NTCP #28.3.8 cells. The stable expression of exogenous STING also
201	decreased the amounts of HBV total transcript in HBV-infected NKNT-3/NTCP #28.3.8
202	cells (Fig. 4H). These results suggest that high-level expression of STING is implicated
203	in HBV-triggered type III IFN induction in NKNT-3/NTCP #28.3.25.13 cells.
204	
205	High-level expression of STING was required for the HBV-triggered inflammatory
206	response in NKNT-3/NTCP #28.3.25.13 cells.
207	Since high-level expression of STING mediated HBV-triggered type III IFN

208 induction in NKNT-3/NTCP #28.3.25.13 cells (Figs. 4D and 4E), we next examined

209	whether high-level expression of STING was implicated in the induction of not only
210	type III IFN but also pro-inflammatory cytokine including IL-6 through the NF- κB
211	signaling pathway. IL-6 mRNA induction in p-dGdC-transfected NKNT-3/NTCP
212	#28.3.25.13 cells was higher than that in p-dGdC-transfected NKNT-3/NTCP #28.3.8
213	cells (Fig. 5A). In addition, the knockdown of STING reduced IL-6 mRNA induction in
214	p-dGdC-transfected NKNT-3/NTCP #28.3.25.13 cells (Fig. 5B). Since the
215	phosphorylation of NF- κ B p65 at Ser536 was required for the activation of
216	noncanonical NF-κB signaling pathway [17], we next compared the phosphorylation of
217	NF- κ B p65 at Ser536 between p-dGdC-transfected NKNT-3/NTCP #28.3.8 cells and
218	#28.3.25.13 cells. Our results indicated that NF- κ B p65 was phosphorylated at Ser536
219	in p-dGdC-treated NKNT-3/NTCP #28.3.25.13 cells, but not #28.3.8 cells (Fig. 5C).
220	These results suggest that high-level expression of STING enhances p-dGdC-triggered
221	IL-6 mRNA induction through the noncanonical NF-κB signaling pathway in
222	NKNT-3/NTCP #28.3.25.13 cells. We next examined whether HBV infection also
223	triggered <i>IL-6</i> mRNA induction through the noncanonical NF-κB signaling pathway in
224	NKNT-3/NTCP #28.3.25.13 cells. Interestingly, HBV infection, but not mock or

225	UV-HBV infection, triggered the phosphorylation of NF-κB p65 at Ser536 (Fig. 5D)
226	and subsequently induced IL-6 mRNA (Fig. 5E) in NKNT-3/NTCP #28.3.25.13 cells.
227	These results suggest that high-level expression of STING is implicated in
228	HBV-triggered pro-inflammatory cytokine induction through the noncanonical NF- κB
229	signaling pathway in NKNT-3/NTCP #28.3.25.13 cells. NKNT-3/NTCP #28.3.25.13
230	cells are a useful tool for studying hepatic carcinogenesis caused by the HBV-triggered
231	inflammatory response through the NF-κB signaling pathway.
232	
233	Discussion
234	Cytoplasmic DNA or RNA sensors trigger the innate immune responses and the
235	inflammatory responses by recognizing viral PAMPs. We previously reported that one
236	of the cytoplasmic DNA sensors, cGAS, recognized HBV DNA as viral PAMPs and
237	subsequently induced the innate immune response through its adaptor protein, STING
238	[10]. In the present study, we found that the immortalized human hepatocyte NKNT-3
239	cells exhibited HBV susceptibility by stably expressing the exogenous NTCP (Figs. 1C
240	and 1D). Cells of one of the NKNT-3/NTCP cell-derived clones, NKNT-3/NTCP

241	#28.3.25.13, highly expressed STING and exhibited resistance to HBV through
242	STING-mediated type III IFN induction (Figs. 4C, 4E, and 4F). Interestingly, STING
243	was highly phosphorylated in p-dGdC-transfected NKNT-3/NTCP #28.3.25.13 cells,
244	but not in the parent, #28, #28.3, or #28.3.8 cells (Fig. 4D). However, it is uncertain
245	why the expression and phosphorylation levels of STING differed among the
246	NKNT-3/NTCP cell-derived cell clones. In humans, several single nucleotide
247	polymorphisms (SNP) of STING have been discovered [18]. SNPs of STING have been
248	shown to cause autoinflammatory diseases such as STING-associated vasculopathy with
249	onset in infancy [19] and familial chilblain lupus [20]. These SNPs are implicated in the
250	dysregulation of host innate immune responses and inflammatory responses through a
251	loss-of-function mutation or a gain-of-function mutation of STING. Further analysis is
252	needed to identify the gain-of-function mutation(s) in STING in NKNT-3/NTCP
253	#28.3.25.13 cells.
254	In the present study, we showed that HBV infection induced type III IFN, but not

#28.3.25.13 cells (Fig. 5F). Sato et al. previously reported that a cytoplasmic RNA

255

256

IFN-β (type I IFN), through a STING-mediating signaling pathway in NKNT-3/NTCP

257	sensor, RIG-I, recognized HBV pgRNA and subsequently induced type III but not type I
258	IFN through its adaptor protein, IPS-1, in human primary hepatocytes [21]. These
259	results suggest that HBV suppresses the induction of type I IFN but not type III IFN.
260	One of the HBV proteins, HBV polymerase, suppressed STING-mediated IFN- β
261	induction by disrupting K63-linked ubiquitination of STING [22]. Another study also
262	reported that HBx bound IPS-1 and suppressed the activation of IFN- β [23]. However,
263	in these studies, it was unclear whether HBV suppressed the induction of type III IFN
264	through these HBV proteins. Our results showed that HBV transiently induced ISG56
265	mRNA induction at 5 and 9 days, but not at 13 days, after HBV infection in
266	NKNT-3/NTCP #28.3.25.13 cells (Fig. 3D). This result suggests that HBV possesses
267	two opposite functions to simultaneously trigger or suppress the induction of type III
268	IFN. Further analysis is needed to examine whether or not HBV suppresses the
269	induction of type III IFN.
270	We also showed that HBV infection induced a pro-inflammatory cytokine, IL-6,
271	through the noncanonical NF-κB signaling pathway in NKNT-3/NTCP #28.3.25.13
272	cells (Fig. 5F). STING also mediates host inflammatory responses by triggering its

273	downstream NF-kB signaling pathway [8, 9]. A STING-triggered host inflammatory
274	response has been reported to be associated with hepatic diseases [24, 25]. In
275	nonalcoholic fatty liver disease, STING promotes hepatocyte injury by inducing
276	inflammation [24]. In addition, STING mediates liver injury and fibrosis in mice
277	administered CCl ₄ (a chemical inducer of hepatocyte death) [25]. Moreover, based on
278	the results of several previous studies, STING is also thought to play an important role
279	in tumor development [26]. Interestingly, STING may exert two opposite effects
280	(tumor-suppressing and tumor-promoting effects) on tumor development under different
281	situations. For example, in breast cancer, STING and its downstream signaling may
282	suppress the tumor or the cancer metastasis [27, 28]. In contrast, STING is also required
283	for cell survival and regrowth in breast cancer [29, 30]. However, the results of the
284	present study do not clarify whether the HBV-triggered NF- κ B signaling pathway
285	causes liver diseases and tumor development. Further analysis will also be needed to
286	examine how HBV causes liver diseases and finally HCC through a STING-mediated
287	NF-κB signaling pathway.

