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1 Abstract

Hybridization between related species results in the formation of an allopolyploid with multi-
ple subgenomes. These subgenomes will each contain complete, yet evolutionarily divergent,
sets of genes. Like a diploid hybrid, allopolyploids will have two versions, or homeoalleles,
for every gene. Partial functional redundancy between homeologous genes should result in a
deviation from additivity. These epistatic interactions between homeoalleles are analogous to
dominance effects, but are fixed across subgenomes through self pollination. An allopolyploid
can be viewed as an immortalized hybrid, with the opportunity to select and fix favorable
homeoallelic interactions within inbred varieties. We present a subfunctionalization epista-
sis model to estimate the degree of functional redundancy between homeoallelic loci and a

statistical framework to determine their importance within a population. We provide an
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16 example using the homeologous dwarfing genes of allohexaploid wheat, Rhi-1, and search for
7 genome-wide patterns indicative of homeoallelic subfunctionalization in a breeding popula-
18 tion. Using the IWGSC RefSeq v1.0 sequence, 23,796 homeoallelic gene sets were identified
19 and anchored to the nearest DNA marker to form 10,172 homeologous marker sets. Interac-
2 tion predictors constructed from products of marker scores were used to fit the homeologous
21 main and interaction effects, as well as estimate whole genome genetic values. Some traits
» displayed a pattern indicative of homeoallelic subfunctionalization, while other traits showed
23 a less clear pattern or were not affected. Using genomic prediction accuracy to evaluate im-
2 portance of marker interactions, we show that homeologous interactions explain a portion of

»s  the non-additive genetic signal, but are less important than other epistatic interactions.

» 1.1 Keywords

2 Allopolyploidy | Homeologous | Epistasis | Subfunctionalization | Heterosis | Genomic Pre-

s diction

» 2 Introduction

s  Whole genome duplication events are ubiquitous in the plant kingdom. The impact of these
a1 duplications on angiosperm evolution was not truly appreciated until the ability to sequence
2 entire genomes elucidated their omnipresence (Soltis et al., 2009). Haldane (1933), postulated
;3 that single gene duplication allowed one copy to diverge through mutation while metabolic
s function was maintained by the other copy. Ohno (1970) reintroduced this hypothesis, and
55 it has since been validated both theoretically (Ohta, 1987; Walsh, 1995; Lynch and Conery,
s 2000), and empirically (Blanc and Wolfe, 2004; Duarte et al., 2005; Liu et al., 2011; Assis and
w Bachtrog, 2013). The duplicated gene hypothesis does not, however, generally explain the
;s apparent advantage of duplicating an entire suite of genes. The necessity of genetic diversity

5 for plant populations to survive and adapt to divergent or changing environments may help
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w0 to explain this pervasive phenomenon.

n The need for gene diversity can become more immediate in plants than in animals, where
2 the latter can simply migrate to “greener pastures” when conditions become unfavorable.
»s  Plants lack substantial within generation mobility and must therefore change gene expression
u to cope with changing environmental conditions. Many species maintain gene diversity
s through alternate splicing, but this has been shown to be less common in plants than in
s other eukaryotes (Nagasaki et al., 2005). Whole genome duplication can generate the raw
« materials for the maintenance of genetic diversity (Wendel, 2000; Adams and Wendel, 2005).
s Gault et al. (2018) demonstrated that similar sets of duplicated genes were preserved in two
s related genera, Zea and Tripsacum, millions of years after a shared paleopolyploidization
so event. This conserved pattern in purifying selection suggests that, at least for some genes,
s1 there is a clear advantage to maintaining two copies.

52 The union of two complete, yet divergent, genomes during the formation of an allopoly-
53 ploid introduces manifold novel gene pathways that can specialize to specific tissues or en-
s« vironments (Blanc and Wolfe, 2004). Similar to diploid hybrids, the formation of an al-
ss lopolyploid results in a homogeneous population, but heterozygosity is maintained across
ss homeologous sites rather than homologous sites. Unlike diploid hybrids that lose heterozy-
57 gosity in subsequent generations, the homeoallelic heterozygosity is fixed through selfing in
s the allopolyploid. Mac Key (1970) postulated a trade off between new-creating (allogamous)
so and self preserving (autogamous) mating systems, where allopolyploids favor self pollination
s to preserve diverse sets of alleles across their subgenomes. As such, an allopolyploid may be
s thought of as an immortalized hybrid, with heterosis fixed across subgenomes (Ellstrand and
2 Schierenbeck, 2000; Feldman et al., 2012). While still hotly debated, evidence is mounting
&3 that allopolyploids exhibit a true heterotic response as traditional hybrids have demonstrated
s« (Wendel, 2000; Adams and Wendel, 2005; Chen, 2010, 2013).

65 Birchler et al. (2010) note that newly synthesized allopolyploids often outperform their

s sub-genome progenitors, and that the heterotic response appears to be exaggerated in wider
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&7 inter-specific crosses. This seems to hold true even within species, where autopolyploids
s tend to exhibit higher vigor from wider crosses (Bingham et al., 1994; Segovia-Lerma et al.,
oo 2004). The overwhelming prevalence of allopolyploidy to autopolyploidy in plant species
w0 (Soltis and Soltis, 2009) may suggest that it is the increase in allelic diversity per se that
7 is the primary driver for this observed tendency toward genome duplication. Instead of
22 allowing genes to change function after a duplication event, alleles may develop novel function
73 prior to their reunion during an allopolyploidization event. The branched gene networks of
72 the allopoloyploid may provide the organism with the versatility to thrive in a broader
75 ecological landscape than those of its sub-genome ancestors (Mac Key, 1970; Ellstrand and
76 Schierenbeck, 2000; Osborn et al., 2003).

7 Subfunctionalization and neofunctionalization are often described as distinct evolutionary
7z  processes. Neofunctionalization implies the duplicated genes have completely novel, non-
79 redundant function (Ohno, 1970). Subfunctionalization is described as a partitioning of
s ancestral function through degenerative mutations in both copies, such that both genes
s must be expressed for physiological function (Stoltzfus, 1999; Force et al., 1999; Lynch and
&2 Force, 2000). However, barring total functional gene loss, many mutations will have some
3 quantitative effect on protein kinetics or expression (Zeng and Cockerham, 1993). Duplicated
s genes will demonstrate some quantitative degree of functional redundancy until the ultimate
g5 fate of neofunctionalization (i.e. complete additivity) or gene loss (pseudogenization) of one
s copy. It has been proposed that essentially all neofunctionalization processes undergo a
&7 subfunctionalization transition state (Rastogi and Liberles, 2005).

88 If the mutations occur before the duplication event, as in allopolyploidy, the two variants
so are unlikely to have degenerative mutations. Instead, they may have differing optimal condi-
o tions in which they function or are expressed. The advantage of different variants at a single
a locus (alleles; Allard and Bradshaw, 1964) or at duplicated loci (homeoalleles; Mac Key,
e 1970) can result in greater plasticity to environmental changes. Allopolyploidization has

o3 been suggested as an evolutionary strategy to obtain the genic diversity necessary for inva-
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s sive plant species to adapt to the new environments they invade (Ellstrand and Schierenbeck,
s 2000; te Beest et al., 2011).

% Adams et al. (2003) showed that some homeoallelic genes in cotton were expressed in
o7 an organ specific manner, such that expression of one homeolog effectively suppressed the
e expression of the other in some tissues. These results have since been confirmed in other
o crops such as wheat (Pumphrey et al., 2009; Akhunova et al., 2010; Feldman et al., 2012;
wo Pfeifer et al., 2014), and evidence for neofunctionalization of homeoallelic genes has been
1 observed (Chaudhary et al., 2009). Differential expression of homeologous gene transcripts
102 has also been shown to shift upon challenge with heat, drought (Liu et al., 2015) and salt
103 stress (Zhang et al., 2016) in wheat, as well as water submersion and cold in cotton (Liu and
e Adams, 2007).

105 Common wheat (Triticum aestivum) provides an example of an allopolyploid that has
s surpassed its diploid ancestors in its value to humans as a staple source of calories. Hexaploid
w7 wheat has undergone two allopolyploid events, the most recent of which occurred between
s 10 and 400 thousand years ago, adding the D genome to the A and B genomes (Marcussen
wo et al., 2014). The gene diversity provided by these three genome ancestors may explain why
1o allohexaploid wheat has adapted from its source in southwest Asia to wide spread cultivation
i around the globe (Dubcovsky and Dvorak, 2007; Feldman and Levy, 2012).

112 In the absence of outcrossing in inbred populations, selection can only act on individuals,
s changing their frequency within the population. If the selection pressure changes (e.g. for
s modern agriculture), combinations of homeoalleles within existing individuals may not be
us ideal for the new set of environments and traits. This presents an opportunity for plant breed-
us ers to capitalize on this feature of allopolyploids by making crosses to form new individuals
w7 with complementary sets of homeoalleles. Many of these advantageous combinations have
us likely been indirectly selected throughout the history of wheat domestication and modern
ne breeding.

120 Dominance of homeologous genes is known to exist in wheat. For example, a single
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dominant red allele at any of the three homeologous kernel color genes on 3A, 3B, and 3D
will confer a red kernel color (Allan and Vogel, 1965; Metzger and Silbaugh, 1970). Another
crucial example involves the two homeologous dwarfing genes (Allan et al., 1959; Gale et al.,
1975; Gale and Marshall, 1976; McVittie et al., 1978) important in the Green Revolution,
which implemented semi-dwarf varieties to combat crop loss due to nitrogen application and
subsequent lodging. These genes have been shown to exhibit a quantitative semi-dominant
reponse (Borner et al., 1996). We discuss this example in detail, and use it as a starting
point to justify the search for quantitative homeologous interactions genome-wide. While the
effect of allopolyploidy has been demonstrated at both the transcript level and whole plant
level, we are unaware of attempts to use genome-wide homeologous interaction predictors to
model whole plant level phenotypes such as growth, phenology and grain yield traits.
Using a soft winter wheat breeding population, we demonstrate that epistatic interactions
account for a significant portion of genetic variance and are abundant throughout the genome.
Some of these interactions occur between homeoallelic regions and we demonstrate their
potential as targets for selection. If advantageous homeoallelic interactions can be identified,
they could be directly selected to increase homeoallelic diversity, with the potential to expand
the environmental landscape to which a variety is adapted. We hypothesize that the presence
of two evolutionarily divergent genes with partially redundant function leads to a less-than-

additive gene interaction, and introduce this as a subfunctionalization model of epistasis.

