
Estimating DNA-DNA interaction frequency
from Hi-C data at restriction-fragment

resolution
Christopher JF Cameron1, 2, Josée Dostie2,�, and Mathieu Blanchette1,�

1School of Computer Science, McGill University
2Department of Biochemistry and Goodman Cancer Research Center, McGill University

Hi-C is a popular technique to map three-dimensional chro-
mosome conformation by capturing the frequency of physical
contacts between pairs of genomic regions in cell populations.
Although the resolution of Hi-C data is in principle only
limited by the size of restriction fragments (300 bp - 4 kb),
stochastic noise caused by the limited sequencing coverage
forces researchers to artificially reduce the resolution of Hi-C
matrices by binning the genome into 5-100 kb regions, resulting
in a loss of information and biological interpretability. Here,
we present the Hi-C Interaction Frequency Inference (HIFI)
algorithms, a family of computational approaches that takes
advantage of dependencies between neighboring restriction
fragments to estimate restriction-fragment resolution inter-
action frequency matrices from Hi-C data. HIFI is shown
to be superior to existing fixed-binning and state-of-the-art
approaches via cross-validation experiments on Hi-C data and
comparisons to 5C data. It also greatly improves the delineation
of enhancer-promoter contacts. Finally, the high resolution
afforded by HIFI reveals a new role for active regulatory
regions in structuring topologically associating domains (TADs)
and subTADs. By operating upstream of many Hi-C data
analysis tools (e.g., normalization tools, as well as loop, TAD,
and compartment predictors), HIFI will be easily inserted into
a number of Hi-C data analysis pipelines, enabling a variety of
high-resolution genomic organization analyses.
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Introduction

Cells are complex, dynamic environments that require con-
stant regulation of their genes to ensure survival. The ad-
vent of chromosome conformation capture (3C) technolo-
gies (1), and recent advances in imaging techniques (2), have
led to an improved understanding of genome organization
and its role in gene regulation (3, 4). Hi-C (5), a high-
throughput derivative of 3C, provides an unparalleled view
of three-dimensional (3D) genome organization by capturing
all DNA-DNA contacts found within a cell population. Hi-C
has revealed different levels of genome organization, includ-
ing the topologically associating domains (TADs (6, 7) and
subTADs (8, 9)) and chromatin compartments (5). Yet, the

potential for a more refined understanding of 3D genome or-
ganization remains largely untapped (10).

In a Hi-C experiment, cross-linked chromatin is digested into
fragments using a restriction enzyme (RE). Restriction frag-
ments (RF) are then proximity-ligated to obtain a library of
chimeric circular DNA. Paired-end sequencing and mapping
of reads to a reference genome identifies interacting RFs and
their frequency count. The data is conventionally stored as a
pairwise read count matrix, RC, where RCi,j is the num-
ber of observed interactions (read-pair count) between ge-
nomic regions i and j. Despite the great sequencing depth of
typical Hi-C experiments (200-500 million read pairs), RF-
resolution RC matrices are extremely sparse, with most RF
pairs being observed either zero or one time. This sparsity
makes observations of individual contacts between RF pairs
inherently stochastic and unreliable. Increasing sequencing
coverage is a partial solution, but without improved bioinfor-
matics analyses, the depth of sequencing needed to make reli-
able estimates of RCi,j for individual RFs is unmanageable.
For this reason, Hi-C data is rarely studied at RF resolution,
but instead binned at fixed intervals (e.g., every 25 kb) to pro-
duce interaction frequency (IF) matrices. Unfortunately, re-
ducing the resolution of a Hi-C IF matrix leads to difficulties
in studying interactions between fine-scale genomic elements
such as promoters and enhancers.

To improve the resolution of Hi-C data, recent protocols sug-
gest digesting DNA more finely, either with a four-cutter
RE (10, 11) or DNAse I (12), followed by binning at 1 to
5 kb. While these methodologies increase the resolution of
a Hi-C IF matrix, they actually worsen the problem of spar-
sity and stochastic noise. For example, using a 4-cutter RE
instead of a 6-cutter results in a 16-fold increase in the num-
ber of RFs, and a 256-fold increase in RF pairs. This prob-
lem can be alleviated by using DNA capture technologies to
concentrate sequencing on a predefined set of loci (13, 14),
but this approach loses the ability to interrogate the whole-
genome conformation in a hypothesis-free manner. Instead,
new bioinformatics approaches have been proposed to detect
individual significant contacts at high resolution from Hi-C
data (15, 16), and a machine-learning method has been intro-
duced to smooth Hi-C matrices at 10 kb resolution (17). Dy-
namic binning was also proposed as a way to adjust bin size
to ensure even read coverage across the genome, enabling lo-
cally higher resolution (18). However, no approach currently
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exists to obtain complete and accurate IF matrices at RF res-
olution. Such an approach would be valuable as it would
allow researchers to revisit existing datasets and get more in-
formation out of them without having to change experimental
protocols or generate more experimental data.
Here, we introduce the Hi-C Interaction Frequency Inference
(HIFI) algorithms, a family of computational approaches that
provide reliable estimates of IFs at RF resolution. HIFI algo-
rithms reduce stochastic noise, while retaining the highest-
possible resolution, by taking advantage of dependencies be-
tween neighboring RFs. We validate these algorithms via
cross-validation and a comparison to observations made by
independent chromosome conformation assays. We further
demonstrate that HIFI greatly improves the detection of con-
tacts between promoters and enhancers. Finally, we illustrate
additional benefits of high-resolution Hi-C data analysis by
using it to study how active regulatory regions are involved
in structuring TADs and subTADs.

