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ABSTRACT Describing the dynamics and conformational landscapes of Intrinsically Disordered Proteins (IDPs) is of paramount
importance to understanding their functions. Markov State Models (MSMs) are often used to characterize the dynamics of
more structured proteins, but models of IDPs built using conventional MSM modelling protocols can be difficult to interpret due
to the inherent nature of IDPs, which exhibit fast transitions between disordered microstates. We propose a new method of
determining MSM states from all-atom molecular dynamics simulation data of IDPs by using per-residue secondary structure
assignments as input features in a MSM model. Because such secondary structure algorithms use a select set of features for
assignment (dihedral angles, contact distances, etc.), they represent a knowledge-based refinement of feature sets used for
model-building. This method adds interpretability to IDP conformational landscapes, which are increasingly viewed as composed
of transient secondary structure, and allows us to readily use MSM analysis tools in this paradigm. We demonstrate the use of
our method with the transcription factor p53 c-terminal domain (p53-CTD), a commonly-studied IDP. We are able to characterize
the full secondary structure phase space observed for p53-CTD, and describe characteristics of p53-CTD as a network of
transient helical and beta-hairpin structures with different network behaviors in different domains of secondary structure. This
analysis provides a novel example of how IDPs can be studied and how researchers might better understand a disordered
protein conformational landscape.

Tremendous insight has been obtained by viewing proteins as ensembles of metastable structures (1–3), yet the growing
study of intrinsically disordered proteins (IDPs) challenges and expands this view (4). IDPs are found ubiquitously in signaling
and regulation processes (5), yet their lack of structure poses challenges for studying them using conventional experimental
techniques. All-atom molecular dynamics (MD) simulations have the potential to offer atomistic-level detail in the dynamics of
IDPs; however, modelling the dynamics of a protein using MD simulations requires describing the conformation space of the
protein in a way that lends insight into states and processes of interest to the researcher. Significant study has gone into how to
partition this phase space in the field of modelling the dynamics of structured proteins(3), and use of methods for featurization
and time-lagged dimensionality reduction (6, 7) have greatly improved the modelling process(8) for proteins that inhabit a few
structured conformations. However, in practice, when we use these same tools to analyze MD simulation data of IDPs, we find
that these methods face challenges when used to analyze the conformational landscape of an IDP.

Optimal modelling practices for slow protein dynamics are not necessarily useful for IDPs.
There are several aspects of the standard process used to create dynamical models for structure proteins that are less effective
for IDPs. To build a MSM using standard protocols (9), all-atom coordinate data is transformed into some set of features,
such as the phi/psi backbone dihedrals, closest heavy-atom contact distances, etc. For structured proteins, this space becomes
functionally constrained by the finite number of conformations that the protein visits, whereas an IDP that is extended in
solution has the possibility to visit many more configurations than a structured protein of the same length.

Next, this featurized data is often decomposed into slow orthogonal dynamical modes using time-structure-based Independent
Component Analysis(6, 7, 10) (tICA) or other similar techniques. This allows the modeller to identify slow processes in the
data as a function of the input features. Structured proteins typically exhibit only a handful of dynamical modes with long
timescales (11, 12). The gap between long timescales and short timescales corresponding to thermal fluctuations is referred to
as the “spectral gap”. If only a few slow processes are present, characterizing these processes can be straightforward (Figure 1a).
However, when this same modelling protocol is performed on an IDP of interest, we typically observe that many fast processes
are identified with little or no spectral gap (Figure 1a). This suggests there are many processes happening at similar timescales,
and suggests any time-lagged dimensionality reduction method may be less effective at separating orthogonal modes.

After the data is decomposed into its dynamical processes, it is clustered to identify microstates, and a Markov State
Model (MSM) is constructed by counting transitions between these microstates. A MSM provides a description of equilibrium
distribution among states and transition rates between them. Pragmatically, structured proteins often occupy just a limited
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Figure 1: Challenges of modelling IDPs with traditional methods for modelling dynamics of structured proteins (a): structured
proteins typically exhibit a few slow dynamical modes. On the other hand, IDPs exhibit many fast modes with no spectral gap.
(b) Structured protein conformational landscapes are typically characterized by a finite number of basins of interest. Conversely,
IDPs inhabit many varied microstates that may all appear disordered to the modeller without further tools for interpretation.
The interpretation tool presented here (c) is to compute the secondary structure assignments of MD simulation data of the IDP
in order to view the conformational landscape in terms of its transient secondary structure, in line with current experimental
techniques.

number of states of interest when compared to IDPs (Figure 1b). For instance, a kinase may have a few active/inactive states or
a protein folding may have only a handful of folding intermediate states of interest. In contrast, models of IDPs may exhibit
hundreds of microstates that all appear similarly disordered to the researcher’s eye, and can be difficult to distinguish or interpret.

