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Abstract 20 

Accurate models to predict severe postoperative complications could be of value in the 21 

preoperative assessment of potential candidates for bariatric surgery. Traditional statistical 22 

methods have so far failed to produce high accuracy. To find a useful algorithm to predict the 23 

risk for severe complication after bariatric surgery, we trained and compared 29 supervised 24 

machine learning (ML) algorithms using information from 37,811 patients operated with a 25 

bariatric surgical procedure between 2010 and 2014 in Sweden. The algorithms were then 26 

tested on 6,250 patients operated in 2015. Most ML algorithms showed high accuracy (>90%) 27 

and specificity (>0.9) in both the training and test data. However, none achieved an acceptable 28 

sensitivity in the test data. ML methods may improve accuracy of prediction but we did not 29 

yet identify one with a high enough sensitivity that can be used in clinical praxis in bariatric 30 

surgery. Further investigation on deeper neural network algorithms is needed. 31 
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Introduction 33 

Morbid obesity is a global public health threat of growing proportions(Ng et al., 2014). 34 

Bariatric surgery offers the best chance for long-term weight-loss and resolution of 35 

comorbidities(Sjostrom et al., 2004). Although modern bariatric surgery is considered to be 36 

safe, severe postoperative complications still occur(Finks et al., 2011; Stenberg et al., 2014). 37 

Accurate prediction models for severe postoperative complications could aid preoperative 38 

decision making for surgeons, anesthesiologists and patients. These models could also serve 39 

as basis for case-mix comparisons between different centers. Some prediction models based 40 

on linear regression of patient-specific data allow for relatively simple and interpretable 41 

inference; however, they have so far been proven inaccurate and can thus not be used in 42 

clinical practice(Geubbels et al., 2015; Stenberg et al., 2018). 43 

In contrast, some machine learning (ML) methods have been shown to provide quite accurate 44 

predictions, and have increasingly been used in diagnosis and prognosis of different diseases 45 

and health conditions(Anderin et al., 2015; Kourou et al., 2015; Pan et al., 2017). ML 46 

methods are data-driven analytic approaches that specialize in the integration of multiple risk 47 

factors into a predictive algorithm(Passos et al., 2016). Over the past several decades, ML 48 

tools have become more and more popular for medical researchers. A variety of ML 49 

algorithms, including artificial neural networks, decision trees, Bayesian networks, and 50 

support vector machines (SVMs) have been widely applied with the aims to detect key 51 

features of the patient conditions and to model the disease progression after treatment from 52 

complex health information and medical datasets. The application of different ML methods 53 

for feature selection and classification in multidimensional heterogeneous data can provide 54 

promising tools for inference in medical practices. These highly nonlinear approaches have 55 

been utilized in medical research for the development of predictive models, resulting in 56 

effective and accurate decision making(Ali, 2017; Jiang et al., 2017). 57 
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Although new and improved software packages have significantly eased the implementation 58 

burden for many ML methods in recent years, few studies have used ML methods to examine 59 

the risk factors or predict the prognosis after bariatric surgery, including diabetes 60 

remission(Hayes et al., 2011; Pedersen et al., 2016), complication(Razzaghi et al., 2017), 61 

weight status(Piaggi et al., 2010; Thomas et al., 2017), and adverse events and death(Ehlers et 62 

al., 2017). Even though there is evidence that the use of ML methods can improve our 63 

understanding of postoperative progression of bariatric surgery, an appropriate level of 64 

validation is needed in order for these methods to be considered in the clinical practice. 65 

In this study, we compared different conventional supervised ML algorithms in the modeling 66 

of severe postoperative complication after bariatric surgery. The study was based on the data 67 

from the Scandinavian Obesity Surgery Registry (SOReg). The SOReg is a national quality 68 

and research register, covering virtually all bariatric surgical procedures performed in Sweden 69 

since 2010. The register has been described in detail elsewhere(Hedenbro et al., 2015; 70 

Stenberg et al., 2014), and a prediction model based on logistic regression for the same group 71 

of patients has been described previously(Stenberg et al., 2018). The aim of the current study 72 

was to find an algorithm or algorithms that perform well not only on the training data but also 73 

on the test data that were not used to train the algorithms. 74 
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Results 76 

Baseline characteristics of the patients in the training data and the test data are presented in 77 

Tables 1 and 2. The percentages of severe complication in the two data sets are 3.2% and 78 