Results
Hi-C interaction frequency inference. HIFI algorithms
aim to reliably estimate Hi-C contact frequencies between all
intra-chromosomal pairs of restriction fragments. The output
of a HIFI algorithm is an IF matrix, where each entry (i, j)
corresponds to the IF of the RFs from row i and column j.
As REs do not digest DNA uniformly along the genome, dif-
ferent rows/columns correspond to regions of different sizes.
Depending on the RE used, the achievable resolution of Hi-
C ranges on average from ~400 bp (for a four-cutter such as
MboI) to ~3.7 kb (for a six-cutter such as HindIII). The high-
resolution analysis of Hi-C data faces multiple challenges, of
which the sparsity of the observed read-pair data is the most
significant. For example, a Hi-C experiment with a very high
sequencing depth of one billion read-pairs will yield on aver-
age approximately 0.1 read-pairs per intrachromosomal ma-
trix entry for a 6-cutter RE, and less than 0.001 for a 4-cutter
RE. This sparsity results in the observed read-pair count for
a given RF pair being a poor (high-variance) estimator of the
true IF, except for rare RF pairs located in regions of the Hi-C
contact map where IF values are extremely high. All existing
solutions to this problem, including the methods introduced
in this paper, take advantage of the fact that IF of neighboring
entries in the IF matrix are strongly correlated. In particular,
the most common approach to the resolution/accuracy trade
off is to artificially reduce the resolution by binning the raw
data to fixed-size intervals (e.g., 25 kb bins). This lower res-
olution increases the number of reads per bin pair, and thus
allows for a more reliable estimation of IF, but at the cost of a
loss in biological interpretability. Importantly, no unique bin
size is uniformly ideal for an entire IF matrix. Portions of an
IF matrix where high IFs are present could support a high-
resolution analysis, whereas others, corresponding to lower
IF values, may require larger bins for accurate IF estimation.
This is the key motivation behind the family of RF-resolution
approaches presented here.
More specifically, the problem addressed here is the follow-
ing: consider a Hi-C datasetH produced with a given restric-

tion enzyme e. For a given chromosome, the raw outcome is
stored in an n×n intrachromosomal matrix RC, where n is
the number of RFs produced by e, and RCi,j contains the
number of read-pairs mapped to RF pair (i, j). Our goal is to
estimate as accurately as possible the true RF-level interac-
tion frequency matrix, IFtrue, which is the theoretical n×n
IF matrix one would obtain if one were to sequence an in-
finitely large version ofH to infinite depth. IFtrue is affected
by a number of library, sequencing, and mapping biases that
would need to be corrected in order to allow for proper bi-
ological interpretation; many such normalization techniques
already exist for this task (19–21). Our goal here is not to
improve upon these techniques, but to work upstream and
provide the most accurate estimate of IFtrue.
Four approaches are introduced and assessed (see Methods
for details), each taking as input matrixRC and producing as
output an estimate of IFtrue:

1. The commonly-used fixed-binning approach, where the
genome is first partitioned into bins containing a fixed
number of kb (or a fixed number of RFs, as done here)
and the estimated IF for a given RF pair is the average of
the RC values of all RF pairs that belong to the same bin
pair.

2. A simple Kernel Density Estimation (HIFI-KDE) ap-
proach, where the IF estimate at a given matrix entry is ob-
tained as the average of surrounding entries, weighted us-
ing a two-dimensional Gaussian distribution with a fixed
standard deviation (bandwidth).

3. An Adaptive Kernel Density Estimation (HIFI-AKDE)
approach, where the bandwidth is chosen dynamically for
each matrix entry in order to ensure that a sufficient num-
ber of read-pairs is available for reliable IF estimation,
while maximizing the resolution.

4. An approach based on Markov random fields (HIFI-MRF)
where dependencies between neighboring cells are mod-
eled and used to identify the maximum a posteriori esti-
mate of IFtrue.

Assessing the accuracy of high-resolution IF inference al-
gorithms is challenging because IFtrue is unknown, as Hi-
C datasets of infinite sequencing depths are not achievable.
Instead we consider two surrogates. First, we use a cross-
validation approach from existing Hi-C data. Second, we as-
sess predictions against data produced by Chromosome Con-
formation Capture Carbon Copy (5C (22)), a targeted ampli-
fication protocol that achieves a much higher read count per
RF pair compared to Hi-C.

Cross-validation of HIFI algorithms. We used cross-
validation to assess the accuracy of HIFI algorithms genome-
wide. Here, a Hi-C read-pair dataset of high sequencing
depth produced by Rao et al. (2014) from GM12878 cells
using HindIII was first filtered to retain only high-confidence
intra-chromosomal read pairs, and then randomly partitioned
into an input set (containing 80% of the set of filtered read
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pairs, or 607,587,043 read pairs), and a test set (20%, or
151,979,454 read-pairs) (Fig. 1A). The input set is then fur-
ther down-sampled into seven subsets ranging in size from 1
to 100% of the full input set. Mapping and tabulating read-
pairs at RF-level resolution yields a family of IF matrices:
RCinput_1, RCinput_2, . . ., RCinput_100, and RCtest.
Each of the four inference algorithms are evaluated by their
application to each of the down-sampled input matrices to
obtain a predicted IF matrix, IFpred, which is then compared
to the test matrix RCtest to obtain the sum of squared errors:

SSE(IFpred,RCtest) =
∑
i<j

(IFpredi,j
−RCtesti,j )2

Although RCtest is not equal to IFtrue, the inference ap-
proach that minimizes SSE(IFpred,RCtest) is also the one
that minimizes SSE(IFpred, IFtrue), and hence, this serves
as a valid basis for comparison.
Fig. 1B shows that the accuracy (SSE) of fixed-binning
strategies improves with input set size and that the optimal
accuracy is obtained at different bin sizes for different in-
put set sizes: large bins are ideal for low-coverage training
data, whereas smaller bins are better with high-coverage data.
More importantly, the fact that read-pairs are highly non-
uniformly distributed inRC matrices means that the ideal bin
size differs depending on the local RC density. In particular,
short-range contacts, which typically have higherRC values,
can support high-resolution analyses (smaller bins), but those
at longer ranges are best estimated with larger bins (Fig. 1C).
The HIFI-KDE approach with a fixed bandwidth generally
obtains better results (Suppl. Fig. 1A, B), but suffers from
the same type of problem, where optimal results are obtained
with large bandwidth values for low-coverage datasets and
lower bandwidth values for high-coverage. The HIFI-AKDE
approach, where different bandwidth values are chosen at
each cell based on the surrounding signal density, clearly
outperform the first two approaches (Fig. 1D), with opti-
mal performance obtained using a MinimumCount value
of 100 (see Methods) throughout various coverage levels.
HIFI-MRF performs the best overall (Fig. 1D and Suppl. Fig.
1C, 1D), except at extremely low sequencing depths (i.e., 6-
12M read-pairs). Indeed, for typical sequencing depths (100-
250M read-pairs), HIFI-MRF improves IF estimation accu-
racy over the entire range of genomic distances (Fig. 1E,
Suppl. Fig. 2), producing estimates that are 5-40% more ac-
curate than those obtained by fixed-binning approaches and
5% more accurate than HIFI-KDE and HIFI-AKDE. HIFI
approaches also produce estimates that are more accurate
than those of HiCPlus (17), a machine-learning technique
for high-resolution analysis of Hi-C data, especially at short-
range distances (see Fig. 1D and 1E, Suppl. Fig. 1D and 3,
and Methods).

Validation against 5C data. 5C has been used to study the
conformation of moderate-size genomic regions (100 kb -
5 Mb), including the beta-globin locus (22, 23), the HOX
clusters (8, 24, 25), the CFTR locus (26, 27) and the Xist
locus (7). 5C allows for a high sequencing depth measure-

ment of the IF of each RF pair within given genomic regions,
which improves the accuracy of RF-level IF estimates. As
such, 5C data constitutes an excellent benchmark to compare
different inference approaches. We analyzed data from two
cell types for which both 5C and Hi-C data are available: (i)
a 4 Mb region around the Xist gene (Fig. 2A and 2B) in
mouse embryonic stem cells (mESC; Hi-C data from Dixon
et al., 2012; 5C data from Nora et al., 2012), and (ii) a 2.7
Mb region around the CFTR gene (Suppl. Fig. 4A and 4B)
in human GM12878 cells (5C data from Smith et al., 2016;
Hi-C data from Rao et al., 2014). In the GM12878 dataset,
which has higher Hi-C sequencing depth (~760M mapped
read-pairs genome-wide), the correlation between raw Hi-C
and 5C data is moderate (Spearman ρs = 0.45; Suppl. Fig.
4C), but it is improved by the application of HIFI-MRF (ρs
= 0.71; Suppl. Fig. 4D, E). In the mESC dataset, with lower
Hi-C sequencing coverage (~122M read-pairs), the correla-
tion of raw 5C against raw Hi-C data is relatively weak (ρs =
0.27; Fig. 2C), but improves to nearly the same level as the
first dataset from the application of HIFI-MRF (ρs = 0.69;
Fig. 2D, 2E). In both cases, the intricate structure of TADs,
as well as some of the finer looping events become apparent
in the HIFI-MRF-processed Hi-C data (Fig. 2D and Suppl.
Fig. 4D).
Indeed, the application of HIFI-MRF to Hi-C data allows
for the detection of regulatory contacts that could previously
only be observed using 5C. For example, Nora et al. (2012)
used 5C to observe a long-range interaction between Tsix
and its transcriptional regulator – a large intervening non-
coding RNA called “Linx” – occurring in female mice as a
component of X-inactivation. This interaction is very clearly
observed in the HIFI-MRF-processed Hi-C data (Dixon et al.,
2012), whereas it is difficult to distinguish from background
in raw or binned Hi-C data (Fig. 3A and B). These results
demonstrate that HIFI-MRF can be used to analyze existing
Hi-C data sets and potentially lead to novel discoveries at
finer genomic scales.

Validation against externally-predicted chromatin con-
tacts. To more fully assess the extent to which HIFI-MRF-
processed Hi-C data can be used to identify biologically
relevant contacts, we asked whether it can also confirm
chromatin interactions found through alternative approaches.
Specifically, we considered a set of contacts identified by
Chromatin Interaction Analysis with Paired-End Tag Se-
quencing (ChIA-PET (28)) in GM12878 cells, bound either
by CTCF (92,114 contacts (29)), RNA Polymerase II (PolII
- 192,394 (29)), or RAD21 (38,952 (30)). We also consid-
ered a set of computationally inferred contacts identified by
correlation of DNAse I hypersensitivity signals across mul-
tiple cell types (31). For each set of contacts, a set of neg-
ative (control) fragment pairs were chosen by randomly re-
pairing the same RFs. We then measured, for each range of
genomic distance, the extent to which positive contacts could
be distinguished from negative contacts on the basis of nor-
malized HIFI-MRF Hi-C data, by measuring the Area Un-
der the Receiver Operating Characteristic curve (AUROC) of
a univariate predictor using the RF pair’s inferred IF value
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Fig. 1. Cross-validation of fixed-binning and HIFI methodologies. A) Schematic representation of cross-validation methodology to assess the accuracy of fixed-binning
and proposed HIFI methodologies. B) Cross-validation error for fixed-binning approaches, for different bin sizes, as a function of coverage. See also Suppl. Fig. 1 for similar
analyses for HIFI-KDE and HIFI-AKDE. C) Analysis of fixed-binning error (relative to error with 1 RF per bin) across genomic distance between RF-pairs. No singular bin size
performs best for all genomic distances. D) Comparison of errors for different approaches. For fixed binning and HIFI-KDE, the optimal bin size or bandwidth was chosen
separately for each coverage level. Nonetheless, HIFI-MRF outperforms all other approaches, including HiCPlus (17). E) Comparison of errors (relative to error obtained with
fixed binning using 16 RF per bin) by genomic distance of RF pairs, using as input a set of 304M read pairs (50% of total training set). HIFI-MRF performs best across all
distances.