3 Subfunctionalization Epistasis

We generalize the duplicate factor model of epistasis from Hill et al. (2008), by introducing a
subfunctionalization coefficient s, that allows the interaction to shift between the duplicate
factor and additive models. Let us consider an ancestral allele with an effect a. Through
mutation, the effect of this locus is allowed to diverge from the ancestral allele to have effects

a* and a in the two descendant species. When the two divergent loci are brought back
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Figure 1: Diagram of subfunctionalization where a is the effect of a functional allele, a* and
a are the effects of the descendant alleles, and s is the subfunctionalization coefficient.
together in the same nucleus, the effect of combining these becomes s(a* + a) (Figure 1).
Values of s < 1, indicate a less-than additive epistasis (Eshed and Zamir, 1996), in this
case, resulting from redundant gene function. When s = 1/2, and a* = a, the descendant
alleles have maintained the same function and the duplicate factor model is obtained. As
s exceeds 1/2, the descendant alleles diverge in function (i.e. subfunctionalization), until
s reaches 1, implying that the two genes evolved completely non-redundant function (i.e
neofunctionalization). At the point where s = 1, the effect becomes completely additive.
For values of s > 1/2, the benefit of multiple alleles is realized in a model analogous
to overdominance in traditional hybrids. As alleles diverge they can pick up advantageous
function under certain environmental conditions. The homeo-heterozygote then gains an
advantage if it experiences conditions of both adapted homeoalleles. Values of s < 1/2
may indicate allelic interference (Herskowitz, 1987), or genomic shock (McClintock, 1984),
a phenomenon that has been observed in many newly formed allopolyploids (Comai et al.,
2003). Allelic interference, also referred to as dominant negative mutation, can result from
the formation of non-functional homeodimers, while homodimers from the same ancestor
continue to function properly. This interference effectively reduces the number of active

dimers by half (Herskowitz, 1987; Veitia, 2007).
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Figure 2: Epistatic interaction of two loci, B and C, with the expected effects for the {0, 1}
parameterization. J indicates the deviation of the BBCC genotype from an additive model
for the {0, 1} parameterization, where s = 14-= fa* . The dotted line indicates the expectation
under the additive model.

3.1 Epistasis models

Let us consider the two locus model, with loci B and C'. Using the notation of Hill et al.

(2008), the expected phenotype, Ely], is modeled as

Ely] = p+ Bag + Cac + BC(ao)pe (1)

where B and C' are the marker allele scores, BC is the pairwise product of those scores, apg
and a¢ are the additive effects of the B and C loci and (a«)pe is the interaction effect.
We revisit two epistatic models, the “Additive x Additive Model without Dominance
or Interactions Including Dominance” (called “Additive x Additive” hence forth) and the
“Duplicate Factor” considered by Hill, Goddard and Visscher (Hill et al., 2008) that are
relevant for this discussion. Omitting the heterozygous classes and letting a be the effect on

the phenotype,
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Additive x Additive Duplicate Factor
cC  cc cC cc
BB| 2a 0 BB| a a
bb 0 2a bb a 0
174 We propose a generalized Duplicate Factor epistatic model to estimate the degree of gene

s functional redundancy, or subfunctionalization.

Subfunctionalization

cc cc

176

BB | s(a*+a) a*
bb a 0

177 When markers are coded {0, 1} for presence of the functional allele, the deviation from

s the additive expectation, ¢, is estimated by (a«a)pc. d can then be used to calculate the

1o subfunctionalization coefficient, s = 1 + a*i—d (Figure 2). The least squares expectation of
180 additive and epistatic effects is then
H H H
Bag a* a*
E = =
COéc a a
BC(aa)pe J (d—1)(a*+a)

w 3.2 Epistatic contrasts

1.2 Epistatic interaction predictors must be formed from marker scores in order to estimate
183 interaction parameters. These interaction predictors are typically calculated as the pairwise
18a product of the genotype scores for their respective loci. This can lead to ambiguity in the
15 meaning of those interaction effects depending on how the marker scores are coded. Different
185 marker parameterizations can center the problem at different reference points (i.e. different

157 intercepts), and can scale the predictors based on allele or genotype effects (i.e. different

]

18 slopes).
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Table 1: Epistatic interaction score tables resulting from the products of marker scores using
{—1,1} and {0, 1} parameterizations for inbreds.

‘ cC ce ‘ cC ce
BB| 1 -1 BB | 1 0
bb 1001 bb 0 0

189 When loci B and C' are coded as {—1, 1} for inbred genotypes, including the product of
1o the marker scores, BC, corresponds to the Additive x Additive model (Table 1). Changing
11 the reference allele at either locus does not change the magnitude of effect estimates but
102 will change their signs. Using {0,1} coding, BC' corresponds to the subfunctionalization
13 model and estimates ¢ directly. For this coding scheme, the magnitude and sign can change
1wsa depending on the reference allele at the two loci. This highlights one of the difficulties of
105 effect interpretation, as it is not clear which marker orientations should be paired. That is,
s which allele should be B as opposed to b, and which should be C' as opposed to ¢? Marker
17 alleles can be oriented to have either all positive or all negative additive effects, but the
108 question remains: which direction should the more biologically active allele have on the
109 phenotype?

200 Marker scores are typically assigned as either presence (or absence) of the reference,
200 major, or minor allele, which may or may not be biologically relevant. While it has been
22 noted that the two different marker encoding methods do not result in the same contrasts
203 of genotypic classes (He et al., 2015; Martini et al., 2016, 2017), coding does not affect the
200 least squares model fit (Zeng et al., 2005; Alvarez-Castro and Carlborg, 2007). Alvarez-
205 Castro and Carlborg (2007) show that there exists a linear transformation to shift between
206 multiple parameterizations using a change-of-reference operation (see Appendix 3). This is
207 convenient because all marker orientation combinations can be easily generated by changing
208 the effect signs of a single marker orientation fit for the {—1, 1} marker coding. These effect
200 estimates can subsequently be transformed to the {0,1} coding effect estimates using the
a0 change-of-reference operation for all marker orientation combinations.

211 This transformation does not hold when marker effects are considered random, where

10
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the interaction effect is subject to differential shrinkage depending on the marker coding and
orientation (Martini et al., 2017, 2018). As such, orienting markers to capture functional
allele relationships may be crucial for optimizing genomic prediction including epistasis. We
make an attempt to orient markers based solely on estimated fixed marker additive effects,
with the assumption that that homeoalleles with similar additive effects are functionally
similar. Other attempts at marker orientation have included orienting markers to maxi-
mize the interaction effect magnitude and including interaction predictors from all possible
marker orientations (Martini et al., 2017). The former is biased toward selecting interaction
predictors with a high joint frequency, whereas the latter suffers from a high degree of linear

dependency.

4 Materials and Methods

4.1 RIL population

A bi-parental recombinant inbred line (RIL) population of 158 lines segregating for two
dwarfing genes was used to illustrate an epistatic interaction between the well known home-
ologous genes on chromosomes 4B and 4D, Rht-B1 and Rht-D1, important in the Green
Revolution (Allan et al., 1959; Gale et al., 1975; Gale and Marshall, 1976; McVittie et al.,
1978). Two genotyping by sequencing (GBS) markers linked to these genes were used to
track the segregating mutant (b and d) and wildtype (B and D) alleles. Only one test for
epistasis between these two markers was run. This homeologous marker pair was denoted

RIL_Rht1. Details of the population can be found in Appendix 1.

4.2 CNLM population

The Cornell small grains soft winter wheat breeding population (CNLM) was used to investi-
gate the importance of homeologous gene interactions in a large adapted breeding population.

The dataset and a detailed description of the CNLM population can be found in Santanto-

11
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nio et al. (2018b). Briefly, the dataset consists of 1,447 lines evaluated in 26 environments
around Ithaca, NY. Because the data were collected from a breeding population, only 21% of
the genotype/environment combinations were observed, totaling 8,692 phenotypic records.
Standardized phenotypes of four traits, grain yield (GY), plant height (PH), heading date
(HD) and test weight (TW) were recorded. All lines were genotyped with 11,604 GBS mark-
ers aligned to the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq
v1.0 wheat genome sequence of ‘Chinese Spring’ (IWGSC, 2018, accepted), and subsequently

imputed.

4.3 Homeologous marker sets

Using the IWGSC RefSeq v1.0 ‘Chinese Spring’ wheat genome sequence (IWGSC, 2018,
accepted), homeologous sets of genes were constructed by aligning the annotated coding
sequences (v1.0) back onto themselves. The known 4A, 5A, and 7B translocation in wheat
(Devos et al., 1995) was ignored for simplicity in this study, but could easily be accounted for
by allowing homeologous pairs across these regions. The resulting 23,796 homeologous gene
sets, comprised of 18,184 triplicate and 5,612 duplicate gene sets, sampled roughly 59% of
the gene space of hexaploid wheat. Additional details on homeologous gene alignment can be
found in Appendix 2. Each homeologous gene was then anchored to the nearest marker by
physical distance (Supplementary Figures S1 and S2), and homeologous sets of markers were
constructed from the anchor markers to each homeologous gene set. Redundant marker sets
due to homeologous genes anchored by the same markers were removed, resulting in 6,142
triplicate and 3,985 duplicate marker sets for a total of 10,127 unique homeologous marker
sets. These marker sets (denoted ‘Homeo’) were then used to calculate marker interaction
scores as pairwise products of the marker score vectors.

As a control, two additional marker sets were produced by sampling the same number
of duplicate and triplicate marker sets as the Homeo set. These markers sets were sampled

either from chromosomes within a subgenome (Within, e.g. markers on 1A, 2A and 3A), or

12
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across non-syntenic chromosomes of different subgenomes (Across, e.g. markers on 1A, 2B
and 3D). Samples were taken to reflect the same marker distribution of the Homeo set with
regard to their native genome, which has a larger proportion of D genome markers relative
to their abundance. Note that three-way homeologous interactions have equal proportions
of markers belonging to the A, B and D genomes, whereas D genome markers only account

for 13% of all markers in the CNLM population (Santantonio et al., 2018b).

4.4 Determining marker orientation

For each homeologous marker set, additive homeologous marker effects and their multiplica-
tive interaction effects were estimated as fixed effects in the following linear mixed model
while correcting for background additive and epistatic effects. The {—1,1} marker parame-

terization was used for fixed marker additive and interaction effect estimates.

y=ZS 1By +XB+Zgo, +¢ (2)

where X is the design matrix, B is the vector of fixed environmental effects, and Z is the
line incidence matrix. S_j; is the matrix of genotype marker scores and interactions for
each genotype class, while E_j; is the fixed additive and interaction effects that need es-
timated (Appendix 3). Z is the incidence matrix for the two- or three-way genotype of
each homeologous marker set. Z and Z differ in that the former links observations to a
specific line, whereas the latter links observations to one of the two- or three-way genotype
classes for the homeologous marker set. The background genetic effects were assumed to
be gar ~ N(0,02K¢ + 0?H;) with population parameters previously determined (Zhang
et al., 2010). The additive and epistatic covariances, K and Hj, were calculated as de-
scribed in VanRaden (2008, method I) and Martini et al. (2016, equation 9), respectively.
This weighted covariance matrix was used to reduce computational burden associated with

estimating two variance components in the same fit.

13
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285 A Wald test was used to obtain a p-value for marker additive and interaction effects.
26 All marker orientation combinations were generated by changing the estimated effect signs,
27 and then transformed to the {0,1} marker effect estimates using the change-of-reference
288 operation (Alvarez—Castro and Carlborg, 2007). Only marker orientations with all positive
280 or all negative additive effects were considered. It should be noted that the marker orientation
200 has no effect on the p-value, as they are linear transformations of one another.

201 Markers were oriented to have minimized the difference (or variance for three-way sets)
202 of the additive main effects while maximizing the mean of the absolute values of the additive
203 main effects. This orientation, which we denote ‘low additive variance high additive effect’
20 (LAVHAE), assumes that marker alleles with similar effects are functionally similar. Only
205 additive effects were used to select the marker orientation to keep from systematically select-
26 ing marker orientations with a specific interaction pattern. Three other marker orientation
207 schemes were also investigated by orienting markers to either have all positive (POS) effects,
23 all negative (NEG) effects, or to maximize the variance of the additive and interactions

20 effects (‘high total effect variance’, HTEV).

w 4.5 Additive only simulated controls

;0 Marker effect and interaction estimates using either {0,1} or {—1,1} marker parameter-
sz izations are not orthogonal, so care must be taken when interpreting the direction and
w3 magnitude of the effects estimates. The positive covariance between the marker scores and
s4  their interaction leads to a multicollinearity problem, and results in a negative relationship
ss  between additive and interaction effects if both additive effects are oriented in the same
w6 direction. To determine if the negative relationship between the additive and epistatic ef-
sor fects was greater than expected due to multicollinearity, a new phenotype with no epistatic
ss  effects was simulated from the data for each trait. The estimate of the marker variance was
w0 calculated from the additive genetic variance estimate as 62, = 6%(2p* (1 — p))~', where

si0 p is the vector of marker allele frequencies. Then for each trait, a new additive phenotype
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was simulated as yg, = 1p + XB + ZMuy;,, + €4, Where the trial effect estimates from
Santantonio et al. (2018b, equation 2) were used for @, M is the matrix of marker scores,
U, was sampled from N(0,62) and € was sampled from N (0,52). A Kolmogorov-Smirnov
(KS) test was used to determine if the distribution of the estimated interaction effects from
the actual data differed from the distribution of effects estimated from simulated data. An
additional simulated phenotype was also produced by first permuting each column of M to

remove any effects due to linkage disequilibrium (LD) structure.

4.6 Genomic prediction

To determine the importance of epistatic interactions to the predictability of a genotype, a

genomic prediction model was fit as

where 1,, is a vector of ones, y is the general mean. The random vectors of additive genotype,
epistatic interactions, and errors were assumed to be distributed as gg ~ N (0,02K), g; ~
N(0,0?H) and € ~ N (0, 0?), respectively.

The additive covariance matrix, K, was calculated using VanRaden (2008), method I.
The epistatic covariance matrix H was calculated either as defined by Jiang and Reif (2015,
equation 5) and Martini et al. (2016, equation 9) to model all pairwise epistatic interactions
using {—1, 1} coding (Pairwise), or in a similar fashion as K for oriented marker sets, where
only unique products of marker variables were included instead of the marker variables. For
the latter, the matrix was scaled with the sum of the joint marker variances as (2q* (1—q))™*,
where q is the joint frequency of individuals containing both the non-reference marker alleles.
Three-way marker products were included if they were unique from the additive and pairwise
product predictors.

A small coefficient of 0.01, was added to the diagonals of the covariance matrix to recover
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full rank lost in centering the matrix of scores prior to calculating the covariance. Five-fold
cross validation was performed by randomly assigning individuals to one of five folds for
10 replications. Four folds were used to train the model and predict the fifth fold for all
five combinations. All models were fit to the same sampled folds so that models would
be directly comparable to one another and not subject to sampling differences. Prediction
accuracy was assessed by collecting genetic predictions for all five folds, then calculating the
Pearson correlation coefficient between the predicted genetic values for all individuals and a
“true” genetic value. The “true” genetic values were obtained by fitting a mixed model to
all the data with fixed effects for environments and a random effect for genotypes, assuming
genotype independence with a genetic covariance I.

Increase in genomic prediction accuracy from the additive model was used as a proxy
to assess the relative importance of oriented marker interaction sets. To determine the
proportion of non-additive genetic signal attributable to each interaction set, the ratio of
the prediction accuracy increase from the additive model using the interaction set (Homeo,
Within and Across) to the prediction accuracy increase from the additive model modeling all
pairwise epistatic interactions (Pairwise) was used for comparison of models. The percentage

of non-additive predictability was calculated as follows for each interaction set.

accuracy (Interaction Set) — accuracy(Additive)

accuracy (Pairwise) — accuracy(Additive)

4.7 Software

ASReml-R (Gilmour, 1997; Butler, 2009) was used to fit all mixed models. BLAST+ (Ca-
macho et al., 2009) was used for coding sequence alignment. All additional computation,
analyses and figures were made using base R (R Core Team, 2015) implemented in the Mi-
crosoft Open R environment 3.3.2 (Microsoft, 2017) unless noted otherwise. Figures 1 and
2 were created using the ‘tikz’ package (Tantau, 2018) for IXTEX. Figure 4 was made with

the ‘circlize’ R package (Gu et al., 2014). The R package ‘xtable’ (Dahl, 2016) was used to
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Table 2: Marker and epistatic effect estimates for Rht-1D and Rht-1B linked GBS markers
for plant height (cm) in 158 RIL lines derived from NY91017-8080 x Caledonia. Least
squares effect estimates are for markers coded either using {0,1} coding or {—1,1}, and
then oriented such that the two marker main effects are either both positive (4) or both
negative (—).

Marker Coding Effect Orientation Intercept Rht-1B Rht-1D  Rht-1Bx Rht-1D s®

{0,1} ¥ 69.9 234 222 122 0.73
{0,1} - 1033  -11.2  -10.0 122 1.58
{-1,1} + 89.7 8.6 8.0 -3.0
{-1,1} - 89.7 -8.6 -8.0 -3.0

%The subfunctionalization coefficient calculated from the additive and interaction effects is shown for the
{0,1} marker coding.

3!

5]

s generate IfTEX tables in R.

w 4.8 Data availability

w0 Phenotypes and genotypes for the CNLM population can be found in Santantonio et al.

1 (2018b). A list of homeologous genes can be found in supplementary file ‘thomeoGeneList.txt’.

3

<

2 The supplementary file ‘HomeoMarkerSet.txt” contains non-unique marker sets anchored to
53 each homeologous gene set. Unique marker sets used can be found in ‘uniqueHomeoMark-
s erSet.txt’, ‘WithinMarkerSet.txt’, ‘AcrossMarkerSet.txt’ for the Homeo, Within and Across
s marker sets. Marker and marker interaction effect estimates and p-values for the Homeo set
s can be found in ‘twoWaylInteractions.txt” and ‘threeWaylInteractions.txt’ for two- and three-
7 way marker interactions, respectively. Phenotypes and genotypes used in the RIL population

ss  are included in the ‘NY8080Cal.txt’ file.
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Figure 3: Epistasis plot of effects for Rht-1B and Rht-1D linked markers on plant height
in 158 RIL lines derived from NY91017-8080 x Caledonia. The filled circles indicate the
intercept (i.e. reference point) for each model parameterization while open circles indicate
genotype class means. The solid lines indicate the marker effect estimates including the
interaction term, while the dotted line indicates the expectation based on the additive model.
A) {0,1} marker coding with positive marker effect orientation. B) {0,1} marker coding
with negative marker effect orientation. C) {—1,1} marker coding with positive marker
effect orientation, D) {—1, 1} marker coding with negative marker effect orientation.

5 Results and Discussion

5.1 Rht-1
5.1.1 RIL population

The markers linked to the Rht-1B and Rht-1D genes both had significant additive effects (p
< 10719) and explained 19.6% and 20.5% of the variation in the height of the RIL population
(Supplemental Table S1). The test for a homeoallelic epistatic interaction between these Rht-
1 linked loci was also significant (p = 0.0025), but only explained 3.5% of the variance after
accounting for the additive effects. Had we tested all pairwise marker interactions in this
population, this test would not have passed a Bonferroni corrected significance threshold.
Effect estimates for the Rht-1 markers and their epistatic interaction are shown in Table
2, for {0,1} and {—1,1} marker parameterizations, and for orientations where the marker
main effects are both positive or both negative. The {0,1} parameterization is arguably
more intuitive, as effects correspond directly to differences in genotype values (Figure 3).

They both contain the same information and are equivalent for prediction using ordinary

18


https://doi.org/10.1101/376731
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/376731; this version posted December 4, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

404

405

406

407

under aCC-BY-NC-ND 4.0 International license.

least squares, but the interpretation of the {—1,1} marker coding is less obvious because
the slopes are deviations from the expected double heterozygote (assuming no dominance),
which does not exists in an inbred population. The {0, 1} parameterization uses the double
dwartf as the reference point, where the effects ag and a¢ are the two semi-dwarf genotypes.
The tall genotype is the sum of the semi-dwarf allele effects plus the deviation coefficient, ¢,
which corresponds to (aa)pc.

The estimated s parameter of 0.73 indicates a significant degree of redundancy between
the wild type Rht-1 homeoalleles. This suggests that either the gene products maintain par-
tial redundancy in function, or the expression of the two homeoalleles is somewhat redundant.
The latter is less likely given that the two functional wild type genes have comparable addi-
tive effects relative to the double dwarf. If the two genes were expressed at different times or
in different tissues based on their native subgenome, the additive effects would be likely to
differ in magnitude. This demonstrates a functional change between homeoalleles that has
been exploited for a specific goal, semi-dwarfism.

When the markers are oriented in the opposite direction, to indicate the GA insensitive
mutant allele as opposed to the GA sensitive wildtype allele, the interpretation of the in-
teraction effect changes. The additive effect estimates become indicators of the reduction in
height by adding a GA insensitive mutant allele. The interaction effect becomes the addi-
tional height reduction from the additive expectation of having both GA insensitive mutant
alleles, resulting in a s parameter of 1.58. The same interpretation can be made, but must
be done so with care. Losing wildtype function at both alleles results in a more drastic
reduction in height than expected because there is redundancy in the system. Therefore, the
s parameter is most easily interpreted when the functional direction of the alleles is known.
Simply put, when function is added on top of function, little is gained, but when all function

is removed, catastrophe ensues.
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5.1.2 CNLM population

For the CNLM population, the markers with the lowest p-values associated with plant height
on the short arms of 4B and 4D did not show a significant interaction with their respective as-
signed homeologous marker in homeologous sets H4.16516 and H4.23244, respectively. A new
homeologous marker set, CNLM_Rht1, was constructed with the SNPs on 4BS and 4DS with
the lowest p-values mentioned above. The additive effects of markers S4B_PART1_38624956
and S4D_PART1.10982050 had p-values of 5.5 x 10™* and 3.7 x 1078, respectively, while
the interaction had a p-value of 0.015. This set was oriented in the same direction as the
RIL_Rht1 set using the LAVHAE orientation method. While the magnitude of these ef-
fects was reduced (7.13, 7.09 and -4.56 for the 4D, 4B and 4Bx4D effects respectively),
the CNLM_Rht1 set had a s parameter value of 0.68, similar to that of RIL_Rht1. Had
this set alone been tested, we would have concluded that this was a significant homeologous
interaction.