The above limitations of conventional structured protein analysis methods on IDPs follow researchers’ intuition about IDPs,
that they are rapidly interconverting between transient states and therefore may not exhibit slow dynamical processes. Given
these characteristics of IDPs, how can we effectively model IDPs in an interpretive way? Any modelling process must balance a
tradeoff between interpretability and accuracy. The above methods for structured proteins can be optimized for accuracy in their
representation of slow dynamical modes (12, 13), but perhaps to make headway into understanding IDPs, we need to take a step
back and think about how we might best interpret disordered protein landscapes, and how we can create models to further our
aims of interpretation.

Secondary structure assignment projects IDP conformations to a more interpretable paradigm.
To attempt to create IDP conformational landscape models that are more intuitive, we drew inspiration from experimental
fields that have had success in thinking about IDPs in terms of secondary structure assignment (14). For instance, the δ2D
method is able to determine per-residue secondary structure populations directly from chemical shifts (15). Work such as this
has contributed to a paradigm in which IDPs exhibit fast transitions between transient secondary structure conformations, some
of which then are stabilized upon binding to target proteins. However, experiments are limited when a measurement, such as
secondary-structure propensity, is only able to represent an ensemble average over microstates (14). This limitation can be
addressed by complementing experiment with molecular simulation, which offers atomic-level resolution of an ensemble of
protein structures. In this light, we propose using this transient-secondary-structure paradigm of thinking to parse MD simulation
data prior to building a MSM with it. We use the output of a secondary structure assignment algorithm as a featurization for
MD simulation data of an IDP. This method allows us to fully partition and characterize the phase space of the IDP as thought
of in terms of its transient secondary structure.
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Modelling IDP Dynamics as Networks

Figure 2: By visualizing p53-CTD conformational landscape as a network, we can immediately gain insight into its network
properties. The entirely disordered state acts as a kinetic hub for a landscape with a majority of microstates holding transient
beta-hairpin character and a minority with helical character. However, several helical microstates have prominent hub-like
character as well. Several prominent microstates are depicted surrounding the network as examples.

Secondary structure assignments reveal a kinetic network of transient structure.
To demonstrate this method, we analyze the commonly-studied IDP, the C-terminal domain of the p53 transcription factor
(p53-CTD). This peptide was simulated for a total time of over 6 ms on the distributed computing platform Folding@Home(16)
in the force field Amber ff99SB-ILDN (17). We computed secondary structure assignments for each residue at each time point
with the commonly-used secondary structure assignment tool DSSP (18). For the purpose of demonstration here, we use the
simplified assignment set (helix, beta strand, or random coil), but note that the same analysis would be possible with the more
complete set of 8 possible assignments, or with other secondary structure assignment tools entirely. Because secondary structure
assignment is a categorical variable, we encode each assignment per residue as two dummy variables representing the state of
having helical or beta-hairpin character, i.e. (1,0) if assigned as helical, (0,1) if beta strand, or (0,0) if random coil. 1 We then
cluster the data using the minibatch K-Means algorithm and use the cluster assignments to construct a MSM.

Viewing the landscape of p53-CTD as a network immediately offers several immediate observations (Figure 2). In a network
representation of a MSM for p53-CTD featurized using the DSSP secondary structure prediction, we represent microstates as
nodes. Microstates are positioned according to their connectivity degree, so nodes closer to the center are more hub-like while
the nodes on the periphery are less connected. The weights of edges between nodes represent the interconversion rates between
nodes.

The microstate with the predominant population (roughly 24%) is that with no secondary structure assignment. The converse
of this is that 76% of the conformational space can be described by some degree of secondary structure assignment, which
suggests that thinking of IDP landscapes using the secondary structure paradigm is useful. From the network visualization, we
can observe that the disordered state serves as a kinetic hub for p53-CTD to interconvert between states with more secondary
structure. This observation is perhaps intuitive, yet viewing the conformational landscape as a network analysis allows us to use
relevant network analysis tools to draw conclusions. We furthermore observe that p53-CTD has more transient states with
beta-structure propensity than with helical propensity; yet the helical microstates exhibit more interconversion.

1While we could use three variables to represent the three possible assignments (helix, beta strand, or random coil) in a one-hot encoding style, this is
overrepresented and we choose not to for the sake of minimizing the total amount of data to be processed.
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Figure 3: Hierarchically clustering the microstates (a) with MVCA allows us to observe which states are kinetically similar. In
(b), we color the same network model by clustered microstate assignment for comparison to Figure 2, observing that kinetically
similar microstates are also close to one another in the network.

We can also apply other current MSM analysis tools to interpret the p53-CTD landscape. We use hierarchical clustering of
microstates (MVCA)(19) to understand which microstates are kinetically close to one another. The resulting analysis allows us
to better visualize the span of observed transient secondary structure. For instance, we observe that there are a limited number
of locations along the IDP where helices and beta-strand motifs can form.

Suitability of Timescale-optimized models.
A pertinent question is how this secondary-structure-based featurization compares to other featurizations in existing measures of
model quality. For MD data analysis, model quality is often evaluated in terms of the Variational Approach to Conformational
Dynamics, which states that no process may be detected in data that is slower than the true slowest process. This principle
implies that a model with longer characteristic timescales is closer to representing the true processes in the data than a model
with shorter characteristic timescales. This principle has been used to develop several methods for maximizing eigenvalue-based
scores (12, 20, 21), one of these being the Generalized Matrix Rayleigh Quotient (GMRQ) (12).

We compare the GMRQ scores of models built on p53-CTD with three different featurizations: secondary structure (the
method presented in this work), φ/ψ backbone dihedral angles, and closest heavy-atom contacts between residues. Backbone
dihedral angles and contacts are frequently used for featurization and have been shown to provide high GMRQ scores for
structured proteins (8). We note that secondary-structure prediction algorithms classify structures based on a function of these
other features (18). By featurizing with secondary structure assignment, we are selecting features previously identified as
pertinent to defining secondary structure phase space through expert knowledge. In the context of structured proteins, where a
helix in one conformation will likely remain a helix across conformations, this is perhaps not so useful, but for IDPs, which are
rapidly switching between different secondary structure states, this simplifies the scope of possible feature space to characterize.

Because secondary structure creates a more coarse-grained phase space than either dihedrals or contacts, we expect
secondary structure models to not perform as well in optimizing timescales as a sacrifice in the name of interpretability. We
observe that DSSP featurization does perform more poorly than models built with dihedrals, (i.e. is unable to find as long
of timescales), but performs comparably to models built with contacts (Figure 4a). Parameter optimization with Osprey was
performed using dihedrals, contacts, or secondary structure as input, varying the lag time and number of components used for
tICA, and the number of clusters used for clustering across a range of values.

Although dihedral featurization may give higher GMRQ scores, models built from these are more difficult to interpret as a
landscape of secondary structure. We find that the model with the highest GMRQ score does not identify any interpretable
trends in secondary structure propensity either when viewed as a network model (Figure 4b) or when projected onto the slow
processes identified (Figure 4c). While using a GMRQ-optimized model might certainly be preferable for analyzing other
observables, such a model may be much more difficult to use such a model to understand an IDP as a collection of microstates
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Figure 4: Dihedral angles produce the highest average GMRQ score, a measure of model quality in representing slow timescales,
yet are less interpretable in terms of secondary structure. Albeit being a much simpler representation, the secondary structure
featurization performs slightly better than contact distances, another commonly-used featurization, although does not capture as
slow of timescales as dihedral angles. (a). Error bars represent one standard deviation. A variationally optimal model featurized
by dihedral angles is less interpretable in terms of transient secondary structure (b,c). When the optimal dihedral model is
viewed as a network (b), microstate secondary structure is uncorrelated from the network structure, unlike in the network from
the MSM model featurized by secondary structure. Likewise, mapping data onto two slowest processes identified does not map
to interpretable secondary structure trends. Microstates are sized by their populations and colored by the computed secondary
structure propensity of samples drawn from each microstate.

with varying secondary structure.

In summary, we introduce a new method for featurizing MD trajectory data of IDPs that draws inspiration from viewing
IDPs in terms of transient secondary structure assignments. We demonstrate that it creates readily interpretable network models
and discuss the philosophical tradeoff between interpretability and objective model quality. We hope the use of such tools will
improve the study and analysis of IDPs and continue discussion of how we may best characterize disordered conformational
landscapes.
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