B D
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Fig. 2. Recapitulation of 5C observations by HIFI-MRF. A) IF matrix obtained by 5C of the 4.5 Mb locus surrounding the Xist gene in mouse embryonic stem cells (7).
Note the use of true-size heatmaps, where the height (resp. width) of a row (resp. column) is proportional to the size of the RF it represents. B) Raw, RF-resolution Hi-C data
for the same region (6). C) Correlation of 5C and raw Hi-C data at RF resolution (Spearman ρs = 0.27, two-sided Student’s t-test p-value< 10−16). D) IF matrix estimated
by HIFI-MRF from the same Hi-C data. Observe the similarity to the 5C data in (A). E) Correlation of 5C and HIFI-MRF processed Hi-C data at RF resolution (Spearman ρs

= 0.69, p-value< 10−16).
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as a predictive variable. Higher AUROC values indicate im-
proved ability to distinguish positive from negative contacts.
We observe that HIFI-MRF-processed Hi-C data allows sig-
nificantly better detection of validated contacts compared to
fixed-binning approaches, for all four datasets, across all ge-
nomic distance ranges, and both at low (~61M read-pairs ob-
tained by down-sampling; Fig. 4A-C and Suppl. Fig. 5A-C,
6A and 6B), and high (~608M read-pairs; Fig. 4D-F, Suppl.
Fig. 5D-F, 6C, and 6D) sequencing depth. Notably, the abil-
ity to distinguish positive from negative ChIA-PET contacts
is relatively poor at short distances (<50 kb) because nearly
all pairs have very high IF values, but improves considerably
at longer range (300-500 kb). In contrast, contacts inferred
based on DHS correlations are more difficult to identify over-
all (AUROC<0.6), becoming increasing so at longer ranges.
We speculate that this loss in detection power may be due
to an increased error rate present in this benchmark dataset.
Remarkably, the application of HIFI-MRF to low-coverage
Hi-C data yields predictive power that is nearly as good as in
the high-coverage dataset (compare panels Fig. 4A-C to D-
F), suggesting that HIFI-MRF is able to identify functional
contacts even in Hi-C data of moderate depth. Fig. 4 also
includes results for HiCPlus (17) and HMRFBayes (15), an
approach for the detection of significant contacts at RF res-
olution (see Methods). Overall, HIFI-MRF clearly outper-
forms these two approaches, although HMRFBayes performs
nearly equally well for some low-coverage data sets (Fig. 4A-
C). The advantage of HIFI-MRF is particularly noticeable at
short- to medium-range distances (<200 kb). Taken together,
these results show that using HIFI-MRF to process Hi-C data
improves the ability to delineate individual chromatin con-
tacts.

HIFI allows new insight into fine-level genome organi-
zation. The high accuracy and resolution afforded by HIFI
enables researchers to answer questions that are difficult to
address with lower-resolution analyses of Hi-C data. Here,
we illustrate one such application: the high-resolution analy-
sis of TAD and subTAD boundaries. We used a modified di-
rectionality index (DI) score, originally introduced by Dixon
et al. (2012; see Methods), to identify 5,000 TAD boundaries
in the HindIII-GM12878 Hi-C data. Boundary predictions
were performed at two resolutions: (i) RF-resolution using
HIFI-MRF-processed data (3.7 kb on average; Fig. 5A, top
heatmap) and (ii) classical fixed-binning approach (16 RF ≈
50 kb per bin; Fig. 5A, bottom heatmap). Using ENCODE
ChIP-seq datasets (34), we quantified the occupancy of DNA-
binding proteins relative to TAD boundaries. Consistent with
previously reported observations and models (35–37), CTCF
(Fig. 5B) showed a remarkable enrichment immediately out-
side of these boundaries, with sites on the plus strand sharply
peaking at upstream TAD boundaries and those on the minus
strand peaking at downstream boundaries. Similar enrich-
ments at TAD boundaries are observed for RAD21, SMC3
(Cohesin complex), and ZNF143 (Suppl. Fig. 7), consistent
with previous reports (6, 38–41). Although the same phe-
nomenon is visible in fixed-binning data, the peaks are much
sharper (narrower and higher) in HIFI-MRF data, indication

Linx Xite

A

B

XiteLinx
Log(IF)

Fig. 3. HIFI-MRF reveals fine-scale regulatory contacts in Hi-C data. Heatmap
(A) and virtual 4C (32, 33) plot (B) showing the long-range interaction between
Tsix and its transcriptional regulator, Linx, on chromosome X of female mice as
observed by Nora et al. (2012) using 5C. This interaction is more easily observed
in HIFI-MRF data than in raw or binned Hi-C data.

that RF-resolution allows more accurate calls of TAD bound-
aries.

We next studied the role of TAD boundaries in gene reg-
ulation, by looking at the distribution of active regulatory
regions, as annotated by ChromHMM (42) based on cell-
type-specific histone marks and DNA accessibility data. We
observe a moderate enrichment for active promoters imme-
diately outside TAD boundaries (only visible in HIFI-MRF
processed data) and for strong enhancers within TADs. This
trend is partially reflected in the occupancy profiles of sev-
eral transcription factors (Fig. 5D and Suppl. Fig. 8). Some
transcription factors (in particular MEF2A, MEF2C, MTA3,
NFIC, RELA, RUNX3, and SPI1) exhibit a gradual enrich-
ment toward the middle of TADs, together with a small
but well-defined, CTCF-like peak just outside TAD bound-
aries. Others (e.g., CHD1, CHD2, FOXM1, IRF4, PAX5,
and PML) also show the same peak at TAD boundaries but
little within-TAD enrichment (Suppl. Fig. 9). Notice that in
many cases, the enrichment at TAD boundaries is only ap-
parent based on HIFI-MRF data and would likely be missed
using data binned at 50 kb resolution.

Cameron et al. | HIFI bioRχiv | 5

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2018. ; https://doi.org/10.1101/377523doi: bioRxiv preprint 

https://doi.org/10.1101/377523
http://creativecommons.org/licenses/by-nc/4.0/


A B C

FED

Co
ve

ra
ge

: 6
08

M
 re

ad
-p

ai
rs

Co
ve

ra
ge

: ~
61

M
 re

ad
-p

ai
rs

Fig. 4. Positive/negative RF contact delineation analysis. Area under the receiver-operator curve (AUROC) comparison for a univariate predictor applied to positive and
negative contact populations for ChIA-PET CTCF (panels A and D (29)), RNAPII (panels B and E (29)) and Thurman et al. (2012) DHS-linked enhancer-promoter linkages
(panels C and F). To allow for the comparison with HiCPlus and HMRFBayes, only a subset of the contacts were analyzed, those occurring on chr9-X and within the same
1 Mb bin. Top (A-C) and bottom (D-F) rows represent the performance of the classifier applied to Hi-C data of size 60.8M (10% of input set) and 608M (100% of input
set), respectively. HIFI-MRF is found to provide more accurate (based on AUROC) predictions of RF-pair classification (positive vs. negative) compared to other inference
methods. Genome-wide results for HIFI are shown in Suppl. Fig. 5. Similar results are observed for ChIA-PET RAD21 (Suppl. Fig. 6)

