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Abstract 15 

Several imaging modalities, including T1-weighted structural imaging, diffusion tensor imaging, and 16 
functional MRI can show chronological age related changes. Employing machine learning 17 
algorithms, an individual’s imaging data can predict their age with reasonable accuracy. While details 18 
vary according to modality, the general strategy is to: 1) extract image-related features, 2) build a 19 
model on a training set that uses those features to predict an individual’s age, 3) validate the model 20 
on a test dataset, producing a predicted age for each individual, 4) define the “Brain Age Gap 21 
Estimate” (BrainAGE) as the difference between an individual’s predicted age and his/her 22 
chronological age, and 5) estimate the relationship between BrainAGE and other variables of interest, 23 
and 6) make inferences about those variables and accelerated or delayed brain aging. For example, a 24 
group of individuals with overall positive BrainAGE may show signs of accelerated aging in other 25 
variables as well. There is inevitably an overestimation of the age of younger individuals and an 26 
underestimation of the age of older individuals due to ‘regression to the mean’. The correlation 27 
between chronological age and BrainAGE may significantly impact the relationship between 28 
BrainAGE and other variables of interest when they are also related to age. In this study, we examine 29 
the detectability of variable effects under different assumptions. We use empirical results from two 30 
separate datasets [training=475 healthy volunteers, aged 18 – 60 years (259 female); testing=489 31 
participants including people with mood/anxiety, substance use, eating disorders and healthy 32 
controls, aged 18 – 56 years (312 female)] to inform simulation parameter selection. Outcomes in 33 
simulated and empirical data strongly support the proposal that models incorporating BrainAGE 34 
should include chronological age as a covariate. We propose either including age as a covariate in 35 
step 5 of the above framework, or employing a multistep procedure where age is regressed on 36 
BrainAGE prior to step 5, producing BrainAGE Residualized (BrainAGER) scores.  37 

38 
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1 Introduction 39 

Aging is a biological process that can affect behavioral and cognitive dimensions. Biological age as 40 
measured by telomere length deviates from an individual’s chronological age as a result of 41 
environment, lifestyle, and genetics (Shammas, 2011). However, other measures of biological age 42 
that may be particularly relevant to psychopathology can involve structural and functional changes in 43 
the brain.  44 
Several imaging modalities, including T1-weighted structural imaging (Franke et al., 2010), diffusion 45 
tensor imaging (Han et al., 2014; Lin et al., 2016), and functional MRI (Tian et al., 2016) have been 46 
used in conjunction with machine learning algorithms to predict an individual’s age. Recently, 47 
integration of neuroimaging data of different feature types and across multiple modalities has been 48 
shown to improve age prediction (Erus et al., 2015; Gutierrez Becