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Abstract 
Cancer	development	can	be	viewed	as	an	evolutionary	and	ecological	process,	in	which	

the	tumour	microenvironment	(TME)	is	likely	to	play	a	critical	role.	Unfortunately,	the	

TME	is	largely	ignored	or	considered	static	in	most	cancer	evolution	models,	and	

different	cancers	are	often	studied	in	isolation.	A	general	theory	of	adaptive	cancer	

evolution	is	lacking.	Here	we	establish	a	phenotypic	and	genetic	model	of	cancer	

evolution	in	three-dimensional	(3D)	space	with	a	changing	TME.	With	individual-based	

simulations,	we	show	how	cancer	cells	adapt	to	diverse	changing	TME	conditions	and	

fitness	landscapes.		Compared	with	static	TMEs,	changing	TMEs	can	generate	complex	

3D	dynamics	of	spatio-temporal	heterogeneity	involving	variable	subclonal	fitness	and	

mixing,	driver	mutations	with	different	fitness	effects	and	phylogenetic	patterns.	Our	3D	

simulations	with	changing	TMEs	capture	some	of	the	key	morphological	characteristics	

of	cancer,	including	spatio-temporal	ball-like	and	irregular	clonal/subclonal	population	

structures.	A	cycling	TME,	in	particular,	is	capable	of	generating	more	driver	mutations	

and	promoting	cancer	adaptation.	We	predict	that	the	TME	is	a	major	limiting	factor	of	

adaptive	cancer	evolution.	Finally,	our	model	can	be	used	to	simulate	anti-cancer	

treatment	strategies	and	show	how	they	can	be	subverted	by	different	resistance	

mechanisms.	Our	study	provides	an	evolutionary	and	ecological	framework	for	

understanding	cancer	development	and	treatment,	and	provides	novel	insights	into	the	

processes	of	adaptive	cancer	evolution	and	precision	cancer	medicine.	
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Introduction 
	

Understanding	the	mechanisms	facilitating	ecological	adaptation	is	a	fundamental	

question	in	evolutionary	biology,	including	cancer	development1.	In	1976,	Nowell	

outlined	carcinogenesis	as	an	evolutionary	process	using	an	illustrated	phylogenetic	

model	in	which	clonal	and	stepwise	accumulation	of	advantageous	mutations	under	

selection	from	the	tumour	microenvironment	(TME)	was	envisaged2.	Our	understanding	

of	cancer	development	as	an	evolutionary	process	has	increased	greatly	in	the	last	

decade	due	to	advances	in	next	generation	sequencing	and	related	analytical	methods3.	

Many	ideas	and	concepts	originating	in	evolutionary	biology	and	molecular	evolution	

have	become	widespread	in	cancer	research	including	gradual	evolution	with	stepwise	

accumulation	of	driver	mutations4,	punctuated	evolution	with	“catastrophic”	genomic	

changes5	and	neutral	cancer	evolution6.	In	some	cases,	anti-cancer	treatment	has	been	

developed	based	on	evolutionary	principles7.	Many	interesting	patterns	have	been	

observed	based	on	single	time	point	data	from	cancers	at	their	time	of	surgical	resection,	

such	as	spatial	and	temporal	heterogeneity	of	subclonal	mutations,	subclonal	mixing8,9,	

and	ball-	and	non-ball-like	clonal	and/or	subclonal	structures10,11.	

	

If	the	environment	plays	an	important	role	in	determining	which	somatic	mutations	

drive	tumour	evolution	under	selection,	the	cancer	cell	and	its	TME	should	jointly	

determine	the	tumour	evolutionary	trajectory.	Whilst	the	cancer	cell	may	determine	its	

own	microenvironment	to	some	extent,	the	source	of	selection	extends	to	include	many	

non-neoplastic	cells,	including	various	stromal	components	such	as	fibroblasts,	immune	

cells,	the	extracellular	matrix	(ECM)	and	the	pre-metastatic	niche12.	The	TME	is	thought	

to	be	a	dynamic	regulator	of	tumour	progression	and	metastasis11,13-17.	Finally,	the	

origin	of	cancer	cells	has	been	extended	to	both	stem	cells	and	non-stem	cells18,19.		

	

Although	the	seminal	ideas	proposed	by	Nowell	and	others	–	that	tumorigenesis	

proceeds	by	accumulating	stepwise	advantageous	mutations	under	selection	–	have	

guided	cancer	research	for	decades,	there	is	a	lack	of	a	general	theory	of	adaptive	cancer	

evolution.	Some	fundamental	questions	remain	unanswered,	including	the	role	of	the	

(changing)	TME	in	determining	the	fitness	effect	of	mutations	and	the	evolutionary	
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trajectories	of	cancers	in	three-dimensional	(3D)	space.	Does	cancer	evolution	proceed	

by	mutations	with	small	fitness	effects,	large	effects	or	a	combination	of	both?	How	and	

why	does	the	fitness	effect	of	mutations	differ	across	cancer	types?	Finally,	what	spatio-

temporal	patterns	of	cancer	development	can	be	observed	under	different	tempos	and	

modes	of	adaptive	cancer	evolution?	

	

In	previous	cancer	evolutionary	modelling,	in	most	cases	the	TME	has	been	neglected	

and	the	fitness	effect	of	mutations	must	therefore	be	pre-specified6,10.	When	the	TME	

has	specifically	been	considered	as	a	source	of	selection,	the	underlying	genetic	basis	20-

22,	such	as	the	variable	fitness	effects	of	adaptive	mutations,	have	not	been	explicitly	

considered.	Moreover,	the	important	question	of	how	cancer	cells	adapt	in	a	changing	

TME	has	not	generally	been	considered.	To	address	these	issues,	we	have	analysed	

carcinogenesis	as	an	adaptive	evolutionary	process,	in	which	the	cancer	cell	and	its	

changing	TME	jointly	determine	the	cancer	evolutionary	trajectory	in	3D	space,	with	the	

aim	of	providing	a	general	theory	of	adaptive	cancer	evolution	(see	Methods	for	details).	

By	simulating	cancer	growth	in	the	3D	space	of	a	changing	TME	in	different	fitness	

landscapes	at	single	cell	and	population	level,	we	identify	various	evolutionary	patterns	

of	3D	adaptive	cancer	evolution	under	diverse	genetic,	phenotypic,	population	genetic	

and	changing	TME	conditions.	We	show	that	far	more	complex	evolutionary	patterns	

can	emerge	compared	with	models	that	assume	a	static	TME.	Important	differences	

include	the	spatio-temporal	heterogeneity	in	clonal/subclonal	fitness,	population	mixing	

and	structures,	and	the	combination	of	driver	mutations	with	various	selective	

advantages23.	

	

Results		

Description of the model 

Our	model	uses	formal	adaptation	theory	and	simple	3D	growth	dynamics,	based	on	R.A.	

Fisher’s	geometric	framework.	This	was	originally	described	as	the	phenotypic	

geometric	model	in	his	seminal	1930	work	“The	genetical	theory	of	natural	selection”,	

which	provided	much	of	our	understanding	of	the	nature	of	adaptation	inherent	in	

Darwin’s	theory	of	evolution	by	natural	selection.	The	adaptive	process	Fisher	described	

is	analogous	to	adjusting	the	knobs	of	a	microscope	and	each	trait	contributes	to	fitness	
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independently	(universal	pleiotropy)24.	We	assume	that	a	changing	TME	in	3D	leads	to	

continual	selection	acting	on	the	proliferation	potential	(the	fitness	effect)	of	mutations	

that	influence	the	phenotypic	traits	of	cancer	cells.	This	is	modelled	by	cancer	fitness	

landscapes,	with	a	single	changing	phenotypic	optimum	(		v1 )	determined	by	the	TME	
(see	Methods	and	Supplementary	Figure	S1).		

	

In	our	model,	each	cancer	cell	is,	for	simplicity,	diploid.	We	consider	n	traits	and	L	loci.	

The	number	of	traits	is	related	to	the	notional	phenotypic	complexity	of	the	cancer	cell.	

It	also	determines	the	dimensionality	of	the	fitness	landscape,	with	a	higher	number	of	

traits	indicating	a	more	“complex”	cancer	cell	(for	example,	including	more	of	the	

hallmarks	of	cancer14,	with	traits	such	as	aerobic	glycolysis	and	immune	evasion).	In	a	

very	simple	situation,	the	fitness	of	a	cancer	cell	with	two	adaptive	traits	can	be	

described	by	the	fitness	function	in	a	three-dimensional	Cartesian	co-ordinate	system,	

where	the	height	along	the	fitness	surface	corresponds	to	fitness	and	the	other	two	co-

ordinates	(Supplementary	Figure	S2)	correspond	to	phenotypic	values	of	each	trait.	The	

initial	optimum	phenotypic	value	defining	the	maximum	fitness	(the	“peak”	of	the	

fitness	landscape,	see	Supplementary	Figure	S2)	is	at	the	origin	of	the	Cartesian	

coordinate	system,	and	the	optimum	can	move,	directionally	or	otherwise	(e.g.,	

randomly	or	cyclically,	see	Methods),	as	the	TME	changes.		