288 In the present study, we established a novel HBV infectious cell culture model by

289	using NKNT-3 cells. Since NKNT-3 cells exhibit a non-neoplastic phenotype [12], our
290	HBV infectious cell culture model is expected to be a useful tool for the study of
291	hepatic carcinogenesis caused by HBV-triggered innate immune responses and
292	inflammatory responses.
293	
294	Materials and Methods
295	Cell culture
296	Human immortalized hepatocyte NKNT-3 cells, which were kindly provided by N.
297	Kobayashi and M. Namba (Okayama University). Human hepatoma HepG2/NTCP cells
298	were cultured as previously described [10]. HepG2.2.15 Cont, HepG2.2.15
299	cGAS/STING, and HepG2.2.15 cGAS GSAA/STING cells were maintained in medium
300	including blasticidin and puromycin as previously described [10].
301	
302	Establishment of an NKNT-3 cell line stably expressing exogenous NTCP and the
303	derivation of its cell clones
304	NKNT-3 cells stably expressing exogenous NTCP (designated NKNT-3/NTCP cells)

305	were established as previously described [10]. NKNT-3/NTCP-derived cell clones were
306	isolated from their parental cells by the limited dilution method. We evaluated HBV
307	susceptibility by HBV/NLuc assay [13] and, from the several tens of cell clones
308	obtained, selected a cell clone exhibiting susceptibility or resistance to HBV. By
309	repeating the cell cloning and selection process, we obtained cell clones exhibiting the
310	different levels of susceptibility to HBV.
311	
312	HBV/NLuc assay
313	HBV/NLuc was prepared as previously reported [13]. Intracellular NLuc activity was
314	measured at 5, 9, and 13 days after the inoculation of HBV/NLuc. For the measurement
315	of NLuc activity, we used a Nano-Glo luciferase assay system (Promega, Madison, WI,
316	USA). Data are the means \pm SD from three independent experiments.
317	
318	Western blot analysis
319	Western blot analysis was performed as previously described [31]. Anti-Myc (PL14;
320	Medical & Biological Laboratories, Nagoya, Japan), anti-ISG15 (H-150; Santa Cruz

21

321	Biotechnology,	Dallas,	TX,	USA),	anti-ISG56,	anti-cGAS,	anti-phospho-STING
-----	----------------	---------	-----	-------	-------------	------------	--------------------

- 322 (Ser366), anti-STING, anti-phospho-NF-κB p65 (Ser536), anti-NF-κB p65 (Cell
- 323 Signaling Technology, Beverly, MA, USA), and anti-β-actin (AC-15; Sigma-Aldrich, St.
- Louis, MO, USA) were used as primary antibodies.

325

326 Flow cytometric analysis

327 Cell surface expression of exogenous NTCP was detected by a flow cytometer as 328 previously reported [32]. Anti-Myc (PL14; Medical & Biological Laboratories), and

329 FITC-conjugated goat anti-mouse antibody (Jackson ImmunoResearch Laboratories,

330 West Grove, PA, USA) were used as primary and secondary antibody, respectively.

331

332 Analysis of HBV RNA

333 HBV was prepared from the supernatant of HepG2.2.15 cells as previously reported

[10]. Cells were infected with HBV at 10³ HBV genome equivalents per cell, unless
otherwise described. For the analysis of intracellular HBV RNA after the infection of
HBV, we performed quantitative RT-PCR analysis and Northern blot analysis as

337 previously reported [10].

338

- 339 Quantitative RT-PCR analysis
- At 5, 9, and 13 days after HBV inoculation or at 6 hours after the transfection of an *in*
- 341 vitro-synthesized ligand, p-dGdC (Invivogen, San Diego, CA, USA), we performed
- 342 quantitative RT-PCR analysis as previously described [33]. For quantitative RT-PCR
- analysis, we used primer sets previously described for ISG56 [34], IFN-β [34], cGAS
- 344 [10], STING [10], IL-6 [33], and GAPDH [33]. We also prepared forward and reverse
- 345 primer sets for IFN-λ1 (5'- CTGGGAAGGGCTGCCACATT-3' (forward) and 5'-
- 346 TTGAGTGACTCTTCCAAGGCG-3' (reverse)) and IFN- $\lambda 2/3$ (5'-
- 347 CAGCTGCAGGTGAGGGAG-3' (forward) and 5'-CTGGGTCAGTGTCAGCGG-3'
- 348 (reverse)).
- 349

350 **RNA interference**

The day after mock or HBV infection, we introduced small interfering RNAs (siRNAs)
 targeting STING or nontargeting siRNAs into NKNT-3/NTCP #28.3.25.13 cells as

23

353	previously described [35]. At 4 days after the introduction of siRNAs, we isolated the
354	total RNA or cell lysate, and subjected it to quantitative RT-PCR analysis or western
355	blot analysis, respectively.
356	
357	Generation of cells stably expressing exogenous STING
358	To construct pCX4bleo/HA-STING retroviral vector, we introduced STING (accession
359	no. NM_198282) cDNA containing a full-length ORF into the pCX4bleo/HA retroviral
360	vector as previously reported [36]. pCX4bleo/HA-STING I200N [16] was also
361	constructed using PCR mutagenesis with primers containing base alterations. These
362	vectors were introduced into NKNT-3/NTCP #28.3.8 cells by retroviral transfer and
363	then the cells stably expressing exogenous STING or STING I200N were selected by
364	Zeocin (Thermo Fisher Scientific, Carlsbad, CA, USA).
365	
366	Statistical analysis
367	Statistical analysis was performed to determine the significance of differences among

368 groups by using Student's *t*-test. P < 0.05 was considered statistically significant.