To verify these results, we genotyped 1,259 individuals of the CNLM population with
two ‘perfect’” markers designed to track the Rht-1B and Rht-1D alleles (Ellis et al., 2002).
When correcting for population structure, effect estimates were 1.66 (p = 3.3 x 1072), 1.93
(p < 2x107%) and -1.02 (p = 6.4 x 107%) for the Rht-1B Rht-1B and Rht-1B X Rhit-1B
terms, respectively, resulting in an s value of 0.71. The relatively high p-value for the Rht-1B
is likely due to correction for population structure, where the Rht-1Db dwarfing allele is the
predominant source of semi-dwarfism in the breeding population (Supplementary Table S3).
Ignoring population structure produced p-values of p < 107! for both additive effects and

p = 5.7 x 107° for the interaction.

5.2 Significant homeoallelic interactions

The absence of one genotype class in 7,912 interaction terms resulted in 20,641 testable in-
teraction effects out of 28,553 total interaction terms. A trait-wise Bonferroni significance

threshold of 0.05/20,641 = 2.4 x 107% was therefore used to determine which interaction ef-
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Figure 4: Manhattan plot of homeoallelic marker sets for each of the 21 chromosomes of
wheat. The red line indicates a trait wise Bonferroni significance threshold for additive
effects of —log;((6.0 x 107%) = 5.2. Light blue lines indicate significant two-way homeoallelic
marker interactions that exceeded a Bonferroni threshold for all testable interaction effects
—logy(2.4 x 1076) = 5.6. Dark blue lines indicate significant 3-way homeoallelic marker
interactions that exceeded the same Bonferroni threshold.

fects had a significant effect on the phenotype. Few homeoallelic interactions were significant
at the trait-wise Bonferroni cutoff (Figure 4). Significant homeoallelic interactions for PH
were identified between 4AL and 4DS, as well as 4BL. and 4DL. Both of these locations were
likely too far away from the Rht-1 alleles to be tagging these genes directly, but they may

be regulatory sites for these genes. Another set of interacting sites between the homeologous
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chromosome arms 3AS, 3BS and 3DS was also identified for PH, but the additive effects were
not significant. Two interacting regions on homeolog 1, between 1AS and 1DS and between
1AL and 1DL, and three interacting regions on homeolog 5 also appeared to be influencing
HD. One region on the distal end of homeolog 7 affected both HD and TW, with significant
two-way and three-way interactions. Although they were tagged with different marker sets
for the two traits, these epistatic regions appeared to co-localize within 2 Mbp.

No significant additive or interaction effects were detected for GY, highlighting the highly
polygenic nature of the grain yield trait. In several cases, one of the additive effects was
significant but the other was not, and it is not clear if this is influencing the detection of
interactions. It may be that the significant marker is simply in higher LD with the functional
mutation conditional on the presence of the other marker, allowing the interaction to pick
up the additional signal from the functional mutation (Wood et al., 2014). However, if this
were the case, the interaction would be expected to be in the same direction as the additive
effect, which was not generally observed.

We did not detect an interaction between the two significant additive regions on 2B
and 2D for the HD trait. While these two markers were not grouped as a homeologous
set, they were tested as such based on their proximity to the well described Photoperiod-1
genes, Ppd-B1 and Ppd-D1, on chromosomes 2B and 2D respectively. These genes are known
to influence photoperiod sensitivity, and therefore transition to flowering and heading date
(Welsh J.R. and R.D., 1973; Law et al., 1978; Scarth and Law, 1983). Certain allele pairs
at these genes have been shown to exhibit a high degree of epistasis (Poland, 2018, personal
communication) in a bi-parental family. It is unclear why no interaction was observed in
this population.

Jiang et al. (2017) also investigated the presence of homeologous interactions, but found
little evidence in a large population of hybrid wheat. They did not attempt to tag homeol-
ogous loci, but instead considered interactions across any markers on homeologous chromo-

somes to be syntenic. Interactions at homologous and non-homeologous loci may have largely
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outweighed interactions across homeologous loci in that population, given it was constructed
from highly divergent parents and that progeny were not inbred. Additionally, they tested
all pairwise marker combinations, resulting in a strict significance threshold that may have
missed small effect homeologous interactions.

Homeologous interactions make up relatively few of the potential two-way interactions
within an allopolyploid genome. Given a subgenome with k& genes and alloploidy level p
(i.e. the number of subgenomes), there are k(’;) two-way homeologous interactions versus
(ka) — k(;’) potential two-way non-homeologous gene interactions. For a subgenome size of
30,000 genes, this represents 0.02% and 0.006% of the possible two-way gene interactions
for an allotetraploid and an allohexaploid, respectively. That said, homeoallelic interactions

should be far more likely to have a true biological interaction than random pairs of genes

because they should belong to the same or similar biochemical pathways.

5.3 Estimates of the subfunctionalization coefficient

There were few cases where at least two additive effects and their corresponding interaction
effect were all significantly different from zero. This may be due to the difficulty of assigning
functional homeologous gene sets using single SNPs,; as well as a lack of statistical power
owing to low minor allele frequencies (Hill et al., 2008). The lack of a large number of
significant interactions is not surprising given that allele frequencies near 0.5 are uncommon
in both natural and breeding populations.

To determine whether more homeologous marker sets were displaying a pattern indicative
of subfunctionalization than would be expected by chance, marker sets where both additive
and two-way interaction effects were significant at a threshold of @ = 0.05 were examined
(Table 3). The expected number of two-way marker sets with significant additive and in-
teraction effects is about 11 (i.e. 4 traits x 22,411 two-way interactions x 0.05%), assuming
independence of loci and true additive and interaction effects of zero. Only the Homeo and

Across marker sets had significantly more than expected. When broken down by trait, these
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Figure 5: A) LAVHAE oriented homeologous marker pair additive effects for four traits,
GY, PH, TW and HD. Point size represents the magnitude of the two-way homeologous
interaction effect while color denotes the direction of the interaction effect, where black is
positive and red is negative. B) Quantile quantile plot of the ordered estimated homeolo-
gous interaction effects plotted against those from a simulated phenotype sampled to obtain
no epistatic interactions. Interaction effects have been multiplied by the effect sign of the
corresponding additive effects to emphasize the relationship between the additive and in-
teraction effects. The lower left quadrant indicates a less-than-additive interaction, whereas
the upper right quadrant indicates a greater-than-additive interaction. The p-value from a
Kolmorgorov-Smirnov (KS) test is reported to test if the distributions of actual and simu-
lated interaction effect estimates are the same. A deviation below the line on the bottom
left of each graph (i.e. a low dropping tail) should indicate a less-than-additive epistatic
pattern of subfunctionalization, whereas a deviation above the line in the upper right (i.e.
a high rising head) should indicate a greater-than-additive epistasis pattern of homeologous
overdominance.

w2 appeared to be driven by interactions for PH and TW in the Homeo set (Supplementary

403 Table S16). The homeologous marker set had a larger proportion of s coefficients estimated

©

w4 between 0.5 and 1 relative to the strictly additive simulated phenotypes as well as the other
w5 non-homeologous marker sets, suggesting that homeologous loci exhibit a pattern indicative
w6 of subfunctionalization more so than other marker sets tested. The Across set showed the

w7 highest proportion of s < 0.5, suggestive of gene pathway interference. Because the power

©

w8 to detect significant effects diminishes as more tests are accomplished, it may be prudent to

w0 look at global trends between homeologous additive effects and their interactions, regardless
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Table 3: Estimates of s coefficients for marker sets where both additive and the two-way in-
teraction effects were significant at p < 0.05, combined for all 4 traits. The expected number
of non-zero additive and two-way interactions effects based on a 0.05 significance threshold
by chance is 11 (i.e. 4 traits x 22,411 two-way interactions x 0.05%). Coefficients have been
grouped by categories related to the potential mode of epistasis, where s < 0.5 indicates
a highly negative interaction, 0.5 < s < 1 a less-than-additive interaction may be indica-
tive of subfunctionalization for homeologous genes, and s > 1 which indicates positive, or
greater-than-additive, epistasis. Three marker sets are shown, either across all homeologous
loci (Homeo), sampled sets within (Within) and across (Across) non-syntenic subgenome
regions. An additional phenotype was simulated to contain additive only phenotypes to
contain no epistasis, and fit with the Homeo marker set (Simulated Additive).

Marker Set s < 0.5 05<s<1 s>1 Total®
Homeo 8 14 8 30%**
Simulated Additive 1 1 4 6
Across 9 7 1 17*
Within 6 3 4 13

ax  kx o kksk
)

, indicate significantly greater than the expected number of significant sets at p = 0.05, 0.01 and
1075 based the binomial distribution with 89,644 trials and a probability of 0.053.

so0 Of statistical significance.

s .4 Evidence of subfunctionalization

sz A strong negative relationship between additive and interaction effects was observed when

5i

o

s using the {0, 1} marker parameterization (Figure 5A). This negative relationship was also
soe  observed in the phenotypes simulated to be strictly additive (Supplementary Figure S3).
sos 'The multicollinearity of the additive and epistatic predictors at least partially drives this
so6 relationship, where positively correlated additive and epistatic predictors will tend to have
sor effect estimates in opposing directions.

508 To determine if the interaction effects were greater in magnitude than expected by chance,
so0 the ordered interaction effects from the true and simulated phenotypes were plotted against

5

iy

o one another to form a quantile-quantile plot (Figure 5B). The interaction effects were mul-

1 tiplied by the sign of the corresponding additive effects to highlight the direction of inter-

5

-

5

iy

> action effect relative to the additive effect. Interaction effect distributions were significantly
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different between the observed and strictly additive simulated data as determined by the
Kolmogorov-Smirnov test (KS; p < 0.05) for all traits except GY.

HD showed a pattern consistent with a subfunctionalization model, with a low dropping
tail for interaction effects in the opposite direction than that of the corresponding additive
effects. This indicates that the less-than-additive effects of some estimated interactions are
greater than expected by additivity alone. PH showed some evidence of this pattern, but
also demonstrated a greater-than-additive effect for positively related interaction effects. The
LAVHAE orientation scheme may have selected the wrong marker coding for those marker
sets, resulting in a s parameter greater than 1, or there are true greater-than-additive interac-
tion responses for positive effect alleles. Greater than additive responses would be indicative
of overdominance across homeologous loci. GY and TW showed little evidence of the less-
than-additive pattern, yet TW did show this trend when the HTEV marker orientation was
used (Supplemental Figures S5 and S6). These relationships were more pronounced when
the markers were permuted to remove LD before simulating the data (Supplemental Figure
S4). High LD between homeologous marker sets may result in dampening of the epistatic
signal due to unbalanced or missing genotype classes.

These findings are further supported by comparing the homeologous interactions to the
Within and Across interaction effect estimates. The Homeo marker set showed more severe
less-than-additive epistasis than both Within and Across for HD but not the other traits
(Supplementary Figures S7 and S8). The Within set had more severe less-than-additive
interaction effects than the Homeo set for TW (Supplementary Figure S7), and the Across
had more severe less-than-additive effects for PH (Supplementary Figure S8). Large or
moderate effect negative epistasis is expected across subgenomes in allopolyploids, but it is

unclear why this was also observed for the Within marker set for TW.
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5.5 Homeologous model fit

Comparing variance component estimates across different unstructured covariance matrices
can be misleading as variance components can be scaled by pulling a constant out of the
covariance matrix. Additionally, variance partitioning is only reliable when the covariance
matrices are truly independent (Vitezica et al., 2017; Huang and Mackay, 2016; Jiang et al.,
2017). Therefore, we do not make an attempt to discern meaning from the variance compo-
nents per se, and instead focus the discussion on model fit diagnostics, as well as prediction
accuracy from cross validation to determine the value of the predictive information included
in the model.

All epistatic models using the {—1, 1} marker parameterization provided a superior fit to
the additive only model based on Akaike’s Information Criterion (AIC) for all traits (Sup-
plementary Table S4). These results were confirmed by a likelihood ratio test to determine
if the epistatic variance component was zero for all traits. With the exception of the GY
trait, all of the epistatic models using the {0, 1} marker parameterization also had non-zero
variance components (Supplementary Table S5), but did not result in a better fit for any
models or traits. The LAVHAE method outperformed all other marker orientation schemes
(Supplementary Tables S6,57, S8 and S9). The Pairwise, Within and Across epistatic mod-
els outperformed the Homeo marker interaction set for all traits. This may be due to poor
assignment of homeologous sets, or relatively fewer identifiable interactions and is discussed

later.

5.6 Genomic prediction

All epistatic models resulted in higher prediction accuracies for all traits other than GY,
where only marginal increases were seen for certain marker interaction sets and parame-
terizations (Table 4). The {—1,1} marker coding resulted in higher prediction accuracies
with a mean increase of 0.045 over the {0, 1} coding, and ranged from 0.007 to 0.084 higher

accuracy. This increase may be due to choosing the wrong orientation using the {0,1}
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marker coding effects. While these two codings are equivalent for prediction when marker
effects are fixed, this is not the case for the mixed model genomic prediction environment
(Martini et al., 2017, 2018). The discrepancy lies in shrinkage of interaction effects, where
the {0,1} marker coding should result in greater shrinkage than the {—1,1} marker cod-
ing. This can be seen from a simple example with one observation of each genotypic class
in {bbcc,bbCC, BBce, BBCC}. The {—1,1} coding would have an interaction predictor of
{1,—1,—1,1}, whereas the {0, 1} coding would have an interaction predictor of {0,0,0,1}.
This results in different numbers of observations per interaction class, with the {0, 1} coding
contrasting 3 and 1, verses 2 and 2 for the {—1,1} coding. Therefore the shrinkage of the
{0,1} coding should be greater than for the {—1, 1} coding. Martini et al. (2017), also noted
that the {—1, 1} marker coding has a 50% chance of choosing the wrong marker orientation
if chosen at random, whereas the {0, 1} marker coding has a 75% chance of being the wrong
marker orientation.

The LAVHAE marker orientation scheme was superior for prediction of all traits and
marker sets for the {—1,1} coding, but had little effect on the {0,1} marker coding (Sup-
plemental Tables S12, S13 and S14). This suggests that information can be gained from
orienting markers relative to one another, however, it is still unlcear what strategy should be
used to orient pairs of markers. In this report, marker additive effects were forced to be either
all positive or all negative to model the homeologous subfunctionalization hypothesis, but
there may be more biologically relevant orientations not explored here. Martini et al. (2017)
used a categorical interaction that included a predictor for each pairwise genotype. That
model was shown to be less predictive than the {—1,1} multiplicative model, perhaps due
to more linearly dependent predictors assumed to have non-zero effects. Feature selection
may be useful for selecting the most informative interactions from this population of linearly
dependent predictors. How an optimal set of orientations might be obtained without losing
biological meaning of the orientation warrants further investigation.

The proportion of non-additive genetic signal attributable to homeologous gene interac-
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tion was determined by taking the ratio of the percent increase in prediction accuracy of the
Homeo, Within or Across prediction models from the additive model to the increase in pre-
diction accuracy due to all pairwise interactions (equation 4). All three marker sets resulted
in higher genomic prediction accuracy than the additive only GBLUP model (G) when the
{—1, 1} marker coding was used. The homeologous marker interaction set explained between
58% and 167% of the additional genetic signal from the additive model. This result sup-
ports the idea that homeologous interactions are an important feature in the wheat genome.
Conversely, Within and Across epistatic marker sets always resulted in a higher increase
in genomic prediction accuracy relative to the Homeo marker set for all traits. This may
suggest that the homeologous marker interactions are the least important relative to other
epistatic interactions within and across the subgenomes, but could also be due to the paucity
of these interactions relative to all possible two-way interactions, as previously discussed.
Another explanation might be provided by the relatively higher degree of LD across
Homeo marker sets than found for the Within or Across marker sets. Homeologous marker
sets were selected next to one another along syntenic regions of homeologous chromosome,
and more often shared two of the three homeoallelic markers (Supplemental Figures S13 and
S14). The Within and Across sets appear to have sampled the entire genome better than
selecting only homeologous loci, as they track more unique pairs of genomic regions. Two
additional samples of each Within and Across sets were showed very similar outcomes to the

samples shown here (see Supplementary Tables S10, S11 and S15).

5.7 Homeologous LD

The superiority of the Within and Across genomic prediction models to the Homeo genomic
prediction model may indicate that homeologous interactions are relatively less important
than other sets of interacting loci. However, homeologous marker sets had a much higher
tendency to be co-inherited together, as seen by relatively higher standardized LD values, D’

(Lewontin, 1964), than observed for either Within (KS test p-value = 1.1 x 107%) or Across
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(KS test p-value = 2.3 x 1071?) marker sets (Figure 6). The greater fixation of allele pairs
at homeologous regions may explain the lack of increased prediction accuracy of the Homeo
marker set, but this may not diminish the importance of homeologous interactions. As sets
of interactions are fixed within the population, the epistatic variance becomes additive (Hill
et al., 2008). The higher degree of LD, per se, may indicate the importance of homeologous
interactions.

The Green Revolution dwarfing genes are an excellent example of how pairs of homeoal-
leles may become fixed, or develop a tendency for co-inheritance under selection. In this
example, the desirable phenotype is a semi-dwarf, due to its resistance to lodging. There-
fore, wildtype Rht-1B alleles will usually be paired with a GA-insensitive Rht-1D dwarfing
allele, while wildtype Rht-1D alleles will usually be found with a GA-insensitive Rht-1B
dwarfing allele to confer the desirable semi-dwarf phenotype. The ‘perfect’ Rhi-1 markers
had a large standardized D’ value of 0.89, indicating that pairs of alleles were being fixed in
the population.

We recognize that it is also possible that the higher degree of LD observed between
homeologous marker pairs could be due to misalignment of markers to the wrong subgenome.
Markers assigned to the wrong homeolog would appear in high LD simply because they are
physically located near their assigned homeologous partner on the same chromosome. We
used strict filtering parameters to reduce the likelihood of misalignment. This included a
threshold on observed heterozygosity in the population, which could indicate alignment to

more than one subgenome.

6 Further considerations

Wagner (2005) suggested that there are two potential drivers of less-than-additive (Eshed
and Zamir, 1996) or synergistic (Segre et al., 2005) epistasis. These drivers are i) functional

redundancy, as might be expected across homeologous loci, and ii) distributed robustness of
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function, in which there can be are many pathways that can acheive the same outcome. Our
observation that most epistasis is not due to homeologous interactions is supported by the
findings of Jannink et al. (2009), who found the synergistic epistasis signal in a wheat dataset
to be indicative of Wagner’s distributed hypothesis, and not of the redundancy hypothesis.

It may be that there are few differences in protein function or expression across the three
subgenomes, although this seems unlikely given mounting evidence that homeologous copies
are differentially expressed in time, tissue and environment (Adams et al., 2003; Liu and
Adams, 2007; Liu et al., 2011; Chaudhary et al., 2009; Pfeifer et al., 2014; Liu et al., 2015;
Zhang et al., 2016; Mutti et al., 2017). We were unable to assign homeologous pairs to
all genes within the genome, suggesting that many of these potential sites for interacting
loci were lost during polyploidization. Rapid loss of genetic material due to genome shock
(McClintock, 1984) is common in newly synthesized allopolyploids (Comai et al., 2003; Chen
and Ni, 2006), as has been shown in synthetic allopolyploid wheat (Ozkan et al., 2001;
Kashkush et al., 2002). Other interacting loci may have undergone epigenetic (Comai, 2000;
Lee and Chen, 2001; Comai et al., 2003) or transposon induced silencing of one or more
homeoalleles (Kashkush et al., 2003; Wang et al., 2004).

The large portions of duplicated genes retainment across subgenomes suggests there is a
benefit to their maintenance. Duplicate copies may be important contributors to differential
genotype performance in contrasting environments. Unfortunately, the CNLM dataset lacks
sufficient genotype by environment variation to properly ask this question (data not shown).
Experiments designed to explicitly model the phenotypic effect of differential homeologous
gene expression across contrasting environments will be necessary to provide a satisfactory
answer.

One of the challenges of using diverse panels of individuals is that marker proximity to
a functional mutation is not necessarily indicative of high LD between the two sites. Sig-
nificantly older or newer marker mutations may be in weak LD with a functional mutation

despite close physical proximity, at least until a genetic bottleneck brings them back into
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high LD, such as in a bi-parental population (Flint-Garcia et al., 2003; Weir, 2008). Other
strategies to determine functional homeologous regions relax which sets of markers are con-
sidered homeologous. This has been accomplished by allowing pairwise relationships with
all markers across entire subgenomes (Santantonio et al., 2018b) or on syntenic chromosome
arms (Santantonio et al., 2018a), with mixed success. The construction of smaller haplotypes
in a manner similar to Gao et al. (2017) may also improve functional pairing of homeolo-
gous alleles. Higher depth sequencing and advances in marker imputation may also aid in
detection of homeologous epistasis.

The TILLING population developed by Krasileva et al. (2017) could be a useful resource
for future investigation into homeoallelic gene interactions. Lines with complementary loss
of function homeologous genes could be used to develop bi-parental mapping populations
to test the degree of subfunctionalization with the high statistical power afforded by allele
frequencies of 0.5. So called ‘synthetic’ wheat populations formed by crossing common wheat
with newly synthesized allohexaploids containing durum A and B genomes coupled to an
Ae. taushii D genome (Sorrells et al., 2011, e.g.), and may prove powerful for detection
of interactions between the common wheat homeologs and their durum and Ae. taushii

ancestors.

7 Conclusion

While much epistasis is partitioned to additive variance, it has been shown to be preva-
lent (Forsberg et al., 2017), and is important for maintaining long term selection (Carlborg
et al., 2006; Paixao and Barton, 2016). Our results indicate that homeologous interactions
contribute to the total genetic variance of the CNLM population. However, sampling in-
teractions across non-syntenic regions was superior for all traits examined, suggesting that
homeologous epistasis make up a minority of the non-additive genetic variance. The biolog-

ical state of allopolyploids, along with the suggestive evidence presented here, demonstrate
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Figure 6: Smoothed densities of standardized D’ statistics of linkage disequilibrium for ex-
pected and observed joint allele frequencies for Homeo, Within and Across marker sets.
Kolmogorov-Smirnov (KS) tests were used to determine if the distribution of LD differed
between Homeo and Within (KS p-value = 1.1 x 107%) or Across (KS p-value = 2.3 x 10713)
marker sets.