	

For	a	cancer	cell,	a	phenotype,		z ,	of		n 	traits	is	defined	by	a	column	vector,				z = z1 ,...,zn( )T

(equation	(1)).	We	assume	that	the	optimum,				z
opt = z1

opt ,...,znopt( )T 		(equation	(2))	moves	
away	from	the	origin	following	different	dynamics	(see	Methods).	So	for	a	particular	

point	representing	a	cancer	cell’s	phenotype	and	fitness	in	the	fitness	landscape	the	

Euclidean	distance		d 	between	phenotype		z 	and	its	optimum			zopt 	(equation	(3))	and	the	

fitness	function			w(d)(equation	(4))	determines	the	cancer	cell’s	fitness	(if	epistasis	is	
not	considered).		We	assume	each	mutation	affects	all		n traits	according	to	the	

assumption	in	Fisher’s	geometric	model.		Each	trait	can	then	be	changed	with	a	certain	

probability	by	a	random	mutation,	defined	by	a	column	vector,				r = r1 ,...,rn( )T (equation	
(5))	that	represents	the	phenotypic	effect	of	the	mutation	at	any	of	the	2L	loci	(see	
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Methods	for	details).	The	mutations	in	each	generation	additively	determine	the	new	n-

dimensional	phenotype		 ′z ,	which	can	then	be	changed	again	by	further	random	

mutations.		

	

Both	the	moving	phenotypic	optimum	of	the	TME	and	random	mutations	can	change	a	

cancer	cell’s	fitness.	For	example,	by	equation	(4),	when	the	optimum	moves	away,	the	

relative	distance,		d ,	will	increase	to		d′ ,	which	leads	to	a	smaller	fitness	value			w( ′d ) .	
Similarly,	a	random	mutation	can	also	decrease	or	increase	the	phenotypic	Euclidean	

distance	to		 ′d 	and	lead	to	a	new	fitness			w( ′d ) ,	which	may	be	higher	or	lower	depending	
on	the	phenotypic	effect	of	the	random	mutation.	The	phenotypic	effect	(size)	of	a	

mutation	is	sampled	from	a	multivariate	normal	distribution	(equation	11).	A	mutation	

with	large	fitness	effect	can	move	the	cancer	cell	a	long	phenotypic	distance	relative	to	

its	phenotypic	optimum	in	the	fitness	landscape.	All	these	changes	in	fitness	due	to	

either	mutational	or	TME	effects	naturally	lead	to	different	levels	of	selection	and	

adaptation.	

	

At	each	generation,	a	cancer	cell	is	selected	according	to	its	fitness	value	and	dies	with	

probability				1−w z,t( ) ,	which	depends	on	the	phenotypic	effects	of	the	mutations	in	that	
cell	and	position	of	the	TME	optimum	at	time	t.	The	surviving	cancer	cells	reproduce	

asexually.	New	daughter	cells	randomly	occupy	available	space	in	3D	according	to	pre-

specified	limits	on	tumour	size.	The	tumour	may	go	extinct,	persist	for	a	long	time	with	

varying	size,	or	grow	continuously	until	it	reaches	its	maximum	allowed	space	or	size,	

after	which	it	continues	to	be	under	viability	selection	without	expanding.	A	cancer	cell	

acquires	higher	fitness	when	mutation(s)	move	its	phenotype	to	be	closer	to	the	

optimum	(defined	by	selection	coefficient				s =w r( )/w z( ) >0 ).	During	the	process,	there	
are	L	allele	trees	used	to	keep	track	of	alleles	generated	at	each	locus.	If	an	allele	

becomes	fixed	in	the	population,	we	say	this	is	an	adaptive	or	positively	selected	

mutation,	even	if	subsequent	TME	changes	render	that	mutation	disadvantageous.	This	

does	not	exclude	the	possibility	that	mutations	may	be	“selected”	due	to	linkage,	

including	variants	with	negative	fitness	coupled	to	a	mutation	with	a	stronger	positive	

effect.	Competition	between	tumour	sub-clones/cells	may	also	occur	naturally,	
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especially	if	there	is	a	high	mutation	rate,	such	that	cancer	cells	with	different	fitness	

carrying	different	beneficial	mutations	compete	against	each	other	for	fixation	(clonal	

interference).		

	

We	use	computer	simulations	based	on	the	above	principles	to	assess	cancer	growth	in	

3D	and	look	for	patterns	of	adaptive	cancer	evolution.	The	initial	fitness	(			w0 =w(z0))	of	

the	cancer	cell	is	conferred	by	a	starting	phenotype,			z0 ,	which	is	pre-specified	and	could	
be	determined	by	a	new	driver	mutation	or	conceivably	by	phenotypic	plasticity,	which	

may,	for	example,	arise	from	disturbances	such	as	inflammation	13.		Mutation	rates	and	

the	number	of	loci	are	also	determined	before	each	simulation:	the	mutation	rate	could,	

for	example,	be	increased	owing	to	mutations	in	key	pathways	maintaining	DNA	

replication	fidelity,	or	extrinsic	mutagens;	and	the	number	of	loci	could	also	be	

increased	or	decreased,	for	example	owing	to	changes	in	somatic	copy	number	variation.		

	

In	the	following	sections,	we	first	show	how	cancers	adapt	under	the	classic	model	of	

tumorigenesis,	where	the	tumour	is	initiated	from	a	single	stem	cell	with	high	fitness,	

and	we	identify	the	general	patterns	of	3D	spatio-temporal	and	adaptive	cancer	

evolution	in	a	dynamic	TME	with	different	rates	of	change.	We	then	simulate	cancer	

evolution	following	more	general	assumptions	of	tumour	cell	origin,	such	as	different	

initial	population	sizes,	phenotypes,	fitness,	and	shapes	of	the	fitness	landscapes	and	

other	dynamics	of	TME	change.	Finally	we	show	that	our	model	can	be	used	to	

demonstrate	the	effects	of	anti-cancer	treatment	strategies,	such	as	radiotherapy,	

chemotherapy	and	immunotherapy,	where	the	treatments	can	cause	sudden	or	gradual	

changes	in	the	TME	optimum,	thus	changing	the	selection	dynamics;	we	also	show	how	

different	resistance	mechanisms	can	subvert	an	apparently	effective	treatment.	

	

Comparing adaptive cancer evolution in three dimensions under various changing 

and static TMEs 

For	simplicity	we	first	assess	the	classic	model	of	tumorigenesis	in	a	directionally	

changing	TME.	A	single	cell	with	two	traits	(		n=2)	starts	asexual	reproduction	from	the	
centre	of	the	3D	tumour	space	with	a	phenotype	at	the	origin	with	initial	fitness		w0 =1 ,	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 25, 2018. ; https://doi.org/10.1101/377226doi: bioRxiv preprint 

https://doi.org/10.1101/377226
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	

8	

which	could	represent	a	stem	cell	with	high	fitness	conferred	by	a	driver	mutation	that	

starts	to	form	a	tumour	in	its	local	TME.	The	cancer	starts	to	grow	with	cell	birth	

probability,				w z,t( ) ,	and	death	probability,				1−w z,t( ) .	The	cancer	may	go	extinct	if	it	has	
low	average	fitness,	while	higher	average	fitness	can	keep	the	cancer	persistent	for	long	

time.	

	

In	a	static	TME	(		v1 =0 ,	the	optimum	does	not	move),	the	cancer	can	persist	as	long	as	an	
individual’s	natural	life	and	it	shows	the	classical	constant	stabilising	selection,	where	

the	purifying	selection	is	at	play	to	remove	individual	cancer	cells	with	deleterious	

mutations.	Moreover,	the	mean	cancer	fitness	remains	high	and	does	not	fluctuate	in	3D	

(Supplementary	Movie	S1).		When	the	TME	is	changing	initially	our	simulations	show	

several	interesting	patterns	of	cancer	clonal	and/or	subclonal	growth,	where	the	

changing	TMEs	can	generate	complex	spatio-temporal	heterogeneity	of	cancer	evolution.	

	

First,	we	find	that	the	fitness	of	cancer	cells	fluctuates	through	time	and	space	showing	

complex	3D	patterns	(Supplementary	Movies	S2-S6).	As	in	the	model	description	this	is	

due	to	mutation	and	a	gradually	changing	TME	that	moves	away	the	optimum	of	the	

fitness	landscape	–	for	example,	resulting	from	a	progressive	chronic	inflammation	or	

simply	from	aging	13,25	–	the	fitness	of	each	cancer	cell	changes	accordingly	(equation	

(9)).	After	viability	selection,	the	surviving	cells	proliferate	in	3D,	leading	to	complex	

spatio-temporal	patterns	of	cell	birth	and	death,	where	different	3D	morphologies	of	

clonal	or	subclonal	population	structures	emerge	(see	examples	in	Figures	1-2).	