We then repeated the analysis (HIFI-MRF followed by TAD
boundary calls) on Hi-C data generated on the same cell line
using the 4-cutter MboI restriction enzyme, with cut sites ev-
ery 434 bp on average. The extremely high resolution of this
dataset (Fig. 5E) provides opportunities to study fine struc-
tures such as subTADs (8, 9), which are difficult to study at
lower resolutions. We used the HIFI-MRF MboI-GM12878
data and the same modified DI approach to identify a set
of 25,000 domain boundaries, of which approximately 2,500
matched a HindIII-GM12878 TAD boundary (within 25 kb).
The remaining ~22,500 boundaries are not detected in the
HindIII data and likely correspond to subTAD boundaries.
Repeating the occupancy analysis against subTAD bound-
aries, the same enrichment for convergent CTCF sites is ob-
served (Fig. 5F), but a very different picture emerges with re-
spect to regulatory regions. Most notably, active promoters,
and to a lesser extent strong enhancers, have a clear tendency
to occupy regions that lie immediately outside subTADs (Fig
5G; see also example in Fig. 5E). Indeed, the density of active
promoters is approximately 30 times higher in the 1 kb region
that precedes a subTAD boundary than in the 1 kb region that
follows one. A similar enrichment is found in inter-subTAD
regions for FOXM1 and NFIC (Fig 5H), and nearly all tran-

scription factors studied. These results are consistent with
a model where active regulatory regions play a key role in
partitioning TADs into subTADs.

Methods

HIFI: Fragment-specific bias calculation. Factors such as
fragment size, GC content, and mappability affect the ob-
served read count matrix RC. For each fragment i of chro-
mosome c, we estimate this bias as

biasi =
∑
jRCi,j

nreads
·nfragments,

where nreads is the total number of read pairs mapped to the
chromosome c and nfragments is the number of RF on that
chromosome. Computed biases are used to obtain a normal-
ized read count matrix nRC, where nRCi,j = RCi,j

biasi·biasj
.

HIFI: Fixed binning approaches. In the fixed-binning ap-
proach, the user specifies the value binSize, which is the
number of consecutive RFs to be binned together. Defining
bini = {j : bj/binSizec= bi/binSizec}, we then obtain the

6 | bioRχiv Cameron et al. | HIFI

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2018. ; https://doi.org/10.1101/377523doi: bioRxiv preprint 

https://doi.org/10.1101/377523
http://creativecommons.org/licenses/by-nc/4.0/


CTCF

A E

CE1 NEK6-TSS1 NEK6-TSS2

B

Within TAD

F

Within subTAD

C

Within TAD

G

Within subTAD

D

Within TAD

H

Within subTAD

CTCF

ChromHMM ChromHMM

FOXM1/NFIC FOXM1/NFIC

HindIII MboI
4 Mb 0.2 Mb

Log(IF)
SE

Fig. 5. Analysis of RF-resolution TAD and subTAD boundaries in GM12878. Analyses were performed on both Hi-C data resulting from a HindIII (3.4 kb per RF on
average; panels A-D) and a MboI restriction digest (434 bp per RF on average; panels E-H), from Rao et al. (2014). TAD and subTAD boundary predictions were made
on IF matrices produced either by HIFI-MRF or a fixed-binning approach (16 RF per bin, i.e. approx. 50 kb per bin for HindIII and 7 kb per bin for MboI). (A) IF matrices
produced by HIFI-MRF (top) and fixed binning (bottom) for a 4 Mb locus surrounding the NEK6 locus (chr9:124999244-128993971). (B and F) CTCF occupancy as a function
of distance to the nearest TAD (B) or subTAD (F) boundary, separately for sites on the forward and reverse strands. Convergent CTCF sites are enriched at both TAD and
subTAD boundaries. (C and G) Coverage of active promoters (red) and strong enhancers (green) identified by ChromHMM, as a function of the distance to the nearest TAD
(C) or subTAD (G) boundary. These regions are very strongly enriched just outside of subTAD boundaries, but less so around TAD boundaries. (D and H) Occupancy of
two transcription factors, FOXM1 and NFIC, as a function of distance to the nearest TAD (B) or subTAD (F) boundary. While most TFs have an occupancy peak at TAD and
subTAD boundaries, the extent of the enrichment within TADs varies from low (e.g. FOXM1) to high (e.g. NFIC). (E) IF matrices produced by HIFI-MRF (top) and fixed binning
(bottom) for the 200 kb NEK6 locus (chr9:126879748-127079891). Regulatory regions identified in Huang et al. (2016) are marked SE (super enhancer), CE1 (conventional
enhancer), NEK6-TSS1 and NEK6-TSS2 (alternative promoters). Notice how all these regions lie between visible subTADs.
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following estimate of interaction frequency for RF pair (i, j):

IFbinSizei,j
=
∑
a∈bini

∑
b∈binj

nRCa,b

binSize2

.

HIFI: Fixed Kernel Density Estimation (HIFI-KDE). This
approach follows the standard two-dimensional Kernel Den-
sity Estimation (KDE) procedure (43, 44), where predicted
IFpred for RF pair (i, j) is obtained as a weighted sum of
the entries of RC surrounding (i, j), parameterized by band-
width parameter h. Specifically, we set

IFKDEi,j
=∑3h
a=−3h

∑3h
b=−3hw(a,b;h) ·nRCi+a,j+b∑3h

a=−3h
∑3h
b=−3hw(a,b;h)

,

where w(a,b;h) = e
−a2+b2

2h2
√

2πh2 given h. Near the edges of the
matrix, values of a and b such that indices (i+a,j+ b) fall
outside the matrix are excluded from the sums of both the
numerator and denominator.

HIFI: Adaptive Kernel Density Estimation (HIFI-AKDE).
This approach is similar to the fixed KDE, except that the
value of the bandwidth parameter h is chosen separately for
each pair (i, j). Specifically, we choose hi,j to be the smallest
value such that

covi,j =
3h∑

a=−3h

3h∑
b=−3h

RCi+a,j+b ≥MinimumCount,

where ‘MinimumCount’ is a user-defined parameter. In
other words, regions of the matrix that tend to have largerRC
values are estimated using smaller bandwidths (i.e. higher
resolution), whereas those that are more sparse use larger
bandwidths. HIFI-AKDE results in a fine resolution in dense
regions and a lower resolution in more sparse areas of the
matrix. In order to speed up the computation of hi,j , we use
a precomputed cumulative matrix, cumRC, where

cumRCi,j =
i∑

a=1

j∑
b=1

RCa,b,

allowing to calculate covi,j in constant time:

covi,j = cumRCi+3h,j+3h− cumRCi+3h,j−3h

− cumRCi−3h,j+3h+ cumRCi−3h,j−3h

HIFI: Markov Random Field Estimation (HIFI-MRF). A
Markov Random Field (MRF) describes a set of random vari-
ables interconnected via a lattice of dependencies. Let us de-
note by IFMRFi,j

the IF value we aim to estimate at position
(i, j). We model dependencies between neighboring cells as

log(IFMRFi,j
)∼
N
(
µ= log(MedianNeighborhoodi,j),σ2

i,j

)
,

where MedianNeighborhoodi,j is the median of the eight
IFMRF cells surrounding cell (i, j). We chose to model
this dependency using the median instead of the mean of
the neighbors because it allows for sharper transitions re-
gions such as TAD boundaries. The value of σ2

i,j is set
to α · log(MedianNeighborhoodi,j), where α is a user-
defined parameter empricially set to 0.2.
We model the dependency between the observed read count
RCi,j and the estimated true IF value IFMRFi,j

using a Pois-
son distribution:

RCi,j ∼ Poisson(λ= IFMRFi,j
· biasi · biasj)

We then seek the matrix IFMRF that maximizes
Pr[RC,IFMRF ] = Pr[IFMRF ] · Pr[RC | IFMRF ].
We first initialize the IFMRF matrix using the output of the
HIFI-AKDE algorithm. We then optimize IFMRF using a
modified gradient descent approach. Each entry IFMRFi,j

is revised so as to maximize the local joint likelihood. This
process is repeated until convergence, which usually takes
less than 5-10 iterations.
Despite using of the median rather than the mean to model
inter-cell dependencies, some bleed-in effect is observed at
TAD boundaries. To prevent those, we designed an approach
where the nRC matrix is first scanned to identify sharp hor-
izontal or vertical transitions characteristic of TADs. Hori-
zontal boundaries are defined by a row index i and a pair of
column indices j and j′, and will be set if the distribution
of nRC values in nRCi,j...j′ differs significantly from that
in nRCi+1,j...j′ , as determined by a Kolmogorov-Smirnov
test. More precisely, boundaries are set greedily, starting
with the most significant boundary matrix-wide, and itera-
tively adding more boundaries, provided they do not overlap
previously set boundaries, until the KS statistic falls below
a user-defined threshold (the value of 1.5 was used here).
Vertical boundaries are obtained similarly. Boundaries are
then used in the HIFI-MRF model to prevent certain neigh-
bors from contributing to the neighborhood median of a given
cell. Specifically, cells (i′, j′) that sit on the opposite side of a
boundary from cell (i, j) are excluded from the neighborhood
of (i, j).

HIFI: Outputting normalized matrices. HIFI can either
produce a normalized or non-normalized output. Normalized
outputs are produced by the approaches described until now.
Non-normalized outputs are obtained as IFi,j · biasi · biasj .
In this manuscript, normalized outputs were used throughout,
except for the cross-validation experiment.

HIFI: Implementation and availability. The HIFI pack-
age is available at https://github.com/BlanchetteLab/HIFI. It
consists of a C++ program for IF estimation, together with
Python scripts for input data formatting and the true-size IF
matrix visualization.

HiCPlus. The source code for HiCPlus (17) was obtained
from https://github.com/zhangyan32/HiCPlus. Models were
trained on Hi-C data from chromosomes 1-8 at 10 kb res-
olution, within a range of 2 Mb, as recommended. Input
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and target contact frequencies were obtained from input set
and test RC matrices, respectively. Models were provided
100 epochs (10 times more than recommended) to converge
while ensuring overfitting did not occur. Model output was
then transformed from 10 kb to RF resolution based on the
number of nucleotides each RF contributed to a given 10 kb
bin.

HMRFBayes. A Java implementation of the
Hidden Markov Random Field based Bayesian
method (HMRFBayes (15)) was obtained from
http://www.unc.edu/ xuzheng/HMRFHiCFast/tutorial.php.
The HMRFBayes program was provided the observed and
expected contact frequencies for paired restriction fragments
within 1 Mb bins along chromosomes 9-X, where the
expected contact frequency was calculated as follows:

Expectedi,j =
TotalReadRowi ·TotalReadColumnj

TotalReadPairInMatrix

Hi-C read-pair pre-processing. The publicly available Hi-
C User Pipeline (HiCUP (45)) v0.5.3 was used to process
raw sequencing reads. HiCUP-mapped reads to the human
(hg19) genome are also filtered to remove expected arti-
facts resulting from the sonication and ligation steps (e.g.,
circularized reads, reads with dangling ends) of the Hi-C
protocol. Mapped reads were further filtered for a Map-
ping Quality Score (MAQ) greater than 30 to ensure unique
mappability(19). BAM/SAM-mapped read files were then
converted to a sparse matrix TSV file format (by our ’BAM-
toSparseMatrix.py’ script) before use with HIFI.

Directionality index and TAD prediction. he directional-
ity index (DI) was first described by Dixon J.R. et al. (2012)
to detect directionality bias for interactions across a Hi-C IF
matrix. The DI for a given RF is usually calculated as fol-
lows:

DI =
(

B−A
|B−A |

)(
(A−E)2

E
+ (B−E)2

E

)
,

where E = (A−B)
2 A and B are the sum of all interactions

within a window located either upstream (A) or downstream
(B) of an RF (window size of 500 kb is used here). E is
the expected number of reads under the null hypothesis (i.e.,
there is no interaction bias for the given RF). Due to the low
coverage at RF-resolution Hi-C data, the DI formula yields
very noisy predictions. We thus used the following modified
version:

DI ′ =
(

B−A
|B−A |

)(
(A−E)2

E2 + (B−E)2

E2

)
This modification transforms terms present in the right paren-
theses to error rates and helps to scale the magnitude of the
DI. TAD boundaries are defined as RFs whose DI’ value is a
local maximum or minimum in a window of 21 RFs (51 for
MboI analyses) centered around it. In the case of the fixed
binning (b=16) analysis, only RFs at the center of their bin

are considered. Finally, due to their low coverage, regions
within 2 Mb of a centromere or telomere were excluded.