369

370	Acknowledgements
0.0	

- 371 We thank Marie Iwado, Masayo Takemoto, and Masato Ono for their technical assistance.
- 372 We also thank Dr. Tsuyoshi Akagi for the provision of pCX4bleo retroviral vectors. This
- 373 research was supported by the Japan Agency for Medical Research and Development
- 374 (AMED) under grant numbers JP17fk0310107 and JP17fk0310103, and by a grant from
- the Wesco Foundation.
- 376

```
377 Funding
```

- 378 Japan Agency for Medical Research and Development (AMED)
- grant numbers JP17fk0310107 and JP17fk0310103
- 380 Wesco Foundation
- 381

382 Author Contributions

383 HD and NK designed the research. HD performed most of the experiments. HI

384 contributed pCX4bleo HA-STING I200N. NK performed the cell cloning by the limited

385	dilution r	nethod.	HD.	HI.	YU.	SS	and N	١K	analyze	d the	data.	HD	wrote	the	paper.	All
000	anation	nounou.	· · · · ,	· · · ,	тс,	20	und 1	117	unui y 200		uutu.	110		une	puper.	1 111

- authors reviewed the manuscript.
- 387
- 388 **Conflict of interest**
- 389 The authors declare that they have no conflict of interest.
- 390
- 391 **References**
- 392 1. Chen DS (1993) From hepatitis to hepatoma: lessons from type B viral hepatitis.
- 393 *Science* **262:** 369-370
- 2. Kao JH, Chen DS (2002) Global control of hepatitis B virus infection. Lancet Infect
- 395 Dis 2: 395-403
- 396 3. Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA
- sensor that activates the type I interferon pathway. *Science* **339**: 786-791
- 4. Wu J, Sun L, Chen X, Du F, Shi H, Chen C, Chen ZJ (2013) Cyclic GMP-AMP is an
- 399 endogenous second messenger in innate immune signaling by cytosolic DNA. Science
- 400 **339:** 826-830

- 401 5. Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated,
- 402 type I interferon-dependent innate immunity. *Nature* **461**: 788-792
- 403 6. Sui H, Zhou M, Imamichi H, Jiao X, Sherman BT, Lane HC, Imamichi T (2017)
- 404 STING is an essential mediator of the Ku70-mediated production of IFN- λ 1 in response
- 405 to exogenous DNA. Sci Signal 10: eaah5054
- 406 7. Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK, Langer JA,
- 407 Sheikh F, Dickensheets H, Donnelly RP (2003) IFN-λs mediate antiviral protection
- 408 through a distinct class II cytokine receptor complex. *Nat Immunol* **4:** 69-77
- 409 8. Abe T, Barber GN (2014) Cytosolic-DNA-mediated, STING-dependent
- 410 proinflammatory gene induction necessitates canonical NF-κB activation through TBK1.
- 411 J Virol 88: 5328-5341
- 412 9. Blaauboer SM, Gabrielle VD, Jin L (2014) MPYS/STING-mediated TNF-α, not type
- 413 I IFN, is essential for the mucosal adjuvant activity of
- 414 (3'-5')-cyclic-di-guanosine-monophosphate in vivo. *J Immunol* **192:** 492-502
- 415 10. Dansako H, Ueda Y, Okumura N, Satoh S, Sugiyama M, Mizokami M, Ikeda M, Kato
- 416 N (2016) The cyclic GMP-AMP synthetase-STING signaling pathway is required for

417 both the innate immune response against HBV and the suppression of HBV assembly.

- 418 FEBS J 283: 144-156
- 419 11. Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, Huang Y, Qi Y, Peng B, Wang H, et al
- 420 (2012) Sodium taurocholate cotransporting polypeptide is a functional receptor for
- 421 human hepatitis B and D virus. *eLife* 1:, e00049
- 422 12. Kobayashi N, Fujiwara T, Westerman KA, Inoue Y, Sakaguchi M, Noguchi H,
- 423 Miyazaki M, Cai J, Tanaka N, Fox IJ, et al (2000) Prevention of acute liver failure in
- 424 rats with reversibly immortalized human hepatocytes. *Science* **287**: 1258-1262
- 425 13. Nishitsuji H, Ujino S, Shimizu Y, Harada K, Zhang J, Sugiyama M, Mizokami M,
- 426 Shimotohno K (2015) Novel reporter system to monitor early stages of the hepatitis B
- 427 virus life cycle. *Cancer Sci* **106**: 1616-1624
- 428 14. Sells MA, Chen ML, Acs G (1987) Production of hepatitis B virus particles in Hep
- 429 G2 cells transfected with cloned hepatitis B virus DNA. Proc Natl Acad Sci USA 84:
- 430 1005-1009
- 431 15. Watashi K, Sluder A, Daito T, Matsunaga S, Ryo A, Nagamori S, Iwamoto M,
- 432 Nakajima S, Tsukuda S, Borroto-Esoda K, et al (2014) Cyclosporin A and its analogs

433	inhibit hepatitis B virus entry into cultured hepatocytes through targeting a membrane
434	transporter, sodium taurocholate cotransporting polypeptide (NTCP). Hepatology 59:
435	1726-1737

- 436 16. Yin Q, Tian Y, Kabaleeswaran V, Jiang X, Tu D, Eck MJ, Chen ZJ, Wu H (2012)
- 437 Cyclic di-GMP sensing via the innate immune signaling protein STING. *Mol Cell* **46**:
- 438 735-745
- 439 17. Sasaki CY, Barberi TJ, Ghosh P, Longo DL (2005) Phosphorylation of RelA/p65 on
- 440 Serine 536 Defines an IκBα-independent NF-κB Pathway. J Biol Chem 280:
 441 34538-34547
- 442 18. Li Y, Wilson HL, Kiss-Toth E (2017) Regulating STING in health and disease. J
- 443 Inflammation **59:** 14:11
- 444 19. Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Sanchez GAM, Tenbrock K,
- 445 Wittkowski H, Jones OY, Kuehn HS, et al (2014) Activated STING in a vascular and
- 446 pulmonary syndrome. *N Engl J Med* **371:** 507-518
- 447 20. König N, Fiehn C, Wolf C, Schuster M, Cura Costa E, Tüngler V, Alvarez HA,
- 448 Chara O, Engel K, Goldbach-Mansky R, et al (2017) Familial chilblain lupus due to a