3.0%, respectively. No statistically significant difference was found for percentages of severe 79 

complication between the two data sets (Pearson chi-square = 0.8283, p = 0.363). 80 

Univariable analyses indicate that differences of mean age, mean body mass index (BMI), 81 

median HbA1c, percentages of comorbidities for hypertension, diabetes, dyslipidaemia, and 82 

previous venous thromboembolism, and percentage of revisional surgery between the patients 83 

presenting and without severe complication are statistically significant in the training data 84 

(Table 1). In the test data, the statistically significant differences were found for age, waist 85 

circumference (WC), HbA1c, dyslipidaemia, and revisional surgery (Table 2). 86 

Multivariable logistic regression analysis for the same data was published elsewhere(Stenberg 87 

et al., 2018). In brief, revisional surgery, age, low BMI, operation year, WC, and dyspepsia 88 

were associated with the an increased risk for severe postoperative complication, however, the 89 

performance of the multivariable logistic regression model for predicting the risk in individual 90 

patient case was poor. Validation of the model tested on patients operated in 2015 resulted in 91 

an area under the receiver operating characteristic (ROC) curve of only 0.53, a Hosmer-92 

Lemshow goodness of fit 17.91 (p=0.056) and Nagelkerke R2 0.013(Stenberg et al., 2018). 93 

In current study, 19 supervised machine learning algorithms were compared and ten of them 94 

were also trained using the synthetic minority oversampling technique (SMOTE), resulting in 95 

29 ML algorithms. Most of the machine learning algorithms shown high accuracy (>90%) and 96 

specificity (>0.9) for both training data and test data (Table 3), except that bagging linear 97 

discriminant analysis (LDA), bagging quadratic discriminant analysis (QDA), adaptive 98 

boosting (AdaBoost) support vector machine (SVM), and multilayer perceptron (MLP) shown 99 
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low accuracy (<60%) for SMOTE training data, and oversampling-based bagging QDA 100 

shown low accuracy for test data (accuracy = 56.1%) (Table 3). 101 

Although most of the algorithms shown low sensitivity for both the training data and the test 102 

data, some of them exhibited promising prediction ability in the training data. Sensitivities of 103 

oversampling-based bagging QDA, random forest, AdaBoost extremely randomized 104 

(AdaExtra) trees, AdaBoost gradient regression (AdaGradient) trees, bagging k-nearest 105 

neighbor (KNN), and deep learning neural network (NN) are 0.707, 0.965, 0.980, 0.968, 106 

0.996, and 0.757 for SMOTE training data, respectively (Table 3). Even for test data, 107 

oversampling-based bagging QDA and AdaBoost SVM show significant higher prediction 108 

ability than other algorithms. The sensitivities of the two algorithms are 0.417 and 0.364, 109 

respectively (Table 3). However, they still do not achieve an acceptable level for practical 110 

application. 111 

When considering sensitivity and specificity together, most of the algorithms did not show 112 

better prediction ability than a random predictor, i.e. an area under ROC curve of 0.5. The 113 

areas under the ROC curves for all the algorithms, except for oversampling-based random 114 

forest, AdaExtra trees, and adaGradient trees, and KNN, are around 0.5 (Figures 1 - 4). 115 

Although oversampling-based random forest, AdaExtra trees, AdaGradient trees, and KNN 116 

show outstanding prediction ability on the SMOTE training data (areas under ROC curves are 117 

above 0.9), their performance on the test data are not optimistic (Figures 2 and 3). 118 

The performance of the three regression-based algorithms (logistic regression, LDA, QDA), 119 

SVM, and the two neural network-based algorithms (MLP and deep learning NN) was poor in 120 

any situation. However the bagging MLP and deep learning NN outperforms the tree-based 121 

algorithms (Figures 2 and 4) for test data, their areas under ROC curves for the test data are 122 

0.58 and 0.56, respectively (Figure 4) that are greatest among all the algorithms.  123 
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Discussion 124 