ENCODE ChIP-seq peaks, ChromHMM, and CTCF
ChIP-seq signal data pre-processing. ChIP-seq data
from ENCODE (34) and ChromHMM (42) predictions were
downloaded from the UCSC Genome browser (46) and
binned to HindIII and MboI RFs. For Fig. 5C and 5G, only
states 1 and 4 were used (to reduce redundancy). CTCF
motifs and orientation were identified in a similar manner
to Fundenberg et al. (2016) using HOMER (47) and the
’CTCF_known1’ PWM (48). CTCF ChIP-seq signal data
was then parsed for the total signal value covered per motif
and the retained sums were then binned by expected RFs.

Data availability. The following Hi-C data sets were
used. From Rao et al. (2014), GM12878 with HindIII
and MboI digest (GEO:GSE63525); From Dixon et al.
(2012), mESC with HindIII digest (GEO:GSE35156).
For 5C comparisons, the following data sets were used:
From Smith et al. (2016): GM12878 with HindIII digest
(GEO:GSE75634); From Nora et al. (2012): mESC with
HindIII digest (GEO: GSE35721). For comparisons to
ChIA-PET, the following data sets were used: From Tang et
al. (2015), CTCF-mediated contacts (GEO:GSM1872886)
and RNAPII-mediated contacts (GEO:GSM1872887).
From Fullwood et al. (2009) : RAD21-mediated contacts
(GEO: GSM1436265; replicates averaged). Paired-end
tag clusters were binned to hg19 HindIII RFs to ensure
comparability with other datasets. Enhancer-promoter (EP)
pairs from Thurman et al., (2012) were obtained from:
ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration
_data_jan2011/byDataType/openchrom/jan2011/dhs_gene_
connectivity/genomewideCorrs_above0.7_promoterPlusMin
us500kb_withGeneNames_32celltypeCategories.bed8.gz.
Enhancers and promoters were then binned to their respective
RFs.

Discussion and Conclusions
Hi-C has become a commonly used approach to map 3D
chromatin organization genome-wide. Since its introduc-
tion in 2009, the method has been updated many times to
improve upon accuracy and resolution, or to target specific
types of contacts. However, to date, using Hi-C data to ac-
curately and systematically identify fine-scale chromosome
contacts remains challenging, mostly because the sequenc-
ing depth required to achieve high-resolution contact maps is
too great. To overcome the sparsity of contact information
and increase the signal-to-noise ratio, Hi-C data is tradition-
ally binned at fixed intervals along chromosomes to produce
lower-resolution matrices (10). This lower-resolution repre-
sentation of Hi-C data limits its application in studies of ge-
nomic regulatory networks or mechanisms of disease, which
require robust, high-resolution 3D genomics data.
Here, we introduced HIFI, a family of density estimation al-
gorithms that allow for the observation of high-resolution (at
the restriction-fragment scale) genomic contacts from Hi-C
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data of various sequencing depths. Our results show that HIFI
algorithms, and in particular those based on Markov Random
Fields (HIFI-MRF), provide highly accurate estimates of Hi-
C interaction frequency at RF resolution, and outperforms
classical fixed-binning approaches and previously published
methods such as HiCPlus (17). We demonstrate that HIFI-
MRF recapitulates contact data obtained by 5C and also cap-
tures interactions detected by ChIA-PET (Fig. 4) better than
HiCPlus and HMRFBayes (15). Unlike the former, HIFI is
easy to use and does not require special equipment (GPUs)
to run within a reasonable timeframe. Our method also runs
more than 10 times faster than the HMRFBayes. The high
resolution and accuracy provided by HIFI allows analyses
and discoveries that could not be made with lower-resolution
Hi-C data. For example, HIFI allows for the identification of
TAD boundaries at RF resolution, which provides a unique
opportunity to finely delineate the role of different DNA-
binding proteins. Benefiting from the RF-resolution achieved
with HIFI-MRF, we show that CTCF, RAD21, SMC3, and
ZNF143 are enriched just outside both TAD and subTAD
boundaries and their sharp depletion within-TADs may be a
major contributor to the formation of TAD boundaries (Fig.
5). In addition, we detail a set of transcription factors (based
on ENCODE ChIP-seq data) that are found to be enriched
at RFs labeled as TAD boundaries (Fig. 5B, C). Finally, we
highlight the new observation that active enhancers and pro-
moters appear to provide structure to TADs, whereby DNA
located between consecutive active regulatory regions form
subTADs. This is obviously just an illustration of insights
that can be gained from the analysis of Hi-C at high reso-
lution. Others would include the use of HIFI-processed Hi-
C data to further dissect the mechanisms of genome organi-
zation, and to prioritize non-coding variants obtained from
genome-wide association (GWAS) or expression quantitative
trait loci (eQTL) studies, as is starting to be done with capture
Hi-C data (49).