	

Second,	we	find	that	the	speed	of	TME	change	plays	a	critical	role	in	cancer	progression	

and	adaptation.	Particularly,	if	the	TME	optimum	moves	too	fast	and	the	cancer	cells	do	

not	acquire	enough	beneficial	mutations	to	increase	fitness,	the	population	goes	extinct	

(Supplementary	Movies	S2-S4).	However,	if	the	optimum	moves	at	a	moderate	speed	the	

cancer	population	may	acquire	enough	beneficial	mutations	to	“catch	up”	with	the	TME	

optimum	(Supplementary	Movies	S5-S6).	If	the	optimum	moves	slowly,	the	tumour	can	

grow	almost	exponentially	to	the	maximum	space	and/or	population	size	allowed	(

		N =107 ),	typically	forming	a	ball	(Supplementary	Movies	S5-S6),	and	then	continue	to	
evolve	with	a	few	adaptive	mutations.	
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Third,	we	find	two	general	clonal	or	sub-clonal	growth	patterns	in	3D:	(i)	one	or	more	

balls	of	cells	(Figure	1a-i);	or	(ii)	irregular	morphology	(Figure	1j-l).	Intriguingly,	these	

patterns	generally	resemble	those	observed	clinically	10,11.	It	is	more	likely	that	ball-like	

clones	or	sub-clones	are	found	in	a	fast-changing	TME	(		v1 =0.05 	and			v1 =5×10
−3 ,	Figure	

1a-f,	Supplementary	Movies	S3	and	S4)	than	a	slow-changing	TME	(		v1 =5×10
−4 	and	

		v1 =5×10
−5 ,	Figure	1g-l,	Supplementary	Movies	S5	and	S6).	Moreover,	the	fast-changing	

TMEs	also	lead	to	many	smaller	sub-clones,	which	turn	over	fast,	with	fluctuating	

numbers,	spatial	proximity	and	fitness	(Figure	1a-c,	Supplementary	Movies	S3).	We	also	

find	that	both	spatio-temporal	heterogeneity	of	sub-clones	of	different	finesses,	and	sub-

clonal	mixing	are	frequently	observed	during	cancer	evolution	(Figure	2a-l,	

Supplementary	Movies	S2-S6).	In	a	relatively	static	or	an	extremely	slow-changing	TME	

the	spatio-temporal	clonal	or	sub-clonal	turnover	is	slow	and	show	irregular	

morphology	more	frequently	(e.g.,	see	Figure	1g-l,	Supplementary	Movies	S6).		

	

We	then	sought	to	understand	the	fitness	effects	of	mutations	fixed	during	cancer	

development	under	a	changing	TME.	First,	in	a	static	TME,	although	the	cancer	can	

persist	for	an	individual’s	natural	life,	we	find	that	there	is	no	fixation	of	any	new	driver	

mutations	(Supplementary	Figure	S3	and	Movies	S1).	Interestingly,	this	is	a	more	

general	finding	that	might	apply	to	the	“Big	Bang”	model	of	colorectal	tumor	growth,	

which	is	characterised	by	a	lack	of	selective	sweeps	and	high	intratumoural	

heterogeneity6.		In	a	changing	TME	the	mean	population	fitness	and	adaptive	mutations	

are	determined	by	the	speed	of	TME	change	(Figure	3).	As	expected,	the	mean	

population	fitness	decreases	faster	in	a	fast-changing	TME,	whereas	a	slow-

changing/static	TME	leads	to	slower	fitness	decay	and	thus	longer	survival	time	of	the	

tumour	(Figure	3a).	Lower	selection	intensities	(a	“flatter”	fitness	landscape;	

Supplementary	Figure	S2)	can	mitigate	against	this	problem,	significantly	extending	the	

cancer’s	survival	time	to	a	period	nominally	as	long	as	an	individual’s	natural	life	

(Supplementary	Figures	S4	and	S5).		

	

Second,	in	a	fast-changing	TME,	the	driver	mutations	that	spread	to	fixation	must	have	

in	general	larger	fitness	effects	(large	selection	coefficients,	Figure	3b).	This	can	be	
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explained	from	equations	(12)	and	(13),	as	for	an	individual	cancer	cell,	a	faster	

changing	optimum	will	produce	relatively	longer	distances	from	its	location	to	the	

optimum	in	the	fitness	landscape,	thus	reducing	fitness	and	meaning	that	the	cell	is	less	

likely	to	pass	viability	selection.	In	order	to	avoid	extinction,	cancer	cells	must	

continuously	acquire	mutations	with	larger	fitness	effects	to	catch	up	with	the	fast	

moving	optimum,	which	becomes	impossible	when	the	TME	changes	too	fast.	These	

cancers	can	only	survive	for	relatively	short	periods	of	time	and	harbour	a	few	large	

adaptive	mutations	(Figure	3b-c,			v1 =0.5 ,	Supplementary	Movie	S2,			v1 =0.05 ,	mean	

selection	coefficient:			s =22% ,	Supplementary	Movie	S3,			v1 =5×10
−3 ,			s = 9% ).	

Intriguingly,	a	moderately	changing	TME	promotes	cancer	evolution	with	the	highest	

number	of	adaptive	mutations	and	relatively	long	survival	time	(Supplementary	Movie	

S4	and			v1 =5×10
−4 ,	mean	selection	coefficient:			s =7% ,	Supplementary	Movie	S5).		

	

Third,	in	a	slowly	changing	TME,	the	mean	selection	coefficients	of	adaptive	mutations	

are	quite	small	(Figure	3b-c,			v1 =5×10
−5 ,	mean	selection	coefficient:			s =1% ,	

Supplementary	Movie	S6).	Interestingly,	when	the	selection	intensity	decreases	

(increased	width	of	the	fitness	landscape,	see	Supplementary	Figure	S2),	the	selection	

coefficients	of	fixed	mutations	become	even	smaller	(e.g.,	with		σ 2 =100 	and			v1 =5×10
−5 ,	

mean	selection	coefficient:			s =0.3% ,	Supplementary	Figure	S4).	This	type	of	evolution	

by	advantageous	“nearly	neutral”	mutations	with	small	fitness	effect,	as	Tomoko	Ohta	

pointed	out,	could	be	interpreted	as	adaptive	evolution	in	a	changing	environment26.		

	

Finally,	when	the	number	of	traits	of	cancer	cells	under	selection	increases	from	1	to	8	

(increase	of	cancer	cell	phenotypic	complexity,		n ,	see	Methods),	we	find	that	there	is	a	

cost	of	complexity	associated	with	cancer	adaptive	evolution.	In	particular,	the	mean	

fitness	of	the	population	decreases	and	the	mean	selection	coefficient	increases	during	

adaptation	when	the	cancer	cell	has	an	increased	number	of	traits	and	changing	TME	

(Figure	3d-e).	This	observation	could	be	understood	in	terms	of	the	hallmark	traits	of	

cancer	cells14.	Suppose	that	a	tumour	cell	population	“devotes”	all	its	genetic	variation	to	

the	adaptation	of	one	or	two	key	traits	instead	of	eight	traits,	adaptation	may	become	

more	efficient	because	there	is	no	requirement	for	larger	driver	mutations.	As	a	result	
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the	cancer	with	lower	phenotypic	complexity	may	persist	for	longer	period	of	time	and	

it	is	more	likely	to	establish	a	clinically	significant	cancer.	

	

3D adaptive cancer evolution under diverse cancer initiation conditions and a 

changing TME 

As	stated	above,	a	single	cell	with	initial	high	fitness	(		w0 =1 )	due	to	driver	mutations	is	
almost	guaranteed	to	initiate	cancer	growth	under	a	directionally	moving	TME	optimum.	

However,	a	cancer	cell	with	lower	fitness	(		w0 <1)	may	also	initiate	tumour	growth	
under	different	TME	changing	directions	and	rates.	To	gain	further	insights,	we	now	

assume	more	general	assumptions	for	cancer	initiation	and	TME	changing	dynamics,	

such	that	the	neoplastic	growth	is	initiated	by	somatic	cells	with	different	initial	

phenotype/fitness	and	population	sizes19.	This	can	also	serve	as	a	model	of	metastasis	in	

that	migrating	cells	with	different	phenotypes	and	fitness	must	adapt	at	a	distant	site	

with	a	novel	TME.	In	this	general	model,	3D	cancer	growth	can	in	principle	be	initiated	

from	any	number	of	cells	with	any	fitness	in	a	TME	that	can	take	different	types	of	

changing	dynamics.	

	

We	consider	that	the	population	starts	from	a	phenotype	away	from	the	optimum,	and	

thus	has	low	initial	fitness	(equation	(9),			w0 <1).	In	order	to	avoid	extinction	
(Supplementary	Movie	S7),	a	cancer	must	be	initiated	with	a	large	population	size	when	

its	initial	fitness	is	very	small	(e.g.,			w0 =0.1 )	and	initial	driver	mutations	must	occur	
with	relatively	large	fitness	effect	(Figure	4a-d,	Supplementary	Movies	S8-S11),	which	is	

true	for	both	static	and	changing	TMEs.	In	a	static	TME	(		v1 =0 )	when	the	initial	cancer	

cell	is	away	from	the	optimum	(e.g.,			w0 =0.6 )	our	simulation	shows	that	only	two	driver	
mutations	are	recorded	in	subsequent	adaptation	(data	not	shown,	similar	to	Figure	4e).		

This	type	of	mutation	should	be	considered	to	be	classical	drivers.	This	means	that	low	

fitness	cells	(a	long	phenotypic	distance	from	the	optimum)	with	a	large	initial	

population	size	have	a	higher	chance	of	generating	appropriate	driver	mutations	to	

survive	initial	strong	selection	due	to	either	sudden	or	rapid	TME	change.	Higher	fitness	

cells	require	few	cells	to	initiate	the	neoplastic	growth,	which	may	be	conferred	by	
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either	phenotypic	plasticity	or	classical	driver	mutations	already	present	in	the	initial	

transformed	cells	(movies	not	shown	for		w0 =0.9 	as	they	evolve	similarly	to			w0 =1 ,	see	
Supplementary	Movies	S2-S6).	