Historically, laparoscopic gastric bypass has for a long time been the most common bariatric 125 

procedure in Sweden, although laparoscopic sleeve gastrectomy has increased in popularity 126 

over more recent years(Stenberg et al., 2014; The international federation for the surgery of 127 

obesity and metabolic disorders, 2017). The surgical technique is highly standardized with 128 

more than 99% of all gastric bypass procedure being the antecolic, antegastric, laparoscopic 129 

gastric bypass (so called Lönnroth technique)(Olbers et al., 2003). Virtually all patients 130 

receive pharmacologic prophylaxis for deep venous thrombosis and intraoperative antibiotic 131 

prophylaxis(Hedenbro et al., 2015; Stenberg et al., 2014). Patients who have bariatric surgery 132 

are exposed to the risk of having postoperative complications, which may increase the 133 

complexity of managing safety and healthcare costs. 134 

Previous studies on postoperative complications of bariatric surgery have mainly used scoring 135 

for identifying patients who are more likely to have complications after surgery. However, 136 

these methods are not sensitive enough for clinical application(Geubbels et al., 2015; 137 

Stenberg et al., 2018). The potential of ML tools as clinical decision support in identifying 138 

risk factors and predicting health outcomes is therefore worth investigation on complications 139 

associated with bariatric surgery. To our knowledge, there is only one study that compared the 140 

performance of different ML algorithms in predicting the postoperative complications in 141 

imbalanced bariatric surgery data set(Razzaghi et al., 2017). Although the study indicates that 142 

the combination of a suitable feature selection method with ensemble ML algorithm equipped 143 

with SMOTE can achieve higher performance in predictive models for bariatric surgery risks, 144 

the ML algorithms were not validated using external test data. After all, for prediction 145 

purpose, we are not very interested in whether or not an algorithm accurately predicts severe 146 

complication for patients used to train the algorithm, since we already know which of those 147 
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patients have severe complications, but are interested in whether the algorithms may 148 

accurately predict the future patients based on their clinical measurements. 149 

Our study compared in total 29 ML algorithms using real world data. Although the 150 

sensitivities of the algorithms were generally low, the study indicates that some ML 151 

algorithms were able to achieve higher accuracy than tradition logistic regression 152 

models(Geubbels et al., 2015; Stenberg et al., 2018). Four of 29 algorithms were able to 153 

achieve high sensitivity (>0.95) and two achieved moderate sensitivity (>0.70) in the training 154 

data, including three tree-based algorithms, bagging KNN, bagging QDA, and deep learning 155 

NN. We should notice that all the high or moderate sensitivities were obtained from SMOTE 156 

training data and/or using ensemble algorithms. Our findings support the previous study that 157 

ensemble ML algorithms equipped with SMOTE can achieve higher performance metrics for 158 

imbalanced data(Razzaghi et al., 2017). 159 

Despite showing promising capability of prediction in training data, none of the 29 ML 160 

algorithms satisfactorily predicted severe postoperative complication after bariatric surgery in 161 

the test data. Why did the algorithms do a poor job of predicting the patients who had severe 162 

complication in test data? One potential explanation for this may be related to the limited 163 

number of severe postoperative complication in the current dataset, which cannot reveal the 164 

underlying relationship between risk factors and adverse health outcomes. Although there are 165 

several known risk factors, each of them only imposes a small increase in the risk for 166 

postoperative complication(Finks et al., 2011; Longitudinal Assessment of Bariatric Surgery 167 

et al., 2009; Maciejewski et al., 2012; Stenberg et al., 2014). Another likely explanation may 168 

be that preoperatively known variables are insufficient to predict postoperative complications. 169 

In previous studies, the highest accuracy for prediction of postoperative complication has 170 

been models including operation data, mainly intraoperative complication and conversion to 171 

open surgery(Geubbels et al., 2015; Stenberg et al., 2014). Although including intraoperative 172 
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adverse events and conversion to open surgery may improve the accuracy of prediction 173 

models, such models would not be useful in the preoperative assessment for patients or for 174 

case mix comparisons. Furthermore, because the algorithms try to minimize the total error 175 

rate out of all classes, irrespective of which class the errors come from, they are not 176 

appropriate for imbalanced data such as what we used in our study(Maalouf et al., 2018). 177 

Compared with traditional generalized linear predictive models, non-linear ML algorithms are 178 

more flexible and may achieve higher accuracy but at the expense of less interpretability. 179 

Although there are interpretable models such as regression, Naïve Bayes, decision tree and 180 

random forests, several models are not designed to be interpretable(James et al., 2013). The 181 

aim of the methods is to extract information from the trained model to justify their prediction 182 

outcome, without knowing how the model works in details. The trade-off between prediction 183 

accuracy and model interpretability is always an issue when we have to consider in building a 184 

ML algorithm. A common quote on model interpretability is that with an increase in model 185 

complexity, model interpretability goes down at least as fast. Fully nonlinear methods such as 186 

bagging, boosting and support vector machines with nonlinear kernels are highly flexible 187 

approaches that are harder to interpret. Deep learning algorithms are notorious for their un-188 

interpretability due to the sheer number of parameters and the complex approach to extracting 189 

and combining features. Feature importance is a basic (and often free) approach to 190 

interpreting the model. Although some nonlinear algorithms such as tree-based algorithms 191 

(e.g. random forest) may allow to obtain information on the feature importance, we cannot 192 

obtain such information from many ML algorithms. 193 

Therefore, recent attempts have been made to improve interpretability for the black-box 194 

algorithms even such as deep learning. Local interpretable model-agnostic explanations 195 

(LIME) is one of them to make these complex models at least partly understandable. LIME is 196 

a more general framework that aims to make the predictions of ‘any’ ML model more 197 
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interpretable. In order to remain model-independent, LIME works by modifying the input to 198 

the model locally(Mishra et al., 2017; Ribeiro et al., 2016). So instead of trying to understand 199 

the entire model at the same time, a specific input instance is modified and the impact on the 200 

predictions are monitored. 201 

Regarding specific algorithm, though their motivations differ, the logistic regression and LDA 202 

or QDA methods are closely connected, therefore we were not surprised that LDA or QDA 203 

did not show significant improvement in prediction than logistic regression(Stenberg et al., 204 

2018). KNN takes a complete different approach from classification which is completely non-205 

parametric(James et al., 2013). Therefore, we can expect it to outperform parametric models 206 

such as logistic and LDA. However, KNN cannot tell us which predictor are of importance. 207 

QDA serves as a compromise between the non-parametric KNN and the LDA and logistic 208 

regression. Though not as flexible as KNN, QDA can perform better in the limited training 209 

data situation. MLP is a class of feedforward artificial neural network, which consists of at 210 

least three layers of nodes. Its multiple layers and non-linear activation can distinguish data 211 

that is not linearly separable. Deep learning NNs are high-level NNs including convolutional 212 

NN and recurrent NN et al. In our study, the deep learning NN with five hidden layers 213 

outperforms the conventional MLP with two hidden layers, especially on SMOTE training 214 

data (areas under ROC curves are 0.67 vs. 0.37), which deserves further investigation in the 215 

future. 216 

Our study demonstrates that ensemble learning may improve predictions by combining 217 

several base algorithms. However, usually there are several ensemble methods available, such 218 

as bagging, boosting, and stacking(Zhou, 2012). A number of studies have shown that, when 219 

decomposing a classifier’s error into bias and variance terms, AdaBoost is more effective at 220 

reducing bias, bagging is more effective at reducing variance, and stacking may improve 221 

predictions in general(Kotsiantis et al., 2007). There is no golden rule on which method works 222 
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best. The choice of specific ensemble methods is case by case and depends enormously on the 223 

data. 224 

There are some limitations in our study. First, the study was limited to data registered within 225 

the SOReg. Cardiovascular and pulmonary comorbidities other than sleep apnea are not 226 

mandatory variables within the registry and could thus not be included in the model. Although 227 

these comorbidities are known risk factors for postoperative complications(Finks et al., 2011; 228 

Gupta et al., 2011; Maciejewski et al., 2012), they are not highly prevalent in European 229 

studies(Geubbels et al., 2015). Second, although we compared 29 ML algorithms investigated 230 

in our study, they are convenient and feasible methods for general medical researchers. 231 

Because of computational complexity and less interpretability, many complicated and 232 

advanced ML algorithms were not yet investigated in our study. However, our study at least 233 

points out a promising way for future investigations, i.e. deep learning NN equipped with 234 

SMOTE. Last but not the least, the exhaustive grid search was used in our hyperparameter 235 

optimization, which is extremely resource consuming and not optimal for complex ML 236 

algorithms, therefore other advanced methods such as gradient-based or evolutionary 237 

optimization would be considered in the future. 238 

Conclusion 239 

ML algorithms have the potential to improve the accuracy in predicting the severe 240 

postoperative complication among the 44,061 Swedish bariatric surgery patients during 2010 241 

- 2015. Because the imbalance nature of the data where the number of the interested outcome 242 

is relative small, oversampling technique needs to be adopted to balance the two outcomes 243 

(presenting or without severe complication). Ensemble algorithms outperform base 244 

algorithms. In general, deep learning NN results in better predictions for unseen patients. 245 

  246 
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Materials and Methods 247 

Patients and features 248 

Patients registered in the SOReg between 2010 and 2015 were included in the present study. 249 

All patients who underwent a bariatric procedure between 2010 and 2014 were used as 250 

training data in the ML. Data from patients who underwent a bariatric surgical procedure in 251 

2015 were used as test data to validate the algorithm’s performance in predicting sever 252 

postoperative complication within 30 days after surgery. In total, 37,811 and 6,250 bariatric 253 

patients from SOReg were included in the training data and test data, respectively. In total 16 254 

features were included in ML, including five continuous features (age, HbA1c, body mass 255 

index [BMI], waist circumstance [WC]), and operation year) and 11 binary features (sleep 256 

apnoea, hypertension, diabetes, dyslipdaemia, dyspepsia, depression, musculoskeletal pain, 257 

previous venous thromboembolism, revisional surgery, and severe postoperative 258 

complication). The last binary feature, i.e. severe postoperative complication, was used as 259 

output variable for the supervised ML classifiers. All the continuous features were 260 

standardized to have mean 0 and standard deviation 1 before they enter the classifier. HbA1c 261 

was log transformed before standardization because of its asymmetric distribution. 262 

Descriptive and inferential statistical methods 263 

Demographic and baseline characteristics of the patients were presented using descriptive 264 

statistical methods. Continuous variables were portrayed as mean and standard deviation 265 

(SD), or median and interquartile range where suitable, while categorical variables were 266 

outlined as counts and percentages. The difference between the patient presenting and without 267 

severe postoperative complication was tested using the Student’s t-test or the Mann-Whitney 268 

U test for normally or asymmetrically distributed continuous variables, respectively; and χ2 269 

test was used for binary variables. 270 
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ML algorithms 271 

In current study, eight base ML algorithms, i.e. logistic regression, linear discriminant 272 

analysis (LDA), quadratic discriminant analysis (QDA), decision tree, k-nearest neighbor 273 

(KNN), support vector machine (SVM), multilayer perceptron (MLP) and deep learning 274 

neural network (NN), and 11 ensemble algorithms, i.e. adaptive boosting (AdaBoost) logistic 275 

regression, bagging LDA, bagging QDA, random forest, extremely randomized (Extra) trees, 276 

AdaBoost Extra trees, gradient regression tree, AdaBoost Gradient trees, bagging KNN, 277 

AdaBoost SVM, and bagging MLP, were implemented. 278 

Ensemble learning 279 

In order to improve generalizability and robustness over a single ML algorithm, we also used 280 

ensemble methods to combine multiple base or ensemble algorithms. Five ensemble methods 281 

were applied in our study: 282 

• AdaBoost for logistic regression, Extra trees, gradient regression trees, and 283 

SVM(Schapire, 2003); 284 

• bagging for LDA, QDA, KNN, and MLP(Kotsiantis et al., 2007); 285 

• random forests for decision tree(Liaw & Wiener, 2002); 286 

• Extra trees for decision tree(Geurts et al., 2006); 287 

• gradient boosted regression trees for decision tree(Friedman, 2002). 288 

Initialization and optimization of hyperparameters 289 

ML algorithms involve a number of hyperparameters that have to be fixed before running the 290 

algorithms. In contrast to the parameters that are learned by training, hyperparameters 291 

determine the structure of a ML algorithm and how the algorithm is trained. The initial values 292 

of the hyperparmeters for each ML algorithm used in our study are the default values 293 
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specified in the employed software packages based on recommendations or experience(Probst 294 

et al., 2018). In KNN algorithm, ten nearest neighbors were used. In MLP algorithm, two 295 

hidden layer were used with five and two neurons, respectively. In deep learning NN 296 

algorithm, the sequential linear stack of layers was used, with five hidden layers (three dense 297 

layers and two dropout regularization layers). For the detailed hyperparameterization of the 298 

algorithms, please refer the scikit-learn user manual at http://scikit-299 

learn.org/stable/supervised_learning.html(Pedregosa et al., 2011) and the Keras 300 