03 that there is value in further investigation of homeologous interactions.

694 The most important trait, GY, showed little to no evidence of homeologous subfunction-
s alization. This may be due to the highly polygenic nature of the trait, where essentially
s0s all functional genetic differences in the population should contribute to GY. Modern plant
sr breeding has likely driven large effect homeologous allele pair interactions to fixation in elite
se wheat genotypes. The implementation of the semi-dwarf phenotype provides perhaps the
s0 most important example where fixation of specific pairs of homeoalleles resulted in the single

70 largest increase in wheat grain production in modern agriculture.
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Prediction of unobserved homeologous allele pairs may prove difficult, as it currently is in
diploid hybrids. However, large populations may be use to identify beneficial homeologous
combinations that may subsequently be used for selection of unobserved lines before intensive
field trials are conducted.

Treating the genome as consisting of purely additive gene action assumes that genes
are independent machines, whose products sum to the final value of an individual. While
convenient for selection, this is almost certainly not true when we consider the molecular
mechanisms of biological organisms. Instead, genes work in concert to produce an observable
phenotype. To this day, breeders of allopolyploid crops have treated allopolyploids as diploids
for simplicity, but we now have the technical ability to view and start to breed these organisms

as the ancient immortal hybrids that they are.
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A1l Appendix 1 - RIL population

The population was formed from a cross between two Cornell soft winter wheat lines,
NY91017-8080 and Caledonia. Caledonia contains a GA-insensitive 4D allele, d, and a wild-
type 4B allele, B, while NY91017-8080 has a GA-insensitive 4B allele, b, and the wild type
4D allele, D. The population consisting of 192 individuals was planted in single row plots
in Ithaca NY and measured for plant height in 2008. The population was screened for loci
influencing plant height on chromosomes 4B and 4D using genotyping by sequencing (GBS)
markers. The markers with the lowest p-value on the short arms of 4B and 4D were used to
indicate the Rht-1 gene in this study. Only individuals with homozygous genotype calls for
both loci were included to test for epistasis. This resulted in 19 double dwarfs (bbdd), 51 D
genome semi-dwarfs (BBdd), 35 B genome semi-dwarfs(bbD D), and 53 tall (BBDD), for a
total of 158 individuals. It appears that the Caledonia parent plant used in the cross was
heterozygous for the D genome dwarfing allele, resulting in the 1:2 segregation ratio for the

d : D alleles, and was confirmed by the genotype call for that plant.

A2 Appendix 2 - Coding Sequence Alignment

Alignments of coding sequences was accomplished with BLAST+, allowing up to 10 align-
ments with an e-value cutoff of 1e-5. Alignments were only considered if they aligned to

80% or more of the query gene. Of the 110,790 coding sequences, 13,111 triplicate sets
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with one gene on each homeologous chromosome (representing 39,333 genes) were identified
with no other alignments meeting the criterion. An additional 5,073 triplicates (representing
15,219 genes) were added by selecting the top 2 alignments if they were on the corresponding
homeologous chromosomes. Duplicate sets were also included if there was not a third align-
ment to one of the three sub-genomes, adding an additional 5,612 duplicates. The coding
sequences for which we did not identify homeologous genes either appeared to be singletons
(24,695 coding sequences) that did not have a good alignment to a gene on a homeologous
chromosome, or had many alignments across the genome making it impossible to determine

with certainty which alignments were truly homeologous (20,319 coding sequences).

A3 Appendix 3 - Change of reference

Following Alvarez-Castro and Carlborg (2007), we demonstrate the change-of-reference op-
eration simplified for inbred populations. For {0,1} marker coding and allowing G to be

the reference genotype, the genotypic values at a single locus can be represented as

G1 10 1%
G = = S()lE[n = (5)

G2 11 a

where Sg; is the marker score matrix using the {0, 1} marker parameterization and Eg; is
the vector of expected values. For the two locus epistasis model, the four genotypic values

are then

Gn 1 000 1
G2 1 010 aq
G = = (So1 ® So1)Eo1 = (6)
G 1100 as
G22 1 1 1 1 a1Qa9
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The three locus interaction is extended by

(7)

G = (So1 ® So1 ® So1) [t a1 ag aray az ajag asas C110l26l3]T

To shift from {—1, 1} coding estimates, B_,;, to {0, 1} coding estimates, 3, the following
transformation exists (Alvarez-Castro and Carlborg, 2007). Let S.;; indicate the {—1,1}

marker parameterization

1 -1
S =
11

then E()l = (Sall X Sall)(S_ll X S—ll)E—11~

S1 Supplementary Materials

Table S1: ANOVA table for Rht-1B and Rht-1D linked GBS markers and their epistatic
interaction for plant height (cm) in 158 RIL lines derived from NY91017-8080 x Caledonia.

Source df SS MS F value —log,,(p-value)
SNP36427 1 7065 7065 53.5 10.9
SNP11172 1 7391 7391 56.0 11.3
SNP36427:SNP11172 1 1243 1243 9.4 2.6
Residuals 154 20323 132

Table S2: Table of genotype frequencies for the Rht-1 linked homeologous GBS markers
in the CNLM population. The + and — signs indicate the wildtype and mutant alleles,
respectively. The margins indicate the marker allele frequencies.

S4D_PART1.10982050~

S4D_PART1.10982050*

S4B_PART1_38624956~ 0.022 0.095 0.117
S4B_PART1.38624956" 0.525 0.357 0.8383
0.547 0.452 D" = 0.66
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Table S3: Table of genotype frequencies for the ‘perfect’ Rht-1 markers in the CNLM pop-
ulation. The 4+ and — signs indicate the wildtype and mutant alleles, respectively. The
margins indicate the marker allele frequencies.

KASP_RhtD1~ KASP _RhtD1*
KASP_cimRhtB1 snp~ 0.008 0.093 0.101
KASP_cimRhtB1_snp* 0.721 0.178 0.899
0.729 0.271 D" =0.89
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Figure S1: Smoothed densities of GBS markers (black) and genes (red) along the 21 wheat chromosomes in the CNLM

population.
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Figure S2: Distance of genes from their nearest GBS anchor marker along the 21 wheat chromosomes in the CNLM population.
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Figure S3: LAVHAE oriented homeologous marker pair additive effects with point size repre-
senting the magnitude of the two-way homeologous interaction effect, and the color denoting
the direction of that effect where black is positive and red is negative. Four simulated
phenotypes sampled to obtain no epistatic interactions, GY, PH, TW and HD, are shown.
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Figure S4: Quantile quantile plot of the ordered estimated homeologous interaction effects
plotted against those from a simulated phenotype sampled to obtain no epistatic interactions
using the LAVHAE marker orientation. Markers scores were permuted before simulation of
the phenotype to remove LD between markers. Interaction effects have been multiplied by
the effect sign of the corresponding additive effects to emphasize the relationship between
the additive and interaction effects.
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Figure S5: Quantile quantile plot of the ordered estimated homeologous interaction effects
plotted against those from a simulated phenotype sampled to obtain no epistatic interactions
using the HTEV marker orientation. Interaction effects have been multiplied by the effect
sign of the corresponding additive effects to emphasize the relationship between the additive
and interaction effects.
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Figure S6: Quantile quantile plot of the ordered estimated homeologous interaction effects
plotted against those from a simulated phenotype sampled to obtain no epistatic interactions
using the HTEV marker orientation. Markers scores were permuted before simulation of the
phenotype to remove LD between markers. Interaction effects have been multiplied by the
effect sign of the corresponding additive effects to emphasize the relationship between the
additive and interaction effects.
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Figure S7: Quantile quantile plot of the ordered estimated homeologous interaction effects
plotted against those from marker sets sampled within subgenome chromosomes (Within)
using the LAVHAE . Interaction effects have been multiplied by the effect sign of the corre-
sponding additive effects to emphasize the relationship between the additive and interaction
effects.
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Figure S8: Quantile quantile plot of the ordered estimated homeologous interaction effects
plotted against those from marker sets sampled across non-syntenic subgenome chromosomes
(Across) using the LAVHAE marker orientation. Interaction effects have been multiplied by
the effect sign of the corresponding additive effects to emphasize the relationship between
the additive and interaction effects.
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Figure S9: Quantile quantile plot of the ordered estimated homeologous interaction effects
plotted against those from marker sets re-sampled within subgenome chromosomes (Within2)
using the LAVHAE . Interaction effects have been multiplied by the effect sign of the corre-
sponding additive effects to emphasize the relationship between the additive and interaction
effects.
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Figure S10: Quantile quantile plot of the ordered estimated homeologous interaction effects
plotted against those from marker sets re-sampled within subgenome chromosomes (Within3)
using the LAVHAE . Interaction effects have been multiplied by the effect sign of the corre-
sponding additive effects to emphasize the relationship between the additive and interaction
effects.
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Figure S11: Quantile quantile plot of the ordered estimated homeologous interaction effects
plotted against those from marker sets re-sampled across non-syntenic subgenome chromo-
somes (Across2) using the LAVHAE marker orientation. Interaction effects have been mul-
tiplied by the effect sign of the corresponding additive effects to emphasize the relationship
between the additive and interaction effects.
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Figure S12: Quantile quantile plot of the ordered estimated homeologous interaction effects
plotted against those from marker sets re-sampled across non-syntenic subgenome chromo-
somes (Across3) using the LAVHAE marker orientation. Interaction effects have been mul-
tiplied by the effect sign of the corresponding additive effects to emphasize the relationship
between the additive and interaction effects.
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Table S4: Mixed model REML fit summaries of one additive and four epistasis models for
four traits (GY, PH, TW and HD) in the CNLM population based on the {—1, 1} marker
parameterization using the LAVHAE marker orientation. Plot level heritabilities assuming
genotype independence (i.i.d.) for each trait are shown underneath each trait name.