- 449 gain-of-function mutation in STING. Ann Rheum Dis 76: 468-472
- 450 21. Sato S, Li K, Kameyama T, Hayashi T, Ishida Y, Murakami S, Watanabe T, Iijima S,
- 451 Sakurai Y, Watashi K, et al (2015) The RNA sensor dually functions as an innate sensor
- 452 and direct antiviral factor for hepatitis B virus. *Immunity* **42:** 123-132
- 453 22. Liu Y, Li J, Chen J, Li Y, Wang W, Du X, Song W, Zhang W, Lin L, Yuan Z (2015)
- 454 Hepatitis B virus polymerase disrupts K63-linked ubiquitination of STING to block
- 455 innate cytosolic DNA-sensing pathways. J Virol 89: 2287-2300
- 456 23. Kumar M, Jung SY, Hodgson AJ, Madden CR, Qin J, Slagle BL (2011) Hepatitis B
- 457 virus regulatory HBx protein binds to adaptor protein IPS-1 and inhibits the activation
- 458 of beta interferon. *J Virol* **85:** 987-995
- 459 24. Qiao JT, Cui C, Qing L, Wang LS, He TY, Yan F, Liu FQ, Shen YH, Hou XG, Chen
- 460 L (2018) Activation of the STING-IRF3 pathway promotes hepatocyte inflammation,
- 461 apoptosis and induces metabolic disorders in nonalcoholic fatty liver disease.
- 462 *Metabolism* **81:** 13-24
- 463 25. Iracheta-Vellve A, Petrasek J, Gyongyosi B, Satishchandran A, Lowe P, Kodys K,
- 464 Catalano D, Calenda CD, Kurt-Jones EA, Fitzgerald KA, et al (2016) Endoplasmic

465	Reticulum	Stress-induced	Hepatocellular	Death	Pathways	Mediate	Liver	Injury	and

- 466 Fibrosis via Stimulator of Interferon Genes. *J Biol Chem* **291**: 26794-26805
- 467 26. He L, Xiao X, Yang X, Zhang Z, Wu L, Liu Z (2017) STING signaling in
- 468 tumorigenesis and cancer therapy: A friend or foe? *Cancer Lett* **402**: 203-212
- 469 27. Bhatelia K, Singh A, Tomar D, Singh K, Sripada L, Chagtoo M, Prajapati P, Singh R,
- 470 Godbole MM, Singh R (2014) Antiviral signaling protein MITA acts as a tumor
- 471 suppressor in breast cancer by regulating NF-kappaB induced cell death. Biochim
- 472 *Biophys Acta* **1842:** 144-153
- 473 28. Chandra D, Quispe-Tintaya W, Jahangir A, Asafu-Adjei D, Ramos I, Sintim HO,
- 474 Zhou J, Hayakawa Y, Karaolis DK, Gravekamp C (2014) STING ligand c-di-GMP
- 475 improves cancer vaccination against metastatic breast cancer. *Cancer Immunol Res* 2:
 476 901-910
- 477 29. Lemos H, Mohamed E, Huang L, Ou R, Pacholczyk G, Arbab AS, Munn D, Mellor
- 478 AL (2016) STING promotes the growth of tumors characterized by low antigenicity via
- 479 IDO activation. *Cancer Res* **76:** 2076-2081
- 480 30. Gaston J, Cheradame L, Yvonnet V, Deas O, Poupon MF, Judde JG, Cairo S, Goffin

481 V (2016) Intracellular STING inactivation sensitizes breast cancer cells to genotoxic

- 482 agents. Oncotarget 7: 77205-77224
- 483 31. Dansako H, Ikeda M, Kato N (2007) Limited suppression of the interferon-beta
- 484 production by hepatitis C virus serine protease in cultured human hepatocytes. FEBS J
- 485 **274:** 4161-4176
- 486 32. Dansako H, Imai H, Ueda Y, Satoh S, Wakita T, Kato N (2018) ULBP1 is induced
- 487 by hepatitis C virus infection and is the target of the NK cell-mediated innate immune
- 488 response in human hepatocytes. FEBS Open Bio 8: 361-371
- 489 33. Dansako H, Ikeda M, Ariumi Y, Wakita T, Kato N (2009) Double-stranded
- 490 RNA-induced interferon-beta and inflammatory cytokine production modulated by
- 491 hepatitis C virus serine proteases derived from patients with hepatic diseases. Arch Virol
- **4**92 **154:** 801-810
- 493 34. Dansako H, Yamane D, Welsch C, McGivern DR, Hu F, Kato N, Lemon SM (2013) Class A
- 494 scavenger receptor 1 (MSR1) restricts hepatitis C virus replication by mediating Toll-like
- 495 receptor 3 recognition of viral RNAs produced in neighboring cells. *PLoS Pathog* **9**: e1003345

496	35. Dansako H, Hiramoto H, Ikeda M, Wakita T, Kato N (2014) Rab18 is required for viral
497	assembly of hepatitis C virus through trafficking of the core protein to lipid droplets. Virology
498	462-463C: 166-174
499	36. Dansako H, Naganuma A, Nakamura T, Ikeda F, Nozaki A, Kato N (2003)
500	Differential activation of interferon-inducible genes by hepatitis C virus core protein
501	mediated by the interferon stimulated response element. Virus Res 97: 17-30
502	
503	Figure legends
504	Figure 1 - The immortalized human hepatocyte cell line NKNT-3 exhibited
505	susceptibility to HBV by expressing exogenous NTCP.
506	A Western blot analysis of exogenous NTCP in NKNT-3/NTCP cells. Anti-Myc
507	antibody was used for the detection of NTCP-Myc in NKNT-3/NTCP cells. β -actin was
508	included as a loading control.
509	B Flow cytometric analysis of the cell surface NTCP in NKNT-3/Control cells,
510	NKNT-3/NTCP cells, or HepG2/NTCP cells. Signals of the cell surface NTCP are
511	shown in green. An isotype control was used as a negative control (violet area).