	

When	the	population	survives	its	initial	selection	with	driver	mutations,	its	evolutionary	

trajectory	still	depends	on	the	rate	of	TME	change	(Figure	4,	Supplementary	Movies	S8-

S15).	Again	our	simulations	show	two	similar	patterns	as	above.	First,	a	moderately	

changing	TME	promotes	cancer	adaptation	by	fixing	more	driver	mutations	(Figure	4b,	f	

and	j,	Supplementary	Movies	S9,	S13).	Second,	if	the	population	evolves	under	a	slowly	

changing	TME,	we	recover	subsequent	driver	mutations	that	have	small	fitness	effects	

(Figure	4a,	e	and	i,	Supplementary	Movies	S7,	S15).	These	mutations	could	be	termed	

“mini-drivers”,	as	we	proposed	previously23.	Interestingly,	this	phenomenon	resembles	

the	pattern	of	Fisher’s	micromutationism,	in	which	adaptation	proceeds	initially	by	

mutations	of	larger	fitness	effect	and	subsequently	smaller	fitness	effect	mutations27	

predominate	when	the	phenotype	approaches	the	optimum	(assuming	that	the	TME	

optimum	moves	quite	slowly,	Figure	4).		

	

In	cancer	evolution,	most	driver	mutations	have	pleiotropic	effects,	affecting	multiple	

pathways	and	several	cancer	traits.	Although	we	assumed	that	each	mutation	affects	all	

traits	(universal	pleiotropy),	its	fitness	effect	on	each	trait	may	be	different.	In	other	

words,	the	driver	mutations	may	have	different	fitness	effects	on	different	traits	and	the	

selection	is	therefore	correlated	(equation	(9)),	which	can	be	illustrated	by	the	shapes	of	

the	fitness	landscapes	with	different	levels	of	correlation	(see	Supplementary	Figure	S2).	

Similarly,	a	mutation	(genotype)	may	have	different	phenotypic	effects	on	each	trait.	So	

the	mutational	effects	on	traits	can	be	independent	or	correlated	(see	mutational	

distribution,	equation	(11)).	Indeed,	we	find	that	when	the	TME	changes	slowly,	the	

fitness	effects	of	driver	mutations	along	traits	indeed	correlate	(Supplementary	Figure	

S6).	Moreover,	we	find	that	when	the	TME	changes	fast	the	phenotypic	effects	of	driver	

mutations	along	traits	have	similar	levels	of	correlation	as	correlations	of	mutational	

effects	(data	not	shown).	Although	in	clinical	settings	the	effects	of	selectional	and	

mutational	correlations	on	cancer	progression	are	unclear,	an	example	may	be	multiple	
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mutations	in	Wnt	signalling	pathway	genes	(APC,	TCF7L2,	SOX9)	in	colorectal	cancer,	or	

multiple	mutations	in	Pi3K	genes	(e.g.	KRAS	and	PIK3CA)	in	several	cancers.	

	

Finally,	to	understand	how	other	TME	changing	dynamics	may	affect	cancer	adaptation	

we	analysed	another	three	types	of	changing	TME.	First,	when	the	TME	changes	

randomly,	the	resulting	increase	in	the	TME	variance	at	different	time	points	always	acts	

against	cancer	adaptation	(equations		(14)-(16)),	leading	to	reduced	mean	population	

fitness	and	a	requirement	for	adaptive	mutations	with	higher	mean	fitness	effect	

(Supplementary	Figure	S7).	Second,	when	we	add	a	random	component	into	a	

directionally	changing	TME	(equations	(17)-(19)),	the	increased	variance	caused	by	the	

random	component	also	acts	against	cancer	adaptation,	producing	similar	results	to	a	

purely	randomly	changing	TME	(Supplementary	Figure	S8).	Third,	when	the	TME	

changes	cyclically	(equations	(20)-(22)),	with	increased	amplitude,	the	cycling	TME	

optimum	also	acts	against	cancer	adaptation	(Supplementary	Figure	S9).	However,	

interestingly,	although	the	mean	population	fitness	decreases	and	mean	selection	

coefficient	of	adaptive	mutations	increase	when	the	amplitude	increases,	there	are	more	

adaptive	mutations	recorded	than	under	any	other	TME	changing	dynamics	(full	data	

not	shown,	amplitude			A= 4 ,	see	Supplementary	Figure	S9	and	Supplementary	Movies	
S16-S17).	Moreover,	there	are	also	more	complex	spatio-temporal	patterns	of	sub-clonal	

fitness	and	mixing,	in	which	birth	and	death	of	large	and	small	sub-clones	with	diverse	

fitness	values	occur	frequently	through	time	and	space	(Supplementary	Movies	S16-

S17).	This	indicates	that	a	cycling	TME	at	intermediate	level	may	be	particularly	capable	

of	promoting	cancer	adaptation	by	periodically	fixing	more	adaptive	mutations	than	

TMEs	that	change	directionally	and/or	randomly.		

	

We	then	reconstructed	cancer	phylogenies	in	the	three	types	of	simulations.	Intriguingly,	

we	found	that	in	all	cases	the	shape	and	the	temporal	signals	in	the	phylogenies	(e.g.,	the	

branch	length	and	overall	shape)	were	characteristic	of	its	particular	TME	changing	

dynamics,	such	as	static,	directional,	random	and	cyclic	TMEs	with	different	optimum	

changing	speed	(illustrated	and	explained	in	Supplementary	Figure	S10).	These	patterns	

from	cancer	phylogenies	could	be	particularly	useful	in	inferring	the	underlying	TME	

selection	dynamics	and	cancer	evolutionary	history.	
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Cancer adaptation owing to anti-cancer therapies  

Anti-cancer	therapies	of	all	sorts,	but	principally	those	that	are	non-surgical,	introduce	

an	artificial	TME	that	can	radically	change	the	tumour’s	selective	landscape,	at	least	

transiently	and	possibly	permanently.	In	the	case	of	targeted	therapies,	for	example,	

cells	with	a	beneficial	mutation	can	rapidly	become	at	a	selective	disadvantage.	As	a	

proof	of	concept,	we	find	that	our	model	can	be	used	to	understand	anti-cancer	

therapies	that	use	different	dosing	strategies,	by	assuming	that	these	modify	the	TME	

selective	optimum	and/or	the	shape	of	the	fitness	landscape	(see	equations	(25)-(28),	

Supplementary	Figure	S2).	Initially,	we	have	examined	treatments	that	cause	a	sudden	

change	in	the	TME	optimum,	such	as	genotoxic	therapies	(radiotherapy	or	

chemotherapy)28	and	immunotherapy29	(e.g.	immune	checkpoint	inhibitors),	which	

should	put	strong	selective	pressure	on	all	cancer	cells.		

	

For	simplicity,	we	assume	that	the	therapy	causes	the	TME	optimum	to	move	suddenly	

along	the	axis	of	a	single	trait.	We	first	assume	that	the	cancer	has	evolved	to	a	constant	

TME	optimum			z0
opt =0 	and	allow	it	100	generations	to	accumulate	genetic	variation	and	

reach	maximum	tumour	size	(		N =1×107 ).	We	then	assess	four	different	TME	optima	to	
represent	different	treatment	strategies	(		z1

opt =5,6,7,8 ,	see	equations	(25)-(28),	
Supplementary	Movies	S18-S21)	that	treat	the	cancer	for	about	33	months	or	more	(e.g.,	

1000	generations),	reducing	mean	population	fitness	below			w =0.1 .	We	illustrate	how	
the	optimum	of	the	fitness	landscape	changes	from		z0

opt 	to			z1
opt 	under	each	treatment	

(Supplementary	Figure	S11).	

	

As	shown	in	Figure	5,	all	treatments	reduce	the	fitness	of	all	cancers	below			w =0.1
(Figure	5a-o)	and	at			z1

opt =8 	the	cancer	is	successfully	cured	(the	population	is	extinct,	
Figure	5p),	but	due	to	mutation	and	smaller	TME	change	(e.g.,	because	of	smaller	dose	

or	effectiveness	of	the	delivery)	the	cancers	survive	at			z1
opt =5,6,7 and	quickly	relapse	in	

less	than	two	months	(Figure	5p).	In	general,	when	the	dose	is	not	sufficient	for	

maximum	killing,	smaller	effective	doses	lead	to	selection	for	mutations	with	smaller	
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fitness	effects,	while	higher	doses	lead	to	the	opposite.	Phylogenetic	trees	show	that	

treatment	selection	often	leads	to	expansion	of	sub-clones	and	extinction	of	the	majority	

of	the	tumour	mass	(Figure	5e,	j	and	o).	Weak	treatment			z1
opt =5 	leads	to	a	large	number	

of	initial	sub-clones	with	resistant	beneficial	mutations,	but	eventually	the	tumour	mass	

comes	to	be	dominated	by	a	single	sub-clone	(Figure	5e)	carrying	the	mutation	with	the	

largest	fitness	effect	(		s =5.19 ).	Stronger,	but	non-lethal,	treatment	(		z1
opt =7 )	leads	to	an	

early	sub-clonal	expansion	carrying	the	mutation	with	a	very	large	selection	coefficient	(

		s =26.563 ,	Figure	5o).		
	