Trait Additive Pairwise Homeo Within Across
GY logl -48 -43 42 -26 -23
h? = 0.30® parameters 28 29 29 29 29
AIC 153 144 141 110 104
G 0.268% (12.59)¢ 0.203 (7.86)  0.204 (8.49) 0.133 (5.93) 0.13 (5.84)
H 0.018 (3.04)  0.046 (3.29)**¢ 0.093 (5.64)***  0.093 (5.77)****
R 0.324 (61.86)¢  0.322 (61.39) 0.323 (61.68) 0.321 (61.7) 0.321 (61.7)
PH logl 2237 2360 2314 2367 2374
h? =0.73 parameters 26 27 27 27 27
AIC -4423 -4665 -4574 -4680 -4694
G 3.823 (20.75)  0.889 (6.46)  1.882 (11.66) 0.986 (7.35) 1.046 (7.81)
H 0.478 (11.95) 0.914 (8.72)*** 1.277 (11.67)*** 1.253 (11.62)****
R 0.135 (56.17)  0.132 (56.5)  0.133 (56.34) 0.133 (56.45) 0.133 (56.5)
W logl 1547 1630 1608 1641 1632
h? =0.79 parameters 28 29 29 29 29
AIC -3037 -3203 -3159 -3224 -3205
G 1.067 (16.66)  0.194 (4.47)  0.442 (8.35) 0.212 (4.81) 0.221 (4.79)
H 0.184 (11.33)  0.346 (8.39)***  0.473 (10.95)*** 0.473 (10.66)****
R 0.2 (60.12) 0.195 (60.25) 0.198 (60.24) 0.197 (60.35) 0.197 (60.31)
HD logl 6343 6432 6404 6425 6444
h?> = 0.53  parameters 27 28 28 28 28
AIC -12631 -12808 -12751 12794 -12831
G 3.9 (21.16) 1.121 (7.3) 2.019 (12.03) 1.483 (9.25) 1.212 (8.29)
H 0.451 (11.13) 0.857 (8.26)™** 1.091 (10.01)*** 1.202 (10.97)****
R 0.054 (58.76)  0.053 (58.98) 0.053 (58.88) 0.053 (58.93) 0.053 (58.96)

®h? is the plot level trait heritability assuming genotype independence.

bVariance component estimates reported for additive main effects (G) and epistatic interactions (H) are
the ratios of the actual variance component to the residual variance component for ease of comparison.

“The variance component divided by their respective standard errors are shown in parentheses.

i ek ek e denote p-values of p < 0.05, p < 0.01, p < 0.001, p < 1079, respectively for the likelihood
ratio test to determine if the epistatic variance component is zero.

©The residual variance components, R, are the actual estimates from the centered and scaled data (refer
to Santantonio et al. (2018b) for scaling coefficients).
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Table S5: Mixed model REML fit summaries of three epistasis models for 4 traits (GY, PH,
TW and HD) in the CNLM population based on the {0,1} marker parameterization using

the LAVHAE marker orientation.

Trait Homeo Within Across
GY logl -48 -47 -42
parameters 29 29 29
AIC 155 152 143
G 0.267¢ (7.6)° 0.207 (5.5) 0.146 (4.16)
H 0 (0.01) 0.054 (1.73) 0.108 (3.39)***¢
R 0.324 (61.81)d 0.324 (61.77) 0.324 (61.8)
PH logL 2282 2268 2285
parameters 27 27 27
AIC -4510 -4482 -4516
G 1.198 (5.03) 1.766 (6.95) 1.177 (5.02)
H 1.981 (8.36)**** 1.592 (6.95)**** 2.051 (8.66)****
R 0.134 (56.23) 0.134 (56.24) 0.134 (56.24)
™ logL 1560 1555 1567
parameters 29 29 29
AIC -3061 -3052 -3076
G 0.553 (5.88) 0.659 (6.68) 0.498 (5.57)
H 0.414 (5.04)**** 0.331 (4.06)*** 0.482 (5.85)****
R 0.199 (60.11) 0.199 (60.1) 0.198 (60.13)
HD logl 6382 6364 6379
parameters 28 28 28
AIC -12709 -12673 -12702
G 1.51 (6.14) 2.077 (7.82) 1.659 (6.67)
H 1.781 (7.73)** 1.358 (6.09)**** 1.68 (7.36)***
R 0.053 (58.84) 0.054 (58.78) 0.054 (58.81)

*Variance component estimates reported for additive main effects (G) and epistatic interactions (H) are
the ratios of the actual variance component to the residual variance component for ease of comparison.

bThe variance component divided by their respective standard errors are shown in parentheses.

ox wx e et denote p-values of p < 0.05, p < 0.01, p < 0.001, p < 1079, respectively for the likelihood
ratio test to determine if the epistatic variance component is zero.

IThe residual variance components, R, are the actual estimates from the centered and scaled data (refer
to Santantonio et al. (2018b) for scaling coefficients).
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Table S6: Mixed model REML fit summaries of three epistasis models for 4 traits (GY, PH,
TW and HD) in the CNLM population based on the {—1, 1} marker parameterization using

the POS marker orientation.

Trait Homeo Within Across
GY logL -48 -41 -40
parameters 29 29 29
AIC 154 140 138
G 0.257% (10.31)° 0.191 (7.44) 0.186 (7.32)
H 0.008 (0.75) 0.052 (3.45)***¢ 0.054 (3.61)***
R 0.324 (61.7)¢ 0.323 (61.64) 0.323 (61.64)
PH logL 2287 2323 2326
parameters 27 27 27
AIC -4521 -4593 -4598
G 2.316 (13.04) 1.507 (9.34) 1.551 (9.59)
H 0.705 (7.3)**** 1.056 (9.85)**** 1.036 (9.72)****
R 0.134 (56.29) 0.133 (56.38) 0.133 (56.4)
™ logl 1589 1599 1604
parameters 29 29 29
AIC -3120 -3139 -3150
G 0.554 (9.49) 0.437 (7.44) 0.395 (7.02)
H 0.282 (7.22)**** 0.354 (8.36)**** 0.368 (8.71)****
R 0.198 (60.18) 0.197 (60.2) 0.197 (60.21)
HD logL 6379 6393 6415
parameters 28 28 28
AIC -12701 -12730 -12774
G 2.547 (13.61) 2.017 (10.81) 1.689 (9.94)
H 0.601 (6.43)**** 0.848 (8.04)**** 0.982 (9.26)****
R 0.053 (58.83) 0.053 (58.87) 0.053 (58.92)

*Variance component estimates reported for additive main effects (G) and epistatic interactions (H) are
the ratios of the actual variance component to the residual variance component for ease of comparison.

bThe variance component divided by their respective standard errors are shown in parentheses.

ox wx e et denote p-values of p < 0.05, p < 0.01, p < 0.001, p < 1079, respectively for the likelihood
ratio test to determine if the epistatic variance component is zero.

IThe residual variance components, R, are the actual estimates from the centered and scaled data (refer
to Santantonio et al. (2018b) for scaling coefficients).
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Table S7: Mixed model REML fit summaries of three epistasis models for 4 traits (GY, PH,
TW and HD) in the CNLM population based on the {—1, 1} marker parameterization using

the NEG marker orientation.

Trait Homeo Within Across
GY logl -46 -38 -35
parameters 29 29 29
AIC 151 134 129
G 0.236% (9.44)° 0.181 (7.35) 0.178 (7.35)
H 0.022 (1.86) 0.058 (3.9)***¢ 0.06 (4.1)**
R 0.324 (61.71)d 0.323 (61.68) 0.322 (61.68)
PH logl 2293 2336 2342
parameters 27 27 27
AIC -4532 -4619 -4629
G 2.235 (12.79) 1.428 (9.19) 1.464 (9.46)
H 0.746 (7.52)**** 1.061 (10.06)**** 1.038 (10.07)****
R 0.134 (56.3) 0.133 (56.39) 0.133 (56.42)
™ logL 1580 1605 1601
parameters 29 29 29
AIC -3101 -3153 -3144
G 0.614 (9.96) 0.373 (6.78) 0.388 (6.71)
H 0.241 (6.4)**** 0.374 (8.94)**** 0.367 (8.59)****
R 0.199 (60.15) 0.198 (60.22) 0.197 (60.21)
HD logl 6380 6402 6409
parameters 28 28 28
AIC -12704 -12747 -12762
G 2.48 (13.41) 1.88 (10.5) 1.753 (10.09)
H 0.626 (6.71)*** 0.895 (8.59)**** 0.95 (9.02)****
R 0.053 (58.83) 0.053 (58.89) 0.053 (58.9)

*Variance component estimates reported for additive main effects (G) and epistatic interactions (H) are
the ratios of the actual variance component to the residual variance component for ease of comparison.

bThe variance component divided by their respective standard errors are shown in parentheses.

ox wx e et denote p-values of p < 0.05, p < 0.01, p < 0.001, p < 1079, respectively for the likelihood
ratio test to determine if the epistatic variance component is zero.

IThe residual variance components, R, are the actual estimates from the centered and scaled data (refer
to Santantonio et al. (2018b) for scaling coefficients).
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Table S8: Mixed model REML fit summaries of three epistasis models for 4 traits (GY, PH,
TW and HD) in the CNLM population based on the {—1, 1} marker parameterization using
the HTEV marker orientation.

trait Homeo Within Across
GY logL -46 -34 -30
parameters 29 29 29
AIC 151 127 118
G 0.233¢ (9.23)° 0.165 (6.86) 0.151 (6.45)
H 0.025 (1.97) 0.071 (4.56)****¢ 0.079 (5)****
R 0.323 (61.65)d 0.322 (61.66) 0.322 (61.67)
PH logl 2300 2355 2357
parameters 27 27 27
AIC -4546 -4655 -4659
G 2.052 (12.02) 1.101 (7.81) 1.142 (7.99)
H 0.84 (8.12)**** 1.227 (11.24)%* 1.209 (11.09)****
R 0.133 (56.32) 0.133 (56.43) 0.133 (56.46)
™ logl 1599 1623 1623
parameters 29 29 29
AIC -3140 -3189 -3187
G 0.476 (8.51) 0.283 (5.73) 0.267 (5.4)
H 0.335 (7.92)**** 0.435 (10.13)**** 0.45 (10.15)****
R 0.198 (60.2) 0.197 (60.29) 0.197 (60.28)
HD logL 6397 6410 6423
parameters 28 28 28
AIC -12738 -12764 -12790
G 2.13 (12.27) 1.62 (9.54) 1.395 (8.69)
H 0.808 (7.9)**** 1.029 (9.43)**** 1.139 (10.18)****
R 0.053 (58.88) 0.053 (58.91) 0.053 (58.94)

*Variance component estimates reported for additive main effects (G) and epistatic interactions (H) are
the ratios of the actual variance component to the residual variance component for ease of comparison.

bThe variance component divided by their respective standard errors are shown in parentheses.

ox wx e et denote p-values of p < 0.05, p < 0.01, p < 0.001, p < 1079, respectively for the likelihood
ratio test to determine if the epistatic variance component is zero.