512	C Comparison of NLuc activity after HBV/NL inoculation between NKNT-3/Control
513	cells and NKNT-3/NTCP cells. Intracellular NLuc activity was measured at 5, 9, and 13
514	days after HBV/NL inoculation. ** $P < 0.01$, *** $P < 0.001$ versus HBV/NL-infected
515	NKNT-3/Cont cells.
516	D Quantitative RT-PCR analysis of the amount of HBV total transcript in
517	HBV-infected NKNT-3/Control cell or NKNT-3/NTCP cells. The supernatant of
518	HepG2.2.15 cells was used as an HBV inoculum. The amounts of HBV total transcript
519	were measured at 5, 9, and 13 days after HBV inoculation. $**P < 0.01$, $***P < 0.001$
520	versus HBV-infected NKNT-3/Cont cells.
521	E, F Comparison of the susceptibility to HBV between HepG2/NTCP cells and

- 522 NKNT-3/NTCP cells. Intracellular NLuc activity was measured after HBV/NL
- 523 inoculation. The amounts of HBV total transcript and the pgRNA were measured after
- 524 HBV inoculation by quantitative RT-PCR analysis. **P < 0.01, ***P < 0.001 versus
- 525 HBV/NL- or HBV-infected HepG2/NTCP cells, respectively.
- 526 G Functional analysis of NTCP in NKNT-3/NTCP cells using CsA as an HBV-entry
- 527 inhibitor. CsA was administered before and during HBV inoculation. *P < 0.05, ***P < 0.05

528 0.001 versus 0 µM of CsA-administered HBV-infected cells.

529

530 Figure 2 - The level of susceptibility to HBV in NKNT-3/NTCP #28.3.8 cells

531 approximated that in HepG2/NTCP cells.

532 A Outline of cell cloning by the limited dilution method. NKNT-3/NTCP #28.3.8

- 533 cells were selected by three-round limited dilution. Red arrows with solid lines show the
- 534 selection of a cell clone exhibiting higher susceptibility to HBV.
- 535 B Comparison of susceptibility to HBV among parent NKNT-3/NTCP cells and their
- 536 derived cell clones by using HBV/NL assay. **P < 0.01, ***P < 0.001 versus
- 537 HBV/NL-infected parent NKNT-3/NTCP cells.
- 538 C Flow cytometric analysis of the cell surface NTCP in their derived cell clones.
- 539 Signals of the cell surface NTCP are shown in green. An isotype control was used as a
- 540 negative control (violet area).

541 D Comparison of the amounts of HBV total transcript after HBV infection among 542 parent NKNT-3/NTCP cells and their derived cell clones. The amount of HBV total 543 transcript was measured after HBV infection by quantitative RT-PCR analysis. *P < 544 0.05 versus HBV-infected parent NKNT-3/NTCP cells.

545	E, F Comparison of susceptibility to HBV between HepG2/NTCP cells and
546	NKNT-3/NTCP #28.3.8 cells. Intracellular NLuc activity or the amounts of HBV total
547	transcript were measured as described in Figs. 1E and 1F. NS; not significant, $**P <$
548	0.01, *** $P < 0.001$ versus HBV/NL- or HBV-infected HepG2/NTCP cells, respectively.
549	G Comparison of susceptibility to HBV between HepG2/NTCP cells and
550	NKNT-3/NTCP #28.3.8 cells by Northern blot analysis. Total RNA was isolated from
551	HBV-infected cells at 13 days after HBV inoculation. 28S rRNA and 18S rRNA were
552	included as a loading control. NKNT-3/NTCP #28.8.4 is another clone, which has been
553	estimated to exhibit susceptibility to HBV by HBV/NL assay (data not shown).
554	
555	Figure 3 – HBV induced type III IFN in NKNT-3/NTCP #28.3.25.13 cells exhibiting
556	resistance to HBV.
557	A Outline of cell cloning by the limited dilution method. NKNT-3/NTCP
558	#28.3.25.13 and #28.3.30.20.3 cells were selected by their distinct serial limited dilution,
559	respectively. Blue arrows with dashed lines show the selection of a cell clone exhibiting

resistance to HBV.

- 561 B Quantitative RT-PCR analysis of the amounts of HBV total transcript in
- 562 HBV-infected NKNT-3/NTCP #28.3.8, #28.3.25.13, or #28.3.30.20.3 cells. *P < 0.05,
- 563 **P < 0.01 versus HBV-infected NKNT-3N #28.3.8 cells.
- 564 C Western blot analysis of ISG56 in HBV-infected NKNT-3/NTCP #28.3.8,
- 565 #28.3.25.13, or #28.3.30.20.3 cells. Cell lysates were prepared from mock- or
- 566 HBV-infected cells at 5 days after HBV inoculation.
- 567 D Quantitative RT-PCR analysis of ISG56 mRNA in HBV-infected NKNT-3/NTCP
- 568 #28.3.8 or #28.3.25.13 cells. Cells were infected with HBV at 10^3 or 10^4 HBV genome
- 569 equivalents per cell, respectively. Each mRNA level was calculated relative to the level
- 570 in mock-infected NKNT-3/NTCP #28.3.25.13 cells, which was set at 1. *P < 0.05, **P
- 571 < 0.01, ***P < 0.001 versus mock-infected NKNT-3N #28.3.25.13 cells.
- 572 E Quantitative RT-PCR analysis of *IFN-\lambda 1* and *IFN-\lambda 2/3* mRNA in HBV-infected
- 573 NKNT-3/NTCP #28.3.8 or #28.3.25.13 cells. Cells were infected with HBV at 10^3 or
- 574 10⁴ HBV genome equivalents per cell, respectively. Each mRNA level was calculated as
- 575 described in Fig. 3D. ND, not detected. NS; not significant, *P < 0.05, **P < 0.01

bioRxiv preprint doi: https://doi.org/10.1101/375782; this version posted July 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

576 versus mock-infected NKNT-3/NTCP #28.3.25.13 cells.

577	F Quantitative RT-PCR analysis of $IFN-\beta$ mRNA in HBV-infected NKNT-3/NTCP
578	#28.3.8 or #28.3.25.13 cells. Cells were infected with HBV at 10^3 or 10^4 HBV genome
579	equivalents per cell, respectively. Each mRNA level was calculated as described in Fig.
580	3D. NS; not significant versus mock-infected NKNT-3/NTCP #28.3.25.13 cells.
581	G (left panel) Quantitative RT-PCR analysis of the amounts of HBV total transcript
582	in mock-, HBV-, or UV-HBV-infected NKNT-3/NTCP #28.3.25.13 cells. (right panels)
583	Quantitative RT-PCR analysis of $IFN-\lambda 1$ mRNA in mock-, HBV-, or UV-HBV-infected
584	NKNT-3/NTCP #28.3.25.13 cells. Each mRNA level was calculated as described in Fig.
585	3D. ** $P < 0.01$ versus mock- or UV-HBV-infected NKNT-3/NTCP #28.3.25.13 cells,
586	respectively.
587	H Western blot analysis of ISG15 and ISG56 in mock-, HBV-, or UV-HBV-infected
588	NKNT-3/NTCP #28.3.25.13 cells. The cell lysate was prepared as described in Fig. 3C.
589	I Quantitative RT-PCR analysis of <i>IFN-$\lambda 1$</i> , <i>IFN-$\lambda 2/3$</i> , and <i>IFN-β</i> mRNA in
590	HepG2.2.15 cGAS/STING cells. Each mRNA level was calculated relative to the level
591	in HepG2.2.15 Cont cells, which was set at 1. * $P < 0.05$, ** $P < 0.01$ versus HepG2.2.15

bioRxiv preprint doi: https://doi.org/10.1101/375782; this version posted July 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