In	terms	of	sub-clonal	diversity,	we	first	observe	a	reduction	soon	after	treatment	and	

then	an	increase	of	diversity,	but	after	the	sub-clonal	fitness	recovers	to	the	

same/similar	levels	as	pre-treatment	or	with	minor	loss,	the	diversity	reduces	again	

until	the	end	of	the	treatment	(data	not	shown).	These	behaviours	are	consistent	with	a	

mean	fitness	decrease	due	to	the	treatment	and	selection	for	resistant	sub-clones	

(Figure	5p).			Interestingly,	our	simulations	show	that	both	pre-existing	and	de	novo	

resistant	mutations	can	be	observed.	Moreover,	when	the	treatments	lead	to	higher	

selection	intensity	(a	“narrower”	fitness	peak,	see	Supplementary	Figure	S2),	all	

treatments	lead	to	immediate	cure	(population	extinction).	

	

To	understand	potential	therapeutic	resistance,	we	examined	three	mechanisms	that	

cancers	could	use	to	avoid	population	extinction	(Supplementary	Movies	S22-S24,	

Supplementary	Figure	S12).	First,	we	assume	a	polygenic	model	of	resistance,	which	has	

quantitative	traits.	Increasing	the	number	of	loci	contributing	to	resistance	can	avoid	

extinction	with	one	positively	selected	mutation	(e.g.,			L=50 ,	Supplementary	Figure	
S12a).	Second,	with	an	elevated	mutation	rate	–	perhaps	caused	by	the	therapy	itself	–	

the	population	fitness	can	quickly	rebound	and	avoid	extinction,	which	leads	to	two	

positively	selected	mutations	(Supplementary	Figure	S12b).	Interestingly,	all	three	fixed	

mutations	have	a	de	novo	origin	after	treatment	initiation	because	all	other	mutations	in	

sub-clones	may	have	been	removed	by	therapeutic	selection	or	fail	to	hitchhike	within	

the	dominant	sub-clone.	Third,	if	the	selection	intensity	decreases,	for	example	therapy	

intensity	reduces	owing	to	toxicity,	the	cancer	population	can	also	avoid	extinction	(

	σ 2 = 40 ,	Supplementary	Figure	S12c,	the	fitness	landscape	shape	change	is	illustrated	in	
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Supplementary	Figure	S11).	Nevertheless,	due	to	weaker	selection,	no	positively	

selected	mutations	are	detected.	The	resistant	sub-clones	generally	arise	early	after	

treatment	and	the	complex	growth	patterns	of	the	3D	resistant	sub-clones	are	striking,	

including	mixing	and	fast	turnover	(Supplementary	Figure	S12d,	Supplementary	Movies	

S22-S24).		

	

We	now	combine	our	findings	from	our	general	model	of	cancer	evolution	with	those	of	

the	evolutionary	responses	to	anti-cancer	therapy.	Treatment	strategies	that	lead	to	a	

moving	TME	optimum	(in	any	direction)	may	be	effective	and	help	to	reduce	toxicity	by	

using	of	a	lower	dose,	as	there	is	no	requirement	of	initial	maximum	dosing	to	induce	a	

high	sudden	optimum	change	for	maximum	killing	(Figure	5,	Supplementary	Figure	

S13).	The	strategy	is	theoretically	as	effective	as	the	classical	maximum	dosing	in	

reducing	mean	cancer	cell	fitness	(similar	to	Supplementary	Movies	S2-S4,	

Supplementary	Figure	S13),	although	it	takes	longer	time.	Fast-moving	TME	optima	

cause	eventual	extinction	and	thus	successful	treatment,	although	other	changing	TME	

dynamics	(equations	(14)-(22))	can	also	reduce	cancer	fitness	and	cause	cancer	

extinction	(Supplementary	Figure	S7-S9,	Supplementary	Movies	S16-S17).	Moreover,	

dosing	strategies	should,	in	principle,	be	optimized	individually	depending	on	the	

maximum	allowed	dose	tolerance	and	the	type	of	cancer	(see	Supplementary	Figure	S7-

S9,	Supplementary	Movies	S1-S3).	So	a	trade	off	may	be	required	between	the	

theoretical	dose	for	maximum	killing	and	the	actual	patient	drug	tolerance.	For	instance,	

in	directional	dosing	the	treatment	must	be	stopped	when	the	allowed	dose	is	reached	

or	continue	if	the	tolerance	is	increased.	Since	moving	TME-based	anti-cancer	strategies	

are	highly	desirable,	designing	clinically	effective	dosing	and	delivery	strategies	is	

important,	although	currently	challenging.	

	

Discussion 
In	this	study,	we	provide	an	evolutionary	and	ecological	framework	for	understanding	

cancer	development	and	anti-cancer	treatment	strategies.	This	framework	captures	the	

complex	3D	spatio-temporal	dynamics	of	intra-tumour	heterogeneity	in	sub-clonal	

fitness	and	structure,	and	the	tempo	and	mode	of	adaptive	cancer	evolution	in	a	

changing	TME.	Cancer	evolution	appears	to	be	far	more	complex	in	a	changing	TME	(e.g.,	
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Supplementary	Movies	S1-S6,	S16-S17),	particularly	as	regards	the	early	stages,	

including	rapid	sub-clonal	shifts	and	“spontaneous”	regression	or	tumour	death,	which	

suggests	there	are	many	unobservable	failed	evolutionary	trajectories	of	cancer	

progression	in	human	patients	unless	caught	prior	to	extinction17.	Our	model	is	thus	

biologically	interpretable	and	intuitive,	as	parameters	of	birth,	death	and	selection	are	

naturally	incorporated	into	the	properties	of	the	TME	and	the	underlying	phenotypic	

effect	of	mutations.		

	

Currently	the	actual	fitness	effects	of	most	mutations	in	cancer	genomes	are	unknown,	

although	estimates	suggest	that	selection	is	often	weak,	even	for	major	driver	

mutations30.	Our	model	predicts	that	there	are	many	mutations	with	small	fitness	effects	

due	to	weak	selection	caused	by	a	slowly	or	moderately	changing	TME.	These	mutations	

may	be	pervasive	in	current	cancer	genomic	data	but	are	difficult	to	identify	due	to	their	

small	effects.	Our	study	gives	a	theoretical	basis	to	the	observed	weak	selection,	and	

may	help	to	explain	why	cancers	are	rarer	than	would	be	predicted	given	the	number	of	

cells	in	the	body	and	the	potential	role	of	the	TME	in	restraining	cancer	progression17.	

Many	cancer	driver	mutations	might	be	classified	as	“nearly	neutral”31	as	described	by	

Tomoko	Ohta26.	However,	as	Tomoko	Ohta	pointed	out,	due	to	a	changing	environment,	

it	is	appropriate	to	classify	fixed	advantageous	mutations	as	positively	selected,	even	

when	their	fitness	effect	is	quite	small.	So	it	is	appropriate	to	term	these	mutations	as	

“mini	drivers”23.		

	

Adaptive	cancer	evolution	in	individuals	may	have	several	evolutionary	tempos	and	

modes	mixed	across	cancer	types	in	humans,	which	can	be	explained	by	the	

heterogeneity	of	the	TME	and	its	varying	optimum.	On	one	hand,	cancer	cells	may	

frequently	go	to	extinction	due	to	strong	stabilizing	selection	from	the	normal	TME.	On	

the	other	hand,	an	extremely	slow-changing	or	constant	TME	may	lead,	in	effect,	to	

limited	cancer	cell	evolution	in	which	neutral/nearly	neutral	mutations	accumulate,	as	

might	be	the	case	for	cancers	that	apparently	carry	no	or	few	classical	driver	mutations.	

Of	course,	the	TME	may	determine	the	phenotypic	effect	of	a	mutation	as	well	as	

determine	the	selective	landscape,	so	a	changing	TME	might	alter	both	a	phenotype	and	

its	selective	advantage.	Furthermore,	cancer	growth	and	progression	(e.g.	acquisition	of	

new	mutations)	will	also	affect	the	TME;	and	the	cancer	itself	may	create	or	modify	a	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 25, 2018. ; https://doi.org/10.1101/377226doi: bioRxiv preprint 

https://doi.org/10.1101/377226
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	

18	

TME	optimum	leading	to	non-cell-autonomous	cancer	evolution.	Therefore,	quantitative	

understanding	of	these	basic	components	and	TME	changing	dynamics	in	individual	

patients	is	crucial	for	developing	future	cancer	medicine.	For	instance,	we	show	that	a	

cycling	TME	may	be	particularly	capable	of	promoting	cancer	adaptation	(see	

Supplementary	Movies	S16-S17	for	its	unusual	long-term	sub-clonal	dynamics	and	a	

large	number	of	recorded	adaptive	steps),	while	stochasticity	and	fast	changes	in	the	

TME	may	act	against	cancer	adaptation.	TME	dynamics	need	to	be	considered	alongside	

other	factors	in	studies	that	aim	to	provide	a	complete	picture	of	the	underlying	cancer	

evolutionary	dynamics.	