IThe residual variance components, R, are the actual estimates from the centered and scaled data (refer
to Santantonio et al. (2018b) for scaling coefficients).
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Table S9: Mixed model REML fit summaries of three epistasis models for 4 traits (GY, PH,
TW and HD) in the CNLM population based on the {0,1} marker parameterization using
the HTEV marker orientation.

trait Homeo Within Across
GY logl -48 -48 -48
parameters 29 29 29
AIC 155 155 155
G 0.268¢ (12.59)° 0.268 (12.59) 0.268 (12.59)
H 0 0 0
R 0.324 (61.86)° 0.324 (61.86) 0.324 (61.86)
PH logLl 2260 2246 2248
parameters 27 27 27
AIC -4466 -4438 -4443
G 1.981 (7.41) 2.84 (9.98) 2.502 (8.49)
H 1.423 (6.05)****d 0.806 (3.68)*** 1.081 (4.44)***
R 0.134 (56.2) 0.134 (56.19) 0.134 (56.19)
™ logl 1552 1547 1549
parameters 29 29 29
AIC -3046 -3036 -3041
G 0.746 (7.61) 0.992 (9.51) 0.857 (8.24)
H 0.264 (3.38)*** 0.064 (0.87) 0.183 (2.26)*
R 0.199 (60.1) 0.199 (60.08) 0.199 (60.09)
HD logl 6358 6350 6356
parameters 28 28 28
AIC -12660 -12643 -12656
G 2.528 (9.24) 2.937 (10.1) 2.468 (8.5)
H 1.052 (4.83)**** 0.749 (3.44)*** 1.16 (4.78)****
R 0.054 (58.79) 0.054 (58.76) 0.054 (58.78)

*Variance component estimates reported for additive main effects (G) and epistatic interactions (H) are
the ratios of the actual variance component to the residual variance component for ease of comparison.
bThe variance component divided by their respective standard errors are shown in parentheses.
“The residual variance components, R, are the actual estimates from the centered and scaled data (refer
to Santantonio et al. (2018b) for scaling coefficients).
dx s ek ek denote p-values of p < 0.05, p < 0.01, p < 0.001, p < 107, respectively for the likelihood
ratio test to determine if the epistatic variance component is zero.

67


https://doi.org/10.1101/376731
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/376731; this version posted December 4, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Table S10: Mixed model REML fit summaries of four epistasis models for 4 traits (GY, PH,
TW and HD) in the CNLM population based on the {—1, 1} marker parameterization using
the LAVHAE marker orientation using two additional samples of Within (Within2, Within3)
and Across (Across2, Across3).

Trait Within2 Withind Across2 Across3
GY logL -32 -29 -26 -32
parameters 29 29 29 29
AIC 122 115 110 121
G 0.15% (6.29)° 0.14 (6.07) 0.134 (5.91) 0.154 (6.55)
H 0.081 (4.97)***¢  0.086 (5.32)**** 0.092 (5.58)**** 0.078 (4.89)****
R 0.322 (61.67)¢ 0.322 (61.7) 0.321 (61.69) 0.322 (61.67)
PH logl 2369 2356 2357 2359
parameters 27 27 27 27
AlIC -4685 -4658 -4661 -4664
G 0.979 (7.38) 1.066 (7.57) 1.083 (7.67) 1.103 (7.86)
H 1.257 (11.59)***  1.242 (11.23)*>*  1.253 (11.27)***  1.23 (11.27)****
R 0.133 (56.45) 0.133 (56.44) 0.133 (56.44) 0.133 (56.48)
T™W  logl 1647 1627 1641 1634
parameters 29 29 29 29
AIC -3235 -3196 -3224 -3210
G 0.2 (4.56) 0.267 (5.42) 0.213 (4.74) 0.233 (5)
H 0.479 (10.94)***  0.441 (10.11)™**  0.48 (10.86)**** 0.472 (10.67)****
R 0.197 (60.38) 0.197 (60.29) 0.196 (60.31) 0.196 (60.36)
HD logl 6455 6429 6442 6444
parameters 28 28 28 28
AIC -12853 -12801 -12828 -12832
G 1.053 (7.75) 1.366 (8.76) 1.174 (8.15) 1.173 (8.15)
H 1.311 (11.68)****  1.15 (10.39)**** 1.248 (11.19)***  1.226 (11.11)**
R 0.053 (58.99) 0.053 (58.94) 0.053 (58.94) 0.053 (58.95)

“Variance component estimates reported for additive main effects (G) and epistatic interactions (H) are

the ratios of the actual variance component to the residual variance component for ease of comparison.

’The variance component divided by their respective standard errors are shown in parentheses.
ex ek ek ok denote p-values of p < 0.05, p < 0.01, p < 0.001, p < 1076, respectively for the likelihood

ratio test to determine if the epistatic variance component is zero.

IThe residual variance components, R, are the actual estimates from the centered and scaled data (refer

to Santantonio et al. (2018b) for scaling coefficients).
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Table S11: Mixed model REML fit summaries of four epistasis models for 4 traits (GY, PH,
TW and HD) in the CNLM population based on the {0, 1} marker parameterization using
the LAVHAE marker orientation using two additional samples of within and across markers.

Trait Within2 Within3 Across2 Across3
GY logl -47 -48 -48 -48
parameters 29 29 29 29
AlIC 153 155 154 154
G 0.213% (5.66)" 0.25 (6.62) 0.235 (6.47) 0.248 (6.74)
H 0.048 (1.56) 0.015 (0.53) 0.03 (1.06) 0.017 (0.62)
R 0.324 (61.78)¢ 0.324 (61.79) 0.324 (61.75) 0.324 (61.78)
PH logL 2268 2273 2265 2271
parameters 27 27 27 27
AIC -4482 -4491 -4476 -4487
G 1.867 (7.5) 1.656 (6.6) 1.929 (7.38) 1.742 (6.87)
H 1.439 (6.69)***4  1.682 (7.26)****  1.487 (6.49)****  1.623 (7.04)****
R 0.134 (56.21) 0.134 (56.24) 0.134 (56.25) 0.134 (56.24)
™ logL 1564 1562 1557 1559
parameters 29 29 29 29
AIC -3070 -3067 -3057 -3059
G 0.49 (5.23) 0.53 (5.62) 0.657 (6.85) 0.589 (6.09)
H 0.492 (5.67)**** 0.464 (5.39)**  0.348 (4.31)*** 0.401 (4.76)***
R 0.198 (60.13) 0.198 (60.11) 0.199 (60.1) 0.199 (60.11)
HD logL 6381 6363 6371 6370
parameters 28 28 28 28
AIC -12706 -12669 -12686 -12684
G 1.364 (5.48) 2.291 (8.48) 1.63 (6.2) 1.994 (7.78)
H 1.932 (8.04)**** 1.194 (5.46)***  1.756 (7.18)***  1.406 (6.42)****
R 0.054 (58.81) 0.054 (58.78) 0.054 (58.8) 0.054 (58.78)

“Variance component estimates reported for additive main effects (G) and epistatic interactions (H) are

the ratios of the actual variance component to the residual variance component for ease of comparison.

®The variance component divided by their respective standard errors are shown in parentheses.
“The residual variance components, R, are the actual estimates from the centered and scaled data (refer

to Santantonio et al. (2018b) for scaling coefficients).

e ex ek e denote p-values of p < 0.05, p < 0.01, p < 0.001, p < 1079, respectively for the likelihood

ratio test to determine if the epistatic variance component is zero.
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Table S12: Prediction accuracies of Homeo, Within and Across genome marker sets for both
{—1,1} and {0, 1} marker coding using POS marker orientation.

POS Homeo_1 Homeog Within_q Withing; Across.11 Acrossg;
GY 0.599¢ 0.599 0.607 0.600 0.607 0.599
PH 0.583 0.573 0.607 0.568 0.612 0.576
™ 0.535 0.518 0.543 0.514 0.547 0.524
HD 0.681 0.681 0.688 0.670 0.698 0.671

“Mean Pearson correlation between predicted and observed genetic values across 10 random 5-fold cross-
validation replications.

Table S13: Prediction accuracies of Homeo, Within and Across genome marker sets for both
{—1,1} and {0, 1} marker coding using NEG marker orientation.

NEG Homeo_11 Homeog; Within_11 Withing; Across.i Acrossg;
GY 0.602¢ 0.599 0.612 0.599 0.615 0.600
PH 0.589 0.582 0.620 0.565 0.615 0.579
™ 0.535 0.513 0.555 0.510 0.546 0.519
HD 0.676 0.671 0.698 0.671 0.697 0.680

“Mean Pearson correlation between predicted and observed genetic values across 10 random 5-fold cross-
validation replications.

Table S14: Prediction accuracies of Homeo, Within and Across genome marker sets for both
{—1,1} and {0, 1} marker coding using HTEV marker orientation.

HTEV Homeo_1 Homeog Within_11 Withing Across.11 Acrossg;
GY 0.601¢ 0.601 0.616 0.600 0.621 0.600
PH 0.591 0.565 0.640 0.557 0.633 0.558
™ 0.548 0.513 0.572 0.513 0.568 0.513
HD 0.688 0.669 0.700 0.666 0.706 0.667

“Mean Pearson correlation between predicted and observed genetic values across 10 random 5-fold cross-
validation replications.
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Table S15: Prediction accuracies of two additional samples of Within (Within2, Within3)

and Across (Across2, Across3) genome marker sets, for both {—1,1} and {0,1} marker

coding using LAVHAE marker orientation.

LAVHAE Within2¢p; Within3g; Across2g;  Across3g;  Within2.1; Within3.1; Across2.q1;  Across3.11

GY 0.600 0.599 0.600 0.600 0.620 0.624 0.623 0.618
PH 0.573 0.569 0.566 0.570 0.655 0.640 0.634 0.644
™W 0.522 0.524 0.518 0.518 0.604 0.581 0.592 0.585
HD 0.683 0.673 0.676 0.679 0.727 0.715 0.718 0.724
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Table S16: Estimates of s coefficients for marker sets where both additive and the two-way
interaction effects were significant at p < 0.05 for each of 4 traits. The expected number of
non-zero additive and two-way interactions effects based on a 0.05 significance threshold by
chance for each trait is 3 (i.e. 22,411 two-way interactions x 0.05%). Coefficients have been
grouped by categories related to the potential mode of epistasis, where s < 0.5 indicates a
highly negative interaction, 0.5 < s < 1 a less-than-additive interaction may be indicative of
subfunctionalization for homeologous genes, and s > 1 which indicates positive, or greater-
than-additive, epistasis. Three marker sets are shown, either across all homeologous loci
(Homeo), sampled sets within (Within) and across (Across) non-syntenic subgenome regions.
An additional phenotype was simulated to contain additive only phenotypes to contain no
epistasis, and fit with the Homeo marker set (Simulated Additive).

Marker Set Trait s < 0.5 056<s<1 s>1 Total®
Homeo GY 0 0 2 2
Homeo PH 2 8 4 14+
Homeo TW 5 4 2 11
Homeo HD 1 2 0 3
Simulated Additive PH 0 1 3 4
Simulated Additive HD 1 0 1 2
Across GY 2 2 1 5
Across PH 3 0 0 3
Across T™™W 2 1 0 3
Across HD 2 4 0 6*
Within GY 1 1 0 2
Within PH 2 1 3 6*
Within TW 1 1 1 3
Within HD 2 0 0 2

(L* kK kK sk
)

indicate significantly greater than the expected number of significant sets at p = 0.05, 10~4
and 10 6 based the binomial distribution with 22,411 trials and a probability of 0.053.
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Figure S13: Distribution of the number of marker occurrences in marker sets. An occurrence
of 1 indicates that a marker was only included in one marker set, whereas an occurrence of
10 would indicate that the marker was included in 10 marker sets.
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Figure S14: Pairwise linkage disequilibrium r? values for the 21 wheat chromosomes in the CNLM population.



https://doi.org/10.1101/376731
http://creativecommons.org/licenses/by-nc-nd/4.0/