592 Cont cells or HepG2.2.15 cGAS GSAA/STING cells, respectively.

593

594 Figure 4 – High-level expression of STING was implicated in HBV-triggered type

595 III IFN induction in NKNT-3/NTCP #28.3.25.13 cells.

596 (upper panel) Quantitative RT-PCR analysis of ISG56 and IFN- λ 1 mRNA in А 597 p-dGdC-transefected NKNT-3/NTCP #28.3.8 or #28.3.25.13 cells. Each mRNA level was calculated relative to the level in vehicle-transfected NKNT-3/NTCP #28.3.25.13 598 599cells, which was set at 1. ***P < 0.001 versus p-dGdC-transfected NKNT-3/NTCP 600 #28.3.8 cells. (lower panel) Western blot analysis of ISG56 in p-dGdC-transefected 601 NKNT-3/NTCP #28.3.8 or #28.3.25.13 cells. The cell lysate was prepared as described 602 in Fig. 3C. 603 Quantitative RT-PCR analysis of cGAS and STING mRNA in NKNT-3/NTCP В

- 604 #28.3.8 or #28.3.25.13 cells. Each mRNA level was calculated relative to the level in
- 605 NKNT-3/NTCP #28.3.25.13 cells, which was set at 1. NS; not significant, ***P < 0.001
- 606 versus NKNT-3/NTCP #28.3.8 cells.
- 607 C Western blot analysis of cGAS and STING in NKNT-3/NTCP #28.3.8 or

608 #28.3.25.13 cells.

609	D (upper-left panel) Quantitative RT-PCR analysis of <i>IFN-$\lambda 1$</i> mRNA in the parent
610	NKNT-3/NTCP cells and in the several cell clones derived from them after transfection
611	with p-dGdC. Each mRNA level was calculated relative to the level in NKNT-3/NTCP
612	#28.3.25.13 cells transfected with vehicle, which was set at 1. NS; not significant, $**P$
613	< 0.01 versus p-dGdC-transfected parent NKNT-3/NTCP cells. (lower-left panel)
614	Western blot analysis of phosphorylated STING at Ser366 in the original
615	NKNT-3/NTCP cells and in the several cell clones derived from them after transfection
616	with p-dGdC. The cell lysate was prepared as described in Fig. 3C. (upper-right panel)
617	Quantitative RT-PCR analysis of <i>IFN-$\lambda 1$</i> mRNA in NKNT-3/NTCP #28.3.25.13 cells
618	transfected with STING-specific (designated NKNT-3/NTCP #28.3.25.13 siSTING) or
619	control (designated NKNT-3/NTCP #28.3.25.13 siCont) siRNA followed by p-dGdC.
620	Each mRNA level was calculated relative to the level in vehicle-transfected
621	NKNT-3/NTCP #28.3.25.13 siCont cells, which was set at 1. *** $P < 0.001$ versus
622	p-dGdC-transfected NKNT-3/NTCP #28.3.25.13 siCont cells. (lower-right panel)
623	Western blot analysis of phosphorylated STING at Ser366 in NKNT-3/NTCP

624	#28.3.25.13 siSTING cells after transfection with p-dGdC. The cell lysate was prepared
625	as described in Fig. 3C.

626	E	(upper	panel)	Quantitative	RT-PCR	analysis	of	IFN-λ1	mRNA	in	mock-	01
-----	---	--------	--------	--------------	--------	----------	----	--------	------	----	-------	----

- 627 HBV-infected NKNT-3/NTCP #28.3.25.13 siSTING cells or NKNT-3/NTCP
- 628 #28.3.25.13 siCont cells. Each mRNA level was calculated relative to the level in
- 629 mock-infected NKNT-3/NTCP #28.3.25.13 siCont cells, which was set at 1. (lower
- 630 panel) Western blot analysis of ISG56 in HBV-infected NKNT-3/NTCP #28.3.25.13
- 631 siCont cells or NKNT-3/NTCP #28.3.25.13 siSTING cells. The cell lysate was prepared
- 632 as described in Fig. 3C. **P < 0.01 versus HBV-infected NKNT-3/NTCP #28.3.25.13
- 633 siCont cells.

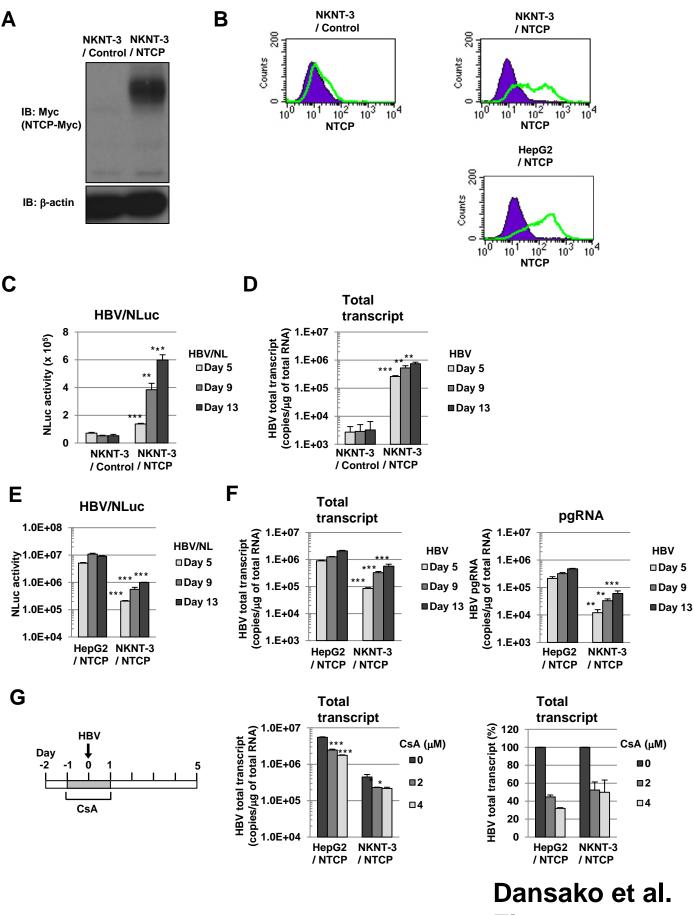
634 F Quantitative RT-PCR analysis of the amount of HBV total transcript in 635 HBV-infected NKNT-3/NTCP #28.3.25.13 siCont cells or NKNT-3/NTCP #28.3.25.13 636 siSTING cells. **P < 0.01 versus HBV-infected NKNT-3/NTCP #28.3.25.13 siCont 637 cells.

G (upper panel) Quantitative RT-PCR analysis of *IFN-λ1* mRNA in mock- or
HBV-infected NKNT-3/NTCP #28.3.8 cells stably expressing exogenous STING wild

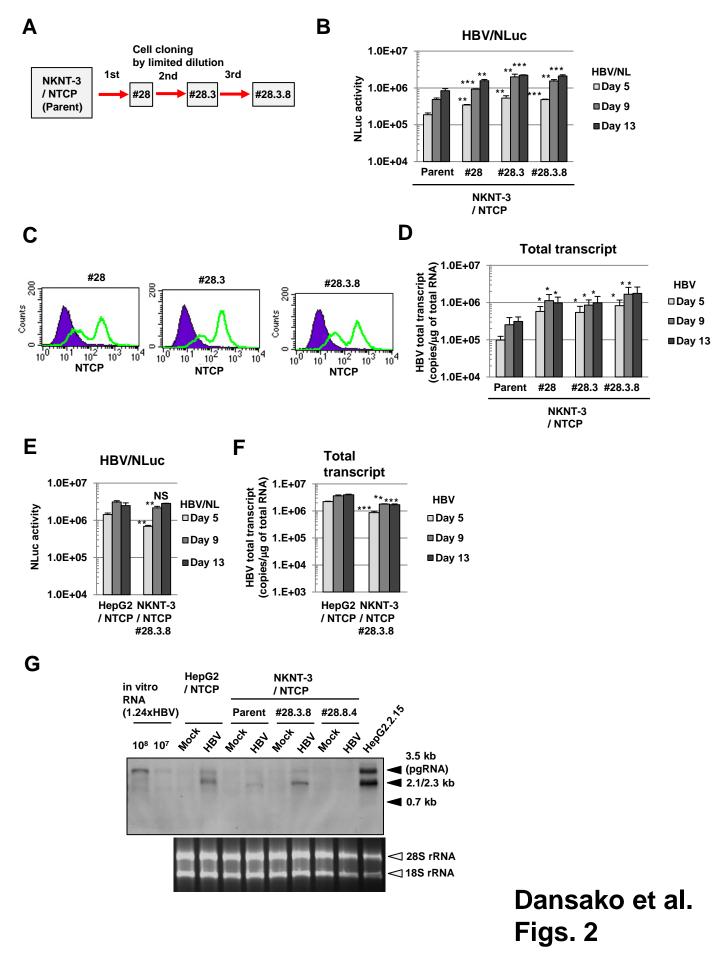
bioRxiv preprint doi: https://doi.org/10.1101/375782; this version posted July 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

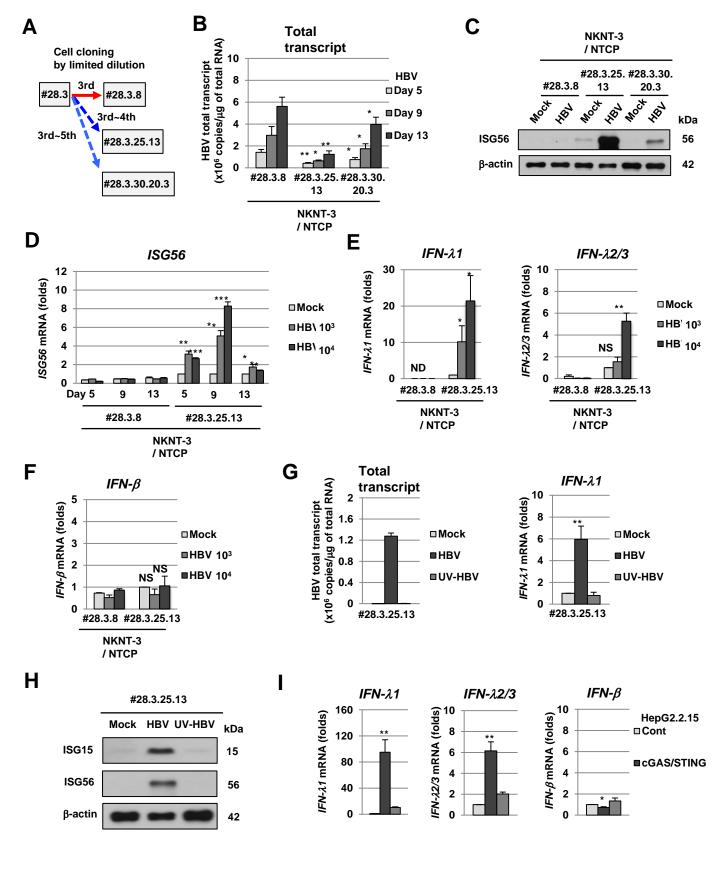
41

640	type (designated NKNT-3/NTCP #28.3.8 STING wt) or STING I200N (designated
641	NKNT-3/NTCP #28.3.8 STING I200N). Each mRNA level was calculated relative to
642	the level in HBV-infected NKNT-3/NTCP #28.3.8 STING I200N cells, which was set at
643	1. ND, not detected. ***P < 0.001 versus HBV-infected NKNT-3/NTCP #28.3.8 STING
644	I200N cells. (lower panel) Western blot analysis of ISG56 in HBV-infected
645	NKNT-3/NTCP #28.3.8 STING wt cells or NKNT-3/NTCP #28.3.8 STING I200N cells.
646	The cell lysate was prepared as described in Fig. 3C.
647	H Quantitative RT-PCR analysis of the amount of HBV total transcript in
648	HBV-infected NKNT-3/NTCP #28.3.8 STING wt cells or NKNT-3/NTCP #28.3.8
649	STING I200N cells. ***P < 0.001 versus HBV-infected NKNT-3/NTCP #28.3.8 STING
650	I200N cells.
651	
652	Figure 5 – High-level expression of STING was required for HBV-triggered
653	inflammatory response in NKNT-3/NTCP #28.3.25.13 cells.
654	A (upper panel) Quantitative RT-PCR analysis of <i>IL-6</i> mRNA in p-dGdC-transfected
655	NKNT-3/NTCP #28.3.8 or #28.3.25.13 cells. Each mRNA level was calculated relative