Documentation at https://keras.io/. 301 

The hyperparameter optimization is defined as a tuple of hyperparameters that yields an 302 

optimal algorithm which minimizes a predefined loss function (i.e. cross entropy loss function 303 

in our study, see Annex 1) on a held-out validation set of the training data. The most wildly 304 

used however exhaustive grid search was used to perform hyperparameter optimization in our 305 

study, which specified subset of the hyperparameter space of a ML algorithm and was 306 

evaluated by cross-validation using the training data(Bergstra & Bengio, 2012). 307 

Cross validation 308 

For training data, k-fold (k = 5 in our analyses) cross-validated predictions were used as 309 

predicted values. This approach involves randomly dividing the training data into k groups, or 310 

folds, of approximately equal size. Then an algorithm is trained on the k-1 folds and the rest 311 

one fold is retained as the validation fold for testing the algorithm. The process is repeated 312 

until the algorithm is validated on all the k folds. For each patient in the training data, the 313 

predicted value that he/she obtained is the prediction when he/she was in the validation fold. 314 

Therefore, only cross-validation strategies that assign all patients to a validation fold exactly 315 

once can be used for the cross-validated prediction(James et al., 2013). 316 

SMOTE 317 
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The bariatric surgery data is extreme imbalanced, i.e. only 1,408 of 44,061 (3.2%) patients 318 

experienced severe postoperative complication after bariatric surgery. The imbalance often 319 

results in serious bias in the performance metrics(Batista et al., 2004). Therefore, we 320 

performed synthetic minority oversampling technique (SMOTE) to tackle the 321 

imbalance(Chawla et al., 2002). SMOTE generates a synthetic instance by interpolating m 322 

instances (for a given integer value m) of the minority class that lies close enough to each 323 

other to achieve the desired ratio between the majority and minority classes. In our study, a 324 

1:1 ratio between the patients presenting severe postoperative complication and without 325 

severe postoperative complication was achieved in the training data, i.e. SMOTE training 326 

data. The aforementioned nine of the 11 ensemble ML algorithms and the deep learning NN 327 

were also implemented for the SMOTE training data. 328 

Performance metrics 329 

The performance of the in total 29 ML algorithms were evaluated using accuracy, sensitivity, 330 

specificity, and area under the receiver operating characteristic (ROC) curve. ROC curve 331 

shows the trade-off that the algorithms set the different threshold values for the posterior 332 

probability for the prediction. 333 

Terminology and derivations of accuracy, sensitivity, specificity, and area under the ROC 334 

curve are given in Annex 1. 335 

Software and hardware 336 

The descriptive and inferential statistical analyses were performed using Stata 15.1 337 

(StataCorp, College Station). ML algorithms were achieved using packages scikit-learn 0.19.1 338 

(scikit-learn, http://scikit-learn.org/)(Pedregosa et al., 2011) and Keras 2.1.6 (Keras, 339 

https://keras.io/) in Python 3.6 (Python Software Foundation, https://www.python.org/). 340 
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All the computation was conducted in a computer with 64-bit Windows 7 Enterprise operation 341 

system (Service Pack 1), Intel ® Core TM i5-4210U CPU @ 2.40 GHz, and 16.0 GB installed 342 

random access memory. 343 
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Table 1. Base line characteristics of the training patients 362 

 All 

N=37,811 

No serious 

complication 

N=36,591 

(96.8%) 

Having serious 

complication 

N=1,220 (3.2%) 

p-value 

Age in years, mean ± SD 41.2 ± 11.2 41.1 ± 11.2 42.9  ± 10.7 <0.001* 

Sex, n (%)     

Female 28,682 (75.9%) 27,766 (75.9%) 916 (75.1%) 0.521† 

Male 9,129 (24.1%) 8,825 (24.1%) 304 (24.9%)  

BMI in kg/m2, mean ± 

SD 

42.12 ± 5.66 42.13 ± 5.66 41.79 ± 5.58 0.0355* 

WC in cm, mean ± SD 126.0 ± 14.0 126.0 ± 14.0 126.2 ± 13.8 0.6018* 

HbA1c, median (P25, 

P75) 

38 (35, 42) 38 (38, 32) 38 (35, 43) 0.0090‡ 

Comorbidity, n (%)     