	

In	this	study	we	show	that	in	a	moderately/slowly	changing/static	TME,	lifetime	seeding	

is	possible	to	distant	sites	(e.g.,	see	Figure	3a	and	3b,			v1 =5×10
−4and			v1 =5×10

−5 ),	but	

successful	colonization	at	distant	metastatic	sites	is	stochastic	and	uncertain,	because	it	

depends	on	the	initial	phenotype	and	population	size	of	the	circulating	cancer	cells	and	

their	interactions	with	the	distant	metastatic	TMEs	(or	pre-metastatic	niches)	assuming	

that	metastatic	potential	depends	on	the	long	survival	of	the	primary	cancer	due	to	a	

slowly	changing	TME	(Figure	4).	Phenotypic	plasticity	may	play	a	role	in	initial	

adaptation,	which	confers	higher	fitness	of	initial	cells	with	a	small	migrating	population	

(Figure	4i-l).	This	is	consistent	with	the	hypothesis	that	the	pre-metastatic	niche	may	

bring	the	phenotype	of	the	migrating	cancer	cells	closer	to	the	optimum	of	a	potential	

metastatic	TME	for	higher	fitness12,15,32.	There	is	empirical	evidence	that	cancer	cells	

migrate	in	small	numbers.	Metastasis	does	not	necessarily	require	that	circulating	

cancer	cells	have	major	driver	mutations	to	initiate	cancer	adaptation33	as	shown	in	

Figure	4i.	Although	in	a	static	TME	our	observation	does	support	the	main	

characteristics	of	the	“Big	Bang”	model,	we	show	that	the	main	evolutionary	force	at	

play	in	this	situation	is	likely	to	be	weak	purifying	selection34.		Our	simulations	may	also	

capture	some	of	the	unobservable	aspects	of	cancer	development,	which	may	happen	

before	the	“Big	Bang”.		

	

Current	cancer	data	are	mostly	derived	from	relatively	late	stages	of	cancer	

development,	where	the	cancer	has	accumulated	large	heterogeneity	under	weak	

dynamic	selection	possibly	due	to	a	changing	TME.	Although	the	initial	classic	driver	
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mutations	with	large	fitness	effect	can	be	easily	detected	using	next	generation	

sequencing,	the	fitness	effect	of	such	mutations	under	a	changing	TME	remains	unclear	

in	clinical	settings,	which	leads	to	scenarios	where	no	obvious	drivers	can	be	detected	

with	current	approach	when	the	fitness	effect	of	these	driver	mutations	is	small.		This	

poses	significant	challenges	for	cancer	treatment.	Our	results	support	the	use	of	

proposed	therapeutic	strategies	that	can	target	the	TME,	causing	to	change,	and	drive	

cancer	cell	populations	to	extinction17,35.	Importantly,	the	TME	dynamics	required	to	kill	

cancer	cells	may	be	different	for	each	individual	patient,	which	will	further	require	

precise	and	individualised	modelling	of	therapeutic	dosage	and	delivery	strategies.	

Although	a	similar	approach,	termed	“adaptive	therapy”,	has	been	proposed	

previously36,	where	treatments	have	been	adjusted	by	evolutionary	principles	and	there	

is	clear	evidence	of	improved	patient	outcome	by	cyclic	dosing	37,	the	true	evolutionary	

dynamics	of	cancer	progression	and	treatment	can	only	be	understood	by	combined	

measures	of	cancer	genetic	and	phenotypic	changes	and	the	corresponding	TME	

dynamics,	as	we	demonstrate	in	this	study.	

	

In	conclusion,	our	3D	model	provides	a	natural	evolutionary	and	ecological	framework	

to	understand	adaptive	cancer	evolution.	We	show	that	the	extension	of	Fisher’s	

classical	model	using	fitness	landscapes	with	a	changing	TME	is	sufficient	to	produce	

many	of	the	observed	complex	cancer	evolutionary	and	3D	pathology	patterns.	In	the	

future,	in	vivo	and/or	in	vitro	experiments,	combined	with	such	modelling	approaches	

and	fine-scale	methods,	such	as	single-cell	sequencing	and	phylogenetics,	could	be	used	

to	elucidate	cancer	fitness	landscapes	with	dynamic	TMEs,	further	testing	the	

(un)predictability	of	cancer	evolution,	with	implications	for	cancer	precision	medicine38.	

	

Methods 

Model       

In	evolution,	organisms	can	evolve	in	a	Darwinian	or	non-Darwinian	way	or	a	

combination	of	both	depending	on	how	natural	selection	acts	on	the	phenotypic	traits	

and	their	plasticity39.	The	fitness	advantage	to	organisms	conferred	by	these	traits	due	

to	environmental	selection	can	lead	to	adaptation40-42.	However,	adaptation	may	not	
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simply	be	a	consequence	of	natural	selection,	as	the	plasticity/robustness	of	the	

phenotypes	and	the	underlying	molecular	underpinnings	may	be	responsible27,39,40,43-45.	

For	instance,	a	plausible	path	of	adaption,	which	involves	both	plasticity	and	selection,	

starts	with	the	initial	plastic	adaptation	(initial	fitness	advantage)	and	subsequent	

stabilizing	selection	and/or	positive	selection	due	to	environmental	changes15,39,46.	

These	evolutionary	theories	help	to	define	a	general	mode	of	cancer	initiation	and	

subsequent	adaptation.	In	this	study,	we	follow	Fisher’s	geometric	framework27,47-49.		To	

address	the	question	of	how	cancer	cell	populations	adapt	to	a	changing	environment,	

we	extended	the	original	Fisher	geometric	model	into	a	general	form	incorporating	a	

moving	environmental	optimum	with	different	changing	dynamics31,49-51.	This	

framework	has	not	previously	been	applied	to	study	carcinogenesis	as	an	adaptive	

evolution	process	in	a	changing	tumour	microenvironment.	

	

In	Fisher’s	geometric	framework	a	cancer	cell	adapting	in	a	tumour	microenvironment	

can	be	viewed	as	a	point	in	an	n-dimensional	Euclidean	phenotype	space	with		n 	

quantitative	phenotypic	traits	defined	by	a	column	vector		z 	
	 	 	

			z = z1 ,...,zn( )T .		(1)	
	 		
The	traits	involved	can	be	any,	but	could	for	convenience	be	those	highlighted	by	

Hanahan	and	Weinberg14:	sustaining	proliferative	signaling,	evading	growth	

suppressors,	resisting	cell	death,	enabling	replicative	immortality,	angiogenesis,	

activating	invasion	and	metastasis,	reprogramming	of	energy	metabolism	and	evading	

immune	destruction14.	The	number	of	traits	or	the	dimension	of	the	phenotypic	vector,	

	n ,	represents	the	“complexity”	of	a	cancer	cell.	As	we	assume	that	the	TME	(the	ecology)	

is	the	primary	source	of	selection17,51-56,	there	is	a	corresponding	optimum	phenotype	

		zopt ,	which	is	defined	by	a	column	vector	of	n	values	

	

			z
opt = z1

opt ,...,znopt( )T .		 (2)	
		

The	Euclidean	distance,		d ,	is	defined	as	
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d = z−zopt ,

= z1 − z1
opt( )2 + z2 − z2

opt( )2 +!+ zn − zn
opt( )2 ,

= (zk − zkopt )2
k=1

n

∑ .

(3)	

	

The	phenotypic	fitness	function	for	a	cancer	cell	in	a	microenvironment	is	defined	as49	

	

	 	 	

			

w d( ) = exp −ad2( ) ,
= exp −a z−zopt

2⎛
⎝⎜

⎞
⎠⎟ .
	(4)	

	

Here		a 	is	the	selection	intensity	for	all	traits	(		a>0 )49.	Therefore,	the	fitness	of	an	
individual	cancer	cell	depends	on	its	phenotype’s	Euclidean	distance	to	the	optimum.		

Equation	(4)	suggests	that	the	closer	a	cancer	cell’s	phenotype	is	to	the	optimum,	the	

fitter	it	becomes.		The	change	of	phenotypic	traits	of	a	cancer	cell	due	to	random	

mutations	can	be	defined	as	an	n-dimensional	random	number:	 	

	 	 	

			r = r1 ,...,rn( )T ,	(5)	
	 		

the	size	of	a	mutation	(the	effect	of	a	mutation	on	phenotypic	traits)	is	therefore	defined	

as	

	 	 	

			 r = r1
2 + r2

2 +!+ rn
2 ,		 (6)	

	 		

	

so	the	combined	phenotypic	trait	of	a	cancer	cell		 ′z 	with	mutation		r ,	relative	to	its	wild	

type		z 	is	defined	as	
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	 ′z = z+ r ,	 (7)	

		

	

the	selection	coefficient	of	a	mutation	that	changes	the	fitness	of	the	cancer	cell	is	

therefore	defined	as	

	

	

	 	 	

			
s ≡

w ′z( )
w z( ) −1=

w z+ r( )
w z( ) −1 ,		 (8)	

	 		

	

when			s >0 	the	mutation	is	beneficial,	it	moves	the	cancer	cell	closer	to	the	optimum.	
When	the	cancer	cell	is	at	optimum	we	say	it	has	its	maximum	fitness				w z( ) =1 ,	whereas	
when	the	cancer	cell	moves	away	from	the	optimum	its	fitness	decreases	and	it	could	

reach	its	lowest	fitness				w z( ) =0 .	Such	mutations	are	deleterious	and	lead	to	negative	
selection	coefficients	with			s <0 .	When	mutations	do	not	change	fitness,	they	are	defined	
as	neutral	mutations	with			s =0 .	
	

We	can	now	define	a	general	form	of	the	fitness	function	from	equation	(4)	as	shown	

before24,47,48,57.	

