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Figure 4 - Psilocybin modulates the temporal expression of FC States and increases whole-brain metastability. Top: For each 
of the 9 subjects (s1, s2… s9), we show the order parameter (OP) of the system over time pre/post-psilocybin injection (100 TR/ 
subject/condition). Below, we show the order parameter when each of the seven FC states in ON (same color-code as Figure 1, 
sorted vertically by decreasing probability pre-injection). In all subjects, the FC state corresponding to the global signal (blue 
colored) is the most frequently expressed, and the order parameter is particularly high when this state is ON. On the other 
hand, less-frequent states, namely the light blue, purple, or yellow, correspond to epochs of lower order parameter values. 
Following the psilocybin injection, the red-colored fronto-parietal FC state of interest (3rd most prevalent state pre-injection) 
exhibits a significant decrease in all subjects. Bottom: The average number of occurrences of FC State III (fronto-parietal 
network) across subjects is significantly lower after the psilocybin injection compared to the pre-injection baseline (left), while 
the average number of occurrences of FC State I (globally integrated state) is significantly increased (middle).  A significant 
increase in whole-brain metastability following the psilocybin injection, as reflected by an increase in the standard deviation of 
the order parameter of the system over time (right).  

State-to-State switching profiles are significantly different under psilocybin 

The switching matrices shown in Fig. 5 (top) display the probability of: 1) being in a given FC 

state (rows), and 2) transitioning to any of the other states (columns) both before and after the 

psilocybin injection. An illustration of pre- vs post-injection changes in the transitions 

probabilities between FC-states rendered on the cortical surface is also provided to facilitate 

the neuroanatomical interpretation of FC state switching (Fig. 5, bottom). We find that the 

probability of transitioning from any given FC state to the fronto-parietal FC state of interest is 

consistently reduced post-psilocybin injection than prior to the injection. Conversely, all FC 

states except for one were more likely to transition toward the FC state corresponding to the 
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global signal following the psilocybin injection. The p-values for each state-to-state transition in 

the switching matrix are provided in Supplementary Table ST1.   

 

Figure 5. Psilocybin modifies the switching patterns between FC-states. Top: Switching matrices showing the probability of, 
being in a given FC state (rows), transitioning to any of the other states (columns) both before (left) and after the psilocybin 
injection (right). Significant between-condition differences assessed via a permutation test are indicated by asterisks (*) for the 
significance threshold α = 0.05.  Bottom: Pre vs post-injection changes in the transitions probabilities between FC-states 
rendered on the cortical surface, and numbered according to the transition matrices above. Each arrow represents a state-to-
state transition probability ± 1 SD from the mean change in transition probability post-injection; red/filled arrows represent a 
greater probability of transition post-injection, while blue/dashed arrows show reduced transition probabilities between states.  
It can be observed that the probability of transitioning from several FC states (IV, V, VII) to the frontoparietal FC state of interest 
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is reduced post-psilocybin injection. Conversely, most FC states (IV, V, VI, VII) were more likely to transition toward the globally 
integrated FC state I following the psilocybin injection.  

Discussion 
 The present results provide the first experimental evidence that the brain’s dynamical 

landscape is altered by the psychedelic compound psilocybin.  We found that the repertoire of 

functional networks at rest (described as “FC states”), and the transitions between them, are 

significantly changed by the drug. Notably, the strongly reduced fractional occupancy of a FC 

state overlapping with the previously-described fronto-parietal control system suggests that 

this particular functional network becomes destabilized under psilocybin (13).  Conversely, 

transitions toward a globally integrated FC state were enhanced under the influence of the 

drug.  The destabilization of a frontoparietal FC state supporting executive function, and 

increased transitions toward a highly integrated brain state provide a novel mechanistic 

perspective into psilocybin effects at the systems level. Indeed, these differences between 

brain state trajectories in normal waking consciousness and the psychedelic state suggest that 

the drug induces an alternative type of functional integration at the expense of locally 

segregated activity in specialized networks.  These new insights into altered brain dynamics in 

the psychedelic state may also help explain some the acute psychological effects of psilocybin, 

and the compound’s promising therapeutic applications.  

The decreased probability of occurrence of a FC state closely overlapping with the 

fronto-parietal control system is consistent with prior human neuroimaging studies of 

psilocybin effects. An fMRI study of the same dataset notably revealed that the psilocybin 

infusion modified the BOLD spectral content in a distributed fronto-parietal network.  

Specifically, the fronto-parietal system of interest showed a significantly decreased low 

frequency power and power spectrum scaling exponent following the psilocybin infusion (33). 

Similarly, a MEG study reported decreased oscillatory power following a psilocybin injection in a 

bilateral fronto-parietal network derived from beta-band activity (44). Findings from these prior 

studies indicate a desynchronization of the fronto-parietal control system under psilocybin and 

are thus consistent with the present results. Furthermore, the disengagement of the fronto-

parietal system can be interpreted in light of the cognitive and behavioral effects of psilocybin 

reported by the study participants. Evidence suggests the fronto-parietal system plays a key 

role in cognitive control by focusing attention on goal-relevant information through top-down 

mechanisms (45-47). Declines in fronto-parietal FC have been associated with difficulty 

suppressing goal-irrelevant information, and greater distractibility (48). These observations are 

broadly consistent with the reports of increased mind-wandering and unconstrained cognition 

reported by participants in the present cohort (30).  