Sleep apnoea 3,792 (10.0%) 3,656 (10.0%) 136 (11.2%) 0.186† 

Hypertension 9,760 (25.8%) 9,404 (25.7%) 356 (29.2%) 0.006† 

Diabetes 5,407 (14.3%) 5,204 (14.2%) 203 (16.6%) 0.018† 

Dyslipidaemia 3,802 (10.1%) 3,667 (10.0%) 135(11.1%) 0.233† 

Dyspepsia 3,970 (10.5%) 3,803 (10.4%) 167 (13.7%) <0.001† 

Depression 5,609 (14.8%) 5,409 (14.8%) 200 (16.4%) 0.119† 

Musculoskeletal pain 4,905 (13.0%) 4,754 (13.0%) 151 (12.4%) 0.529† 

Previous venous 

thromboembolism 

918 (2.4%) 875 (2.39%) 43 (3.52%) 0.011† 

Revisional surgery 1,367 (3.6%) 1,261 (3.5%) 106 (8.7%) <0.001† 

SD: standard deviation; BMI, body mass index; WC, waist circumference; P25, the 25th percentile; 363 

P75, the 75th percentile. 364 

*t-test was used; †χ2 test was used; ‡Mann-Whitney U test was used.  365 
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Table 2. Base line characteristics of the test patients 366 

 All 

N=6,250 

No serious 

complication 

N=6,062 (97.0%) 

Having serious 

complication 

N=188 (3.0%) 

p-value 

Age in years, mean ± SD 41.2 ± 11.5 41.2 ± 11.5 42.9 ± 11.8 0.0423* 

Sex, n (%)     

Female 4,832 (77.3%) 4,682 (77.2%) 150 (79.8%) 0.411† 

Male 1,418 (22.7%) 1,380 (22.8%) 38 (20.2%)  

BMI in kg/m2, mean ± SD 41.22 ± 5.87 41.20 ± 5.89 41.95 ± 5.40 0.0848* 

WC in cm, mean ± SD 123.3 ± 14.1 123.2 ± 14.0 126.2 ± 14.7 0.0086* 

HbA1c, median (P25, 

P75) 

37 (34, 41) 37 (34, 41) 38 (35, 44) 0.0017‡ 

Comorbidity, n (%)     

Sleep apnoea 622 (10.0%) 607 (10.0%) 15 (8.0%) 0.359† 

Hypertension 1,563 (25.0%) 1,506 (24.8%) 57 (30.3%) 0.088† 

Diabetes 761 (12.2%) 734 (12.1%) 27 (14.4%) 0.352† 

Dyslipidaemia 518 (8.3%) 493 (8.13%) 25 (13.3%) 0.011† 

Dyspepsia 645 (10.3%) 620 (10.2%) 25 (13.3%) 0.173† 

Depression 1,096 (17.5%) 1,053 (17.4%) 43 (22.9%) 0.051† 

Musculoskeletal pain 1,315 (21.0%) 1,268 (20.9%) 47 (25.0%) 0.176† 

Previous venous 

thromboembolism 

182 (2.9%) 177 (2.99%) 5 (2.7%) 0.834† 

Revisional surgery 61 (1.0%) 54 (0.9%) 7 (3.7%) <0.001† 

SD: standard deviation; BMI, body mass index; WC, waist circumference; P25, the 25th percentile; 367 

P75, the 75th percentile. 368 

*t-test was used; †χ2 test was used; ‡Mann-Whitney U test was used. 369 

370 
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Table 3. Performance of the algorithms 371 

Algorithm 
Training data Test data 

Accuracy 
(%) 

Specificity Sensitivity Accuracy 
(%) 

Specificit
y 

Sensitivit
y 

Logistic 96.9 1.000 0.000 97.1 1.000 0.000 
AdaBoost Logistic 96.9 1.000 0.000 97.1 1.000 0.000 
Oversampling AdaBoost Logistic 46.5 0.382 0.547 76.9 0.786 0.227 
LDA 96.9 1.000 0.000 97.1 1.000 0.000 
Bagging LDA 96.9 1.000 0.000 97.1 1.000 0.000 
Oversampling Bagging LDA 46.3 0.370 0.556 79.0 0.807 0.212 
QDA 92.8 0.954 0.107 94.7 0.973 0.076 
Bagging QDA 93.2 0.958 0.103 95.5 0.982 0.068 
Oversampling bagging QDA 55.4 0.401 0.707 56.1 0.566 0.417 
Decision tree 93.5 0.963 0.038 93.1 0.958 0.045 
Random Forest 96.9 1.000 0.000 97.0 1.000 0.000 
Oversampling Random Forest 94.5 0.925 0.965 96.6 0.995 0.008 
ExtRa Trees 96.6 0.997 0.006 96.7 0.996 0.015 
AdaBoost ExtRa Trees 96.6 0.996 0.004 96.6 0.995 0.008 
Oversampling AdaExtra Trees 93.0 0.881 0.980 95.3 0.982 0.015 
Gradient regression trees 96.9 1.000 0.000 97.1 1.000 0.008 
AdaBoost Gradient trees 96.8 0.998 0.000 97.0 0.999 0.000 
Oversampling AdaGradient trees 97.0 0.972 0.968 97.0 0.999 0.000 
KNN 96.9 1.000 0.000 97.1 1.000 0.000 
Bagging KNN 96.9 1.000 0.000 97.1 1.000 0.000 
Oversampling Bagging KNN 79.4 0.592 0.996 82.3 0.841 0.235 
SVM 96.9 1.000 0.000 97.1 1.000 0.000 
AdaBoost SVM 96.9 1.000 0.000 97.1 1.000 0.000 
Oversampling AdaBoost SVM 53.6 0.397 0.675 60.6 0.614 0.364 
MLP 96.9 1.000 0.000 97.1 1.000 0.000 
Bagging MLP 96.9 1.000 0.000 97.1 1.000 0.000 
Oversampling bagging MLP 45.7 0.226 0.687 96.6 0.994 0.015 
Deep learning NN 96.9 1.000 0.000 97.1 1.000 0.000 
Oversampling deep learning NN 62.1 0.484 0.757 93.3 0.959 0.068 

AdaBoost, adaptive boosting; LDA, linear discriminant analysis; QDA, quadratic discriminant 372 
analysis; ExtRa, extremely randomized; AdaExtra, adaptive boosting extremely randomized; 373 
AdaGradient, adaptive boosting gradient; KNN, k-nearest neighbor; SVM, support vector machine; 374 
MLP, multilayer perceptron; NN, neural network 375 
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377 
Figure 1. ROC curves of logistic regression, LDA and QDA   378 
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 379 

Figure 2. ROC curves of tree-based algorithms 380 
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 381 

Figure 3. ROC curves of KNN and SVM 382 

 383 

Figure 4. ROC curves of neural network algorithms  384 
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Annex 1: Terminology and derivations 490 

Cross Entropy loss (Log loss): 491 

𝑉𝑉(𝑓𝑓(𝑥⃑𝑥),𝑦𝑦) = −𝑦𝑦ln�𝑓𝑓(𝑥⃑𝑥)� − (1 − 𝑦𝑦)ln (1 − 𝑓𝑓(𝑥⃑𝑥)) 492 

where y is true classifier ∈{0, 1} and 𝑓𝑓(𝑥⃑𝑥) is predicted value. 493 

 494 

True or false refers to the predicted outcome being correct or wrong, while positive or negative refers 495 

to presenting severe complication or no severe complication. 496 

ACC: accuracy 497 

SEN: sensitivity 498 

SPE: specificity 499 

TP: number of true positives, i.e. patient presenting severe complication correctly predicted as positive 500 

TN: number of true negatives, i.e. patient without severe complication correctly predicted as negative 501 

FP: number of false positives, i.e. patient without severe complication wrongly predicted as positive 502 

FN: number of false negatives, i.e. patient presenting severe complication wrongly predicted as 503 

negative 504 

Total: total number of the patients, i.e. TP+TN+FP+FN 505 

P: number of patients presenting severe complication, i.e. TP+FN 506 

N: number of patients without severs complication, i.e. TN+FP 507 

AUC: area under the receiver operating characteristic (ROC) curve for binary outcome 508 

T: threshold for a patient is classified as presenting severe complication if X>T, where X is predicted 509 

probability of a patients presenting severe complication by an algorithm. 510 
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ACC =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

× 100% 511 

SEN =
𝑇𝑇𝑇𝑇
𝑃𝑃

 512 

SPE =
𝑇𝑇𝑇𝑇
𝑁𝑁

 513 

AUC = � 𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇(1 − 𝑆𝑆𝑆𝑆𝑆𝑆)𝑇𝑇𝑑𝑑𝑑𝑑
1

0
 514 
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