While HIFI provides a significant improvement over previ-
ous methodologies for handling Hi-C matrix sparsity, there
remains several directions for possible improvements. First,
HIFI is relatively slow, requiring roughly an hour per chro-
mosome (at HindIII resolution), due to the size of the ma-
trices analyzed and the complexity of MRF-based inference.
Improved algorithms, multi-threading, and GPU-based com-
putation are expected to provide significant speed-ups and
are under development. These improvements will also al-
low the calculation of confidence intervals for estimated con-
tacts frequencies, using Markov Chain Monte Carlo sam-
pling. Machine-learning (ML) approaches, such as convo-
lutional neural nets (CNN), offer an alternative to probabilis-
tic approaches like HIFI-MRF. In recent work by Zhang et
al. (2018), the authors showed that CNNs can be trained on
Hi-C data to increase the resolution from 40 kb to 10 kb. Be-
ing model-free, ML approaches have the potential to discover
and take advantage of unsuspected dependencies in the data.
However, these models have yet to produce RF-resolution
data and thus, remain limited in their ability to provide bi-
ological support as shown in this manuscript. In addition, be-

ing intrinsically complex models, prediction errors may oc-
cur in unexpected manners.
In conclusion, the HIFI algorithms and software described in
this manuscript allow for accurate, high-resolution analyses
of 3D genome organization using Hi-C data. RF-resolution
Hi-C data allows for the recapitulation of observations made
by 5C, a better separation of positive and control/background
contacts, RF-resolution TAD and subTAD boundary calling,
and the identification of potential DNA-DNA contacts and
TF enrichments that drive changes in chromatin architecture
and gene regulation. By operating upstream of many Hi-C
data analysis tools (e.g. loop, TAD, and compartment predic-
tors as well as fragment-bias normalization), HIFI can easily
be inserted in a number of Hi-C data analysis pipelines, and
we believe that the research community will be quick to take
advantage of this family of new algorithms.
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Supplementary Fig. 1. Parameter optimization of HIFI algorithms. A-C) Comparison of fixed-binning approach (A), HIFI-KDE (B), and HIFI-AKDE (C) accuracy, based on
Sum of Squared Error (SSE), when inferring Hi-C IFs across various input set sizes and parameter values (bin size [number of RFs binned], bandwidth size, and minimum
count, respectively). D) Comparison of most accurate parameter sets at various input set sizes for all inference methodologies (based on SSE). We observe that HIFI-MRF
outperforms all other approaches described.
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Supplementary Fig. 2. Fixed-binning approach vs. HIFI-MRF. A) raw Hi-C IF matrix for the NEK6 locus at HindIII RF-resolution. Inferred Hi-C IF matrices resulting from
fixed-binning (b=16 RFs) and HIFI-MRF approaches is shown in (B) and (C), respectively. Signed error matrices (resulting from the subtraction of the raw Hi-C matrix [A]
by either [B] or [C]) are shown for fixed binning (D) and HIFI-MRF (E). A noticeable reduction in error is observed for the HIFI-MRF signed error (E) when compared to the
fixed-binning (D).
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Supplementary Fig. 3. HiCPlus vs. HIFI-MRF. Inferred HIFI-MRF (A-C) and predicted HiCPlus (17) (C-E) matrices for chr14:19993948-21997430 of 30M (5%), 60.8M
(10%), and 608M (100%) input set sizes, respectively. HIFI-MRF provides similar predictions across all input set sizes, while HiCPlus provides sparser predictions as input
set size increases.
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Supplementary Fig. 4. Recapitulation of 5C observations by HIFI-MRF (GM12878-chr7 example). 5C observed GM12878-chr7 RF-pairs (A (27)) were compared against
their respective raw Hi-C (B (35)) and HIFI-MRF inferred (C) IFs for the same paired RFs. Raw Hi-C data demonstrates a moderate Spearman correlation with observed 5C
IFs (Spearman ρs = 0.45, p-value< 10−16 - panel D), while HIFI-MRF is able to improve the correlation to 0.71 (p-value< 10−16 - E). In addition, HIFI-MRF processed
data displays TADs and an decay constant profile similar to those observed by 5C.
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Supplementary Fig. 5. Positive/negative RF contact delineation analysis (genome-wide: CTCF, RNAPII, and Thurman). Repetition of the analysis shown in Fig. 4, but
this time for the whole genome. Area under the receiver-operator curve (AUROC) comparison for a univariate predictor applied to positive and negative contact populations
for ChIA-PET CTCF (panels A and D (29)), RNAPII (panels B and E (29)) and Thurman et al. (2012) DHS-linked enhancer-promoter linkages (panels C and F) genome-wide.
Top (A-C) and bottom (D-F) rows represent the performance of the classifier applied to Hi-C data of size 60.8M (10% of input set) and 608M (100% of input set), respectively.
HIFI-MRF is found to provide more accurate (based on AUROC) predictions of RF-pair classification (positive vs. negative) compared to other inference methods. Similar
results are observed for ChIA-PET RAD21 (Suppl. Fig. 4).
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1 Mb bins along chromosomes 9-X Genome-wide

Supplementary Fig. 6. Positive/negative RF contact delineation analysis (RAD21). Area under the receiver-operator curve (AUROC) comparison for a univariate predictor
applied to positive and negative contact populations for ChIA-PET RAD21 (28). Left and right columns represent the classifier applied to either a set of positive/negative RF
contacts within 1 Mb bins along chromosomes 9-X or entire contact maps genome-wide, respectively. Top and bottom rows represent the performance of the classifier applied
to Hi-C data of 60.8M (10%) and 608M (100%) input set size, respectively. HIFI-MRF is found to provide more accurate (based on AUROC) predictions of RF-pair classification
(positive vs. negative) compared to other inference methods genome-wide, but within 1 Mb bins along chr9-X, a clear improvement is not observed over HiCPlus (17).
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Supplementary Fig. 7. GM12878-HindIII RF-resolution TAD boundary occupancy by architectural proteins. Architectural proteins CTCF (A) , RAD21 (B), SMC3 (C),
and ZNF143 (D) are strongly enriched near TAD boundaries, followed by a significant depletion in occupancy within TADs (only signal relative to downstream TAD boundary
shown).
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Supplementary Fig. 8. GM12878-HindIII RF-resolution TAD boundary occupancy by selected transcription factors. Transcription factors MEF2A (A), MEF2C (B),
MTA3 (C), NFIC (D), RELA (E), and RUNX3 (F) show a gradual enrichment within TADs, combined with a small but well-defined, CTCF-like peak just outside of TADs (only
signal relative to downstream TAD boundary shown).
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Supplementary Fig. 9. GM12878-HindIII RF-resolution TAD boundary occupancy of selected transcription factors. Transcription factors CHD1 (A), CHD2 (B), FOXM1
(C), IRF4 (D), PAX5 (E), and PML (F) exhibit a strong enrichment specific to TAD boundaries, but no enrichment within TADs versus outside (only signal relative to downstream
TAD boundary shown).
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