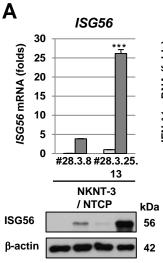

bioRxiv preprint doi: https://doi.org/10.1101/375782; this version posted July 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

656	to the level in vehicle-transfected NKNT-3/NTCP #28.3.25.13 cells, which was set at 1.
657	** $P < 0.01$ versus p-dGdC-transfected NKNT-3/NTCP #28.3.8 cells. (lower panel)
658	Western blot analysis of IL-6 in p-dGdC-transfected NKNT-3/NTCP #28.3.8 or
659	#28.3.25.13 cells. The cell lysate was prepared as described in Fig. 3C.
660	B (upper panel) Quantitative RT-PCR analysis of <i>IL-6</i> mRNA in p-dGdC-transfected
661	NKNT-3/NTCP #28.3.25.13 siCont cells or NKNT-3/NTCP #28.3.25.13 siSTING cells.
662	Each mRNA level was calculated relative to the level in vehicle-transfected
663	NKNT-3/NTCP #28.3.25.13 siCont cells, which was set at 1. $**P < 0.01$ versus
664	p-dGdC-transfected NKNT-3/NTCP #28.3.25.13 siCont cells. (lower panel) Western
665	blot analysis of IL-6 in p-dGdC-transfected NKNT-3/NTCP #28.3.25.13 siCont cells or
666	NKNT-3/NTCP #28.3.25.13 siSTING cells. The cell lysate was prepared as described in
667	Fig. 3C.
668	C Western blot analysis of phosphorylated NF-кВ p65 at Ser536 in
669	p-dGdC-transfected NKNT-3/NTCP #28.3.8 or #28.3.25.13 cells.
670	D Western blot analysis of phosphorylated NF-κB p65 at Ser536 in mock-, HBV-, or


671 UV-HBV-infected NKNT-3/NTCP #28.3.25.13 cells.


672	E (upper panel) Quantitative RT-PCR analysis of <i>IL-6</i> mRNA in mock-, HBV-, or
673	UV-HBV-infected NKNT-3/NTCP #28.3.25.13 cells. Each mRNA level was calculated
674	as described in Fig. 3D. *** $P < 0.001$ versus mock- or UV-HBV-infected
675	NKNT-3/NTCP #28.3.25.13 cells, respectively. (lower panel) Western blot analysis of
676	IL-6 mRNA in mock-, HBV-, or UV-HBV-infected NKNT-3/NTCP #28.3.25.13 cells.
677	F Proposed model of the HBV-triggered host innate immune response and

678 inflammatory response through STING.



Figs. 1

Dansako et al. Figs. 3

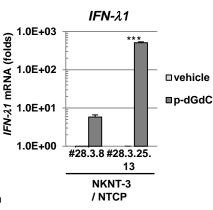
NKNT-3

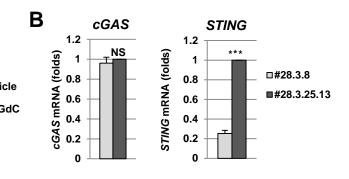
#28.3.8 #28.3.25.

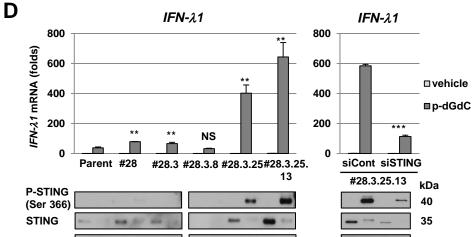
13

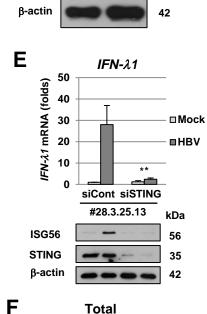
kDa

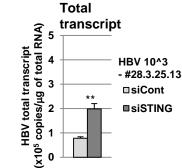
62

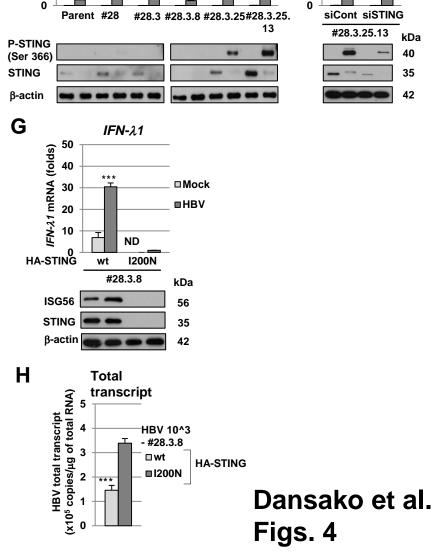

35

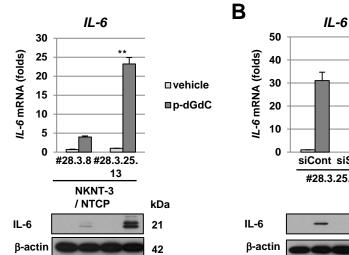

/ NTCP

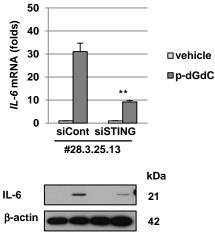

С

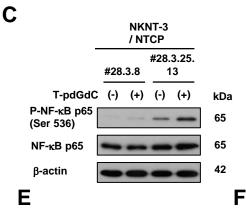

cGAS

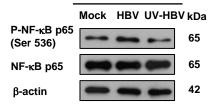

STING

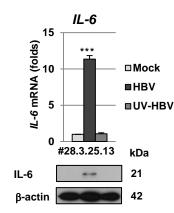


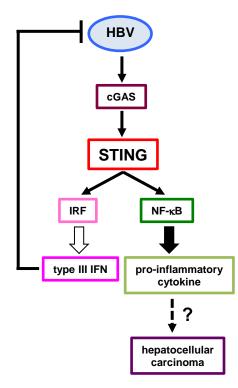











Α

Dansako et al. Figs. 5