The present study also found increased FC state transitions toward a globally 

synchronized functional network following the psilocybin injection. Previous work has shown 

that psilocybin induces an alternative type of functional integration, characterized by greater 

global integration (27, 49) as well as increases in the entropy or metastability of brain states 

(32). The results presented here not only align with these prior findings but also shed further 
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light on their functional significance. Here we found that a globally integrated state, i.e. FC state 

I, increased its predominance under psilocybin, not only statistically over time (Fig. 1), but also 

dynamically, as was evident from the structure of the state-to-state switching matrix (Fig. 5), 

where it became the ‘state of choice’ for inter-state transitions. In other words, under 

psilocybin the brain spent more time in globally coherent, highly integrated state. This state 

therefore served as an attractor, absorbing the majority of inter-state transitions. As was 

implied by previous analyses, this effect may enable atypical patterns of interregional 

communication to arise in the psychedelic state (27) alongside the breakdown of within-

network integrity in favor of globally integrated brain dynamics (27, 32, 44, 49, 50). 

In addition to changing the relative stability of FC states and the directionality of state 

transitions, we found that psilocybin also increases the global metastability of brain dynamics.  

This result is consistent with prior fMRI investigations of the same psilocybin dataset in which a 

greater diversity of functional connectivity motifs was observed after psilocybin infusion within 

a small network consisting of the bilateral hippocampal and ACC regions, thus reflecting 

increased variability in the collective repertoire of metastable states (33).  This prior analysis 

had purposely limited the number of regions included in the analysis in order to perform an 

exhaustive counting of all possible FC states. Another study had found increased metastability 

in several canonical resting-state networks as determined by the variance in the network’s 

intrinsic synchrony over time (relationship between the mean and variance of the signal over 

time) (32). Here we used a complementary analytical approach to demonstrate that increased 

metastability of the FC under psilocybin is generalizable at the whole-brain scale by calculating 

the standard deviation of the order parameter of the system over time. The increased 

metastability of FC dynamics over time under psilocybin may be interpreted in the context of 

the “entropic brain” theory of conscious states according to which more variable brain activity 

and dynamics reflect more a variable and dynamic conscious experience (32, 34, 35).  

Despite the relatively small number of subjects (N=9) included in this fMRI dataset, our 

findings are strongly validated by the replication of results in placebo conditions across the two 

scanning days (i.e. no changes in the distribution of network states in the placebo scanning 

session vs pre-psilocybin infusion), as well as the strong statistical effect of decreased 

probability of the FC state of interest after psilocybin injection (p < 0.0005). Importantly, since 

LEiDA compares the statistics between whole-brain FC patterns rather than individual 

functional links, the dimensionality is reduced from N(N-1)/2 (number of unique links in a NxN 

symmetric matrix) to the number of networks K, which overcomes several of the statistical 

limitations associated with multiple comparisons. Furthermore, given the instantaneous nature 

of LEiDA, our dynamic FC analysis revealed significant between-condition differences despite 

the fact that each scanning condition consisted only of 100 fMRI volumes, which would likely 

not have been sufficient for conventional sliding-window analysis (51). We note however, that 

the present analysis may not capture the fast dynamics of functional networks, which are 

believed to have lifetimes of approximately 200ms as suggested by MEG studies (52, 53), but 

still captures changes in their probability of occurrence over slower time scales. 
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The therapeutic potential of psilocybin in psychiatry has recently generated much 

interest. For example, indications of efficacy have been reported for conditions including 

treatment-resistant depression, anxiety related to end-of-life care and addictive disorders (18-

21). The neural mechanisms underlying these clinical benefits remain unclear however. The 

present results provide some of the first evidence that a psychoactive drug can modulate the 

brain’s dynamical landscape by selectively destabilizing a particular brain state, and promoting 

the transitions towards another, namely a globally integrated brain state. Importantly, the fact 

that a 5-HT2A receptor agonist can be used to target specific brain states in this way opens up 

the possibility of studying the effects of other classes of neuromodulators at the systems level 

and how they may be involved in the pathophysiology and potential treatment of 

neuropsychiatric disorders. In the present case, a FC state closely overlapping with the fronto-

parietal control system was selectively disengaged following the administration of psilocybin. 

This raises exciting expectations for the design of novel therapeutics for neuropsychiatric 

disorders informed by patho-connectomics, which may be generally understood in terms of 

targeting the specific FC states affected by a particular disorder.  

In summary, the present study used a novel, data-driven dynamical functional 

connectivity analysis (LEiDA) to help uncover the dynamics between functional connectivity 

states under the influence of psilocybin.  We found that a FC state closely corresponding to the 

fronto-parietal control system was strongly destabilized by the compound, while transitions 

toward a globally synchronized FC state were enhanced.  We also found an increase in the 

metastability of global brain dynamics following the psilocybin infusion.  Taken together, these 

findings are consistent with prior neuroimaging studies suggesting that a different type of brain 

integration and increased neural signal complexity underlie the psychedelic state.  The present 

results also raise the possibility that mapping the brain’s dynamical landscape may help guide 

pharmacological interventions in neuropsychiatric disorders by targeting the dynamical 

trajectories of functional brain states. 
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