		
	

	 	 	

			
w z,t( ) = exp − z−zopt t( )( )T S−1 z−zopt t( )( )⎡

⎣⎢
⎤
⎦⎥
,	(9)	 	

	 		

	

where		S 	is	a	real	n×n positive	definite	and	symmetrical	matrix,	and	T	denotes	

transposition.	The	matrix		S 	describes	the	shape	of	the	fitness	landscape,	namely,	the	

selection	intensity.	Matrix			S−1 is	the	inverse	of		S .	As	introduced	above,	the	overlapping	

of	pathways	responsible	for	cancer	cell	traits	indicates	pleiotropic	effect	of	mutations	
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contributing	to	cancer	adaptive	evolution14.	If	the	selection	intensity	is	the	same	along	

all	n	traits	then	we	have	an	isotropic	fitness	landscape	(universal	pleiotropy).	We	set	

		S =σ 2I 	(	σ 2 >0 ,		I 	is	an	identity	matrix).	Selection	may	also	vary	along	different	traits	
(selection	is	correlated),	which	means	mutational	effects	contribute	to	fitness	differently	

for	different	traits.	If	we	set	selection	intensity	to	vary	along	n	traits,	then		S 	has	non-

zero	off-diagonal	entries.	We	illustrate	different	shapes	of	the	fitness	landscape	

(independent	and	correlated	selection,	Supplementary	Figure	S2).	We	can	use	

			σ
2 = det S( )n 	to	measure	the	average	width	of	the	fitness	landscape,	where		σ 2 	is	

defined	as	the	geometric	mean	of	the	eigenvalues	of		S .		The	selection	coefficient	of	a	

mutation	in	equation	(8)	can	now	be	defined	as	

	

	 	

			
s(z, ′z ,t)=

w ′z ,t( )
w z,t( ) −1 .	 (10)	

	

	

Distribution of mutation effect size 

	

We	assume	the	phenotypic	effect	of	a	mutation	with	size	 	follows	a	multivariate	

normal	distribution	with	mean		0 	and		n×n 	variance-covariance	matrix		M 48,58:	

	

		

	 	 	

			
P r( ) = 1

(2π )ndet M( )
exp −12 ′r M−1r

⎛
⎝⎜

⎞
⎠⎟
,	 (11)	

	

as	above		M 	is	also	symmetrical	and	positive-definite.	We	have				M=m2I ,	where		m2 is	the	

variance	of	mutational	effects	and		I is	an	identity	matrix.	If	mutational	effects	are	

correlated	we	have	covariance	of	mutational	effects	as	the	off	diagonal	elements	in	M .	

	r
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The	average	variance	of	mutational	effects,			m2 ,	is	given	by	the	geometric	mean	of	the	

eigenvalues	of		M .	We	have				m
2 = det M( )n .		

	

Cancer adaptation in a changing microenvironment 

In	all,	we	consider	six	scenarios	for	the	properties	of	the	tumour	microenvironment.	

Different	initial	population	or	individual	cell	properties	(e.g.,	population	size	and	fitness)	

during	computer	simulations	are	specified	in	the	results	section.	We	assume	that	the	

TME	optimum	of	the	first	trait	of	the	n	traits	changes48,50.	

1. Directionally changing optimum 

We	assume	a	directionally	moving	optimum	with			vt 	

		z
opt t( ) = vt ,		 (12)	

			
w z,v ,t( ) = exp − z− vt( )T S−1 z− vt( )⎡

⎣⎢
⎤
⎦⎥
	,	 (13)	

where	the	vector				v = v1 ,...,vn( )′ 	is	the	TME	change	speed.	The	optimum			zopt t( ) 	is	time	
(generation)	dependent	and	only	the	first	trait	optimum	changes.	

	

2. Randomly changing optimum 

Here	we	assume	the	TME	optimum	of	the	first	trait,			z1
opt ,	changes	randomly	at	each	

generation,		t ,	following	a	Normal	distribution	with	mean	0	and	standard	deviation,	δ 	

			z
opt t( ) = z1

opt ,...,znopt( ) ,	(14)	

		z1
opt ~N 0,δ 2( ) ,		 (15)	

			
w z,t( ) = exp − z−zopt t( )( )T S−1 z−zopt t( )( )⎡

⎣⎢
⎤
⎦⎥
.	 (16)	

	

3. Directionally changing optimum, with a random component  

We	assume	a	directionally	moving	optimum	with			vt 	(see	equation	(12))	and	a	random	

component		e 		

		z
opt t( ) = vt +e ,	 (17)	
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		ε1 ~N 0,δ 2( ) ,		(18)	

			
w z,v ,e,t( ) = exp − z−zopt t( )( )T S−1 z−zopt t( )( )⎡

⎣⎢
⎤
⎦⎥
,	 (19)	

where				v = v1 ,...,vn( )′ 	is	the	vector	of	the	TME	change	and	it	is	time	dependent.	The	

random	vector				e = ε1 ,...,εn( )′ 	has		ε1 	following	a	random	normal	distribution	with	mean	0	
and	standard	deviation	δ .		

	

4. Cyclically changing optimum 

In	this	scenario,	we	assume	the	TME	optimum	changes	cyclically	or	periodically	at	each	

generation,		t ,	following	a	general	periodic	function50,58,59		

			z
opt t( ) = z1

opt(t),...,znopt(t)( ) ,		 (20)	

		
z1
opt(t)= A2 1+ sin 2πt

P
− π2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ ,	 (21)	

			
w z,t( ) = exp − z−zopt t( )( )T S−1 z−zopt t( )( )⎡

⎣⎢
⎤
⎦⎥
,		 (22)	

where		A 	is	the	amplitude	of	TME	optimum	oscillation	and		P 	is	the	period	(the	number	

of	generations)	of	the	TME	cycle.	The	equation	(21)	allows	the	TME	optimum	to	change	

periodically	from	0	to		A 	and	then	to	0	in		P 	generations.	In	all	simulations	of	this	

scenario		P 	is	fixed	at	360	generations.	

	

5. Stable (i.e. constant) optimum 

We	assume	the	microenvironment	optimum	is	constant	with				z0
opt :	

			z
opt t( ) = z0opt = z1 ,...,zn( ) ,		 (23)	 	

			
w z( ) = exp − z−z0

opt( )T S−1 z−z0
opt( )⎡

⎣⎢
⎤
⎦⎥
.	 (24)	

 

6. Sudden change in the optimum 

We	assume	the	TME	optimum	suddenly	changes	from				z0
opt 	to				z1

opt :	
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			z
opt t( ) = z0opt = z0

opt ,...,0( ) ,		 (25)	

			z
opt t( ) = z1opt = z1

opt ,...,0( ) ,		 (26)	

			
w z( ) = exp − z−z0

opt( )T S−1 z−z0
opt( )⎡

⎣⎢
⎤
⎦⎥
,		 (27)	

			
w z( ) = exp − z−z1

opt( )T S−1 z−z1
opt( )⎡

⎣⎢
⎤
⎦⎥
	.	 (28)	

In	this	scenario,	the	cancer	cells	evolve	under	constant	stabilizing	selection	in	the	TME	

with	optimum				z0
opt ,	and	after	a	sudden	change	the	cancer	cells	then	evolve	under	

another	constant	stabilizing	selection	with	a	new	optimum				z1
opt (the	optimum	of	the	first	

trait	changes	from			z0
opt 	to			z1

opt ).	

	

Simulation of cancer evolution in the three-dimensional space 

Our	intention	was	to	identify	key	cancer	evolutionary	patterns	in	3D	and	investigate	

how	these	are	influenced	by	model	parameters,	such	as	the	number	of	phenotypic	traits	

	(the	complexity	of	cancer	cells),	changing	microenvironment	(properties	of	the	TME),	

selection	correlation,	population	size,	mutation	rate,	initial	phenotype/fitness	of	cancer	

cells	(distance	to	optimum),	initial	population	size	and	chromosome	instability	affect	3D	

cancer	adaptation	(tumorigenesis)	in	an	ecological	and	evolutionary	framework.	

	

We	simulate	the	cancer	cell	population	in	3D	space	in	one	of	the	six	environments	

described	above	(Supplementary	Figure	S1).	The	simulation	is	fully	individual-based,	

following	simple	growth	mechanics10,60.	In	brief,	the	offspring	of	newly	divided	cells	

stochastically	look	for	available	positions	in	a	3D	lattice	space.	The	population	evolves	in	

a	discrete	and	non-overlapping	manner.	The	empty	3D	tumour	space	represents	the	

tumour	microenvironment	that	may	change,	following	the	dynamics	described	above,	

and	the	position	in	the	3D	space	does	not	affect	the	TME	or	selection.	

	

Simulations	are	performed	under	particular	TME	change	patterns	due	to	either	natural	

cause	or	anti-cancer	therapies	as	described	in	equations	(12)-(28).	The	number	of	traits	

is	fixed	in	each	simulation	at			n=1 	to			n=8 .	Here	we	assume	cancer	cells	require	at	least	

	n
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one	adaptive	trait	for	survival	(e.g.	anti-apoptotic	or	metabolism	related	traits)	as	also	

inspired	by	microbial	adaptive	evolution61	and	mammals	with	very	low	cancer	

incidencies62,63.	The	initial	population	has	K	neoplastic	cells,	and	grows	from	the	centre	

of	the	specified	3D	coordinates	in	the	3D	square	lattice	(it	has	26-cell	cubic	neighbours,	

also	called	a	3D	Moore	neighbourhood)	until	it	reaches	the	defined	maximum	

population	size	or	3D	tumour	space.	The	initial	K	cells	have	an	adjustable	phenotype			z0 .	
This	determines	the	initial	fitness	in	the	fitness	landscape,	which	has	the	optimum	at	the	

origin	and	an	adjustable	shape	defined	by		S 	in	equation	(9)	(illustrated	in	

Supplementary	Figure	S2).	The	initial	phenotype	can	also	be	calculated	by	equation	(9)	

when	the	predefined	fitness	value	is	known.	For	generality	we	consider	that	the	

adjustable	phenotype	of	initial	K	cells	is	determined	by	either	classical	driver	mutations	

or	by	phenotypic	plasticity.	

	

The	cancer	cells	have	c	sets	of	chromosomes	(ploidy)	and	reproduce	asexually	with	

chromosome	instability	(CIN)	(Supplementary	Figure	S1).	To	model	CIN	for	simplicity	

we	define	a	rate,		rc ,	to	vary	the	copy	of	paternal	and	maternal	chromosome	passed	

down	to	daughter	cells.	Each	individual	cancer	cell	is	represented	by	L	diploid	loci	(for	

computational	efficiency	without	loss	of	generality			c =2 ,			L=5 ,	unless	stated	otherwise)	
with	additive	effect	on	the	n-dimensional	phenotype		z .		

	

A	multifurcating	tree	tracks	the	genealogies	of	the	alleles	generated	at	these	loci.	When	

only	one	branch	of	an	allele	tree	survives	an	adaptive	step	is	recorded	as	per	standard	

terminology48.	The	per	locus	mutation	rate,			u= 4×10−5 ,	is	used	for	per	genome	

replication	64.		Due	to	high	mutation	rate	and	large	population	size	multiple	mutations	

may	be	generated	in	each	generation.	So	there	is	clonal	interference	in	our	simulations.	

For	this	reason	we	only	use	individual-based	simulations	in	our	study.	Analytical	results	

concerning	equations	(12)-(28)	have	previously	been	reported48,49,56,65,66.	At	each	

generation	cancer	cells	are	removed	with	probability				1−w z( ) 	as	viability	selection.		In	
each	simulation	the	population	genetics	parameters	are	recorded	and	displayed	in	real-

time	on	the	computer	screen	including	time	in	years	with	24	hours	doubling	time	(can	

be	adjusted	if	required),	adaptive	steps,	generation	time	and	population	size.	The	reason	
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to	set	the	doubling	time	as	24	hours	is	to	allow	simulations	of	more	generation	time	to	

gain	more	insights	into	the	underlying	evolutionary	process	(e.g.,	one	day	doubling	time	

allows	roughly	37000	generations	for	100	years,	however,	5	days	doubling	time	only	

allows	about	7400	generations).	The	summary	statistics	for	population	fitness	and	

adaptive	steps	are	sampled	every	100	generations	unless	otherwise	stated.	The	real-

time	spatial	evolutionary	process	of	the	cancer	development	is	visualized	in	3D.	Two-

dimensional	(2D)	or	3D	snapshots	including	fitness	values	of	each	cancer	cell	and	

movies	are	made	directly	from	simulations.	The	phylogeny	of	the	evolving	cancer	cells	in	

each	simulation	can	be	reconstructed	in	real-time	by	removing	dead	cells.	The	related	

simulations	in	this	study	took	over	60	computer	core	years	(equivalent	to	one	computer	

core	runs	non-stop	for	60	years)	to	finish.	
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Figure Legends 
	

Figure	1.	3D	simulation	snapshots	of	cancer	adaptive	evolution	under	various	directionally	

changing	TME	optima.		

Illustrative	3D	snapshots	of	the	evolving	cancer	cell	population	are	taken	sequentially,	

under	different	TME	change	rates	(see	Methods),			v1 .	a-c,			v1 =0.05 .	d-f,			v1 =5×10
−3 .	g-i,	

		v1 =5×10
−4 .	j-l,			v1 =5×10

−5 .	Cancer	cells	are	coloured	according	to	their	fitness	(≥0.75,	

red,	<0.75	green).	Note	that,	because	of	immediate	population	extinction,	data	are	not	

shown	for	simulations	with	TME	change	rate	at			v1 =0.5 .	The	width	of	the	fitness	

landscape	(i.e.	selection	intensity)	is	set	to		σ 2 =10 (equation	(9)	and	Supplementary	
Figure	S2).	

	

Figure	2.	3D	simulation	snapshots	of	cancer	evolution	under	various	directionally	changing	

TME	optima	with	different	fitness	cut-off	values	to	illustrate	sub-clonal	heterogeneity	of	

fitness.	

Illustrative	3D	snapshots	of	the	evolving	cancer	cell	population	are	taken	with	different	

fitness	cut-off	values	from	Figure	1a,	1d,	1g	and	1j.	Cancer	cells	are	coloured	according	

to	their	fitness	cut-off	value,	which	results	in	two	colours	for	the	3D	snapshots:	red	

(large	than	or	equal	to	cut-off	value	indicating	higher	fitness)	and	green	(small	than	cut-

off	value	indicating	lower	fitness),	respectively.	The	cut-off	value	for	fitness	is	0.75	for	(a,	

d).	The	cut-0ff	value	for	fitness	is	0.9	for	(b,	e).	The	cut-off	value	for	fitness	is	0.99	for	(c,	

f),	(g,	j),	(h,	k)	and	(i,	l).	Note	that	the	lower	fitness	cancer	cells	are	coloured	in	green	

with	low	colour	opacity	in	d,	e,	f,	j,	k	and	l.	The	corresponding	original	figures	are	in	a,	b,	

c,	g,	h,	and	i,	respectively.	

	

Figure	3.	Representative	cancer	evolution	trajectories	with	different	rates	of	directionally	

changing	TME	optima.	

a,	the	mean	population	fitness	of	the	evolving	cancer	cells	is	sampled	at	various	TME	

change	rates	.	The	dashed	line	represents	mean	fitness	0.5.	When	mean	population	

fitness	reaches	this	value	it	is	more	likely	to	be	extinct.	The	line	represents	a	simple	

linear	regression	fit.	b,		the	mean	selection	coefficients	are	sampled	at	various	TME	
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change	rates.	The	line	represents	a	smooth	curve.	c,	the	mean	selection	coefficients	are	

plotted	against	the	TME	change	rates.	d,	the	mean	population	fitness	is	plotted	against	

the	number	of	traits	of	cancer	cells.	e,	the	mean	selection	coefficients	are	plotted	against	

the	number	of	traits	of	cancer	cells.	The	TME	rates	used	are			v1 =0.5 ,			v1 =0.05 ,	

		v1 =5×10
−3 ,			v1 =5×10

−4 	and			v1 =5×10
−5 .	Note	that,	because	of	immediate	population	

extinction	data	are	not	shown	for	simulations	with	TME	change	rate	at			v1 =0.5 .	Error	
bars	are	the	standard	error	of	the	mean	(s.e.m.),	and	each	point	represents	100	

independent	simulations.		

	

Figure	4.	Cancer	evolution	under	multiple	different	initial	conditions.		

Simulations	are	performed	with	different	initial	conditions	regarding	population	size,	

fitness	and	TME	change	rates.	Three	conditions	for	initial	population	size	are	used,	

		N =10 	(coloured	blue),			N =104 (coloured	red)	and			N =107 (coloured	green),	
respectively.	Three	conditions	for	initial	fitness	are	also	used,			w =0.1(a-d),			w =0.5(e-h)	
and			w =0.9(i-l).	Populations	also	evolve	under	four	different	TME	change	rates:	

		v1 =5×10
−5 (a,	e	and	i),			v1 =5×10

−4 (b,	f	and	j),			v1 =5×10
−3 (c,	g	and	k)	and			v1 =0.05 (d,	h	

and	l),	respectively.	Error	bars	are	s.e.m.	and	each	point	represents	100	independent	

simulations.	Note	that	in	e-l	all	color	lines	are	present,	but	they	are	too	close	to	each	

other	to	be	seen	clearly.	

	

Figure	5.	Cancer	evolution	under	different	anti-cancer	treatment	strategies.		

Example	3D	snapshots	are	taken	sequentially	after	sudden	change	of	the	TME	optimum	

due	to	treatments	(a-o).	Four	different	treatments	maintaining	four	different	levels	of	

TME	optimum	are	shown:			z1
opt =5 (a-e),			z1

opt =6 (f-j),			z1
opt =7 (k-o)	and			z1

opt =8 (no	3D	
snapshots	are	taken	due	to	immediate	population	extinction	after	treatment),	

respectively.	For	understanding	clonality	of	cancer	cells	after	treatments,	e,	j	and	o	show	

the	clonal	expansion	of	cancer	cells	after	treatments	for			z1
opt =5 ,			z1

opt =6 	and			z1
opt =7 ,	

respectively.	In	order	to	track	the	precise	fitness	status	of	the	population	the	sample	is	

taken	for	every	generation.	The	population	fitness	plotted	against	generation	time	is	
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summarized	in	p	for	each	treatment,	and	the	dashed	line	indicates	when	the	treatment	

starts	(after	generation	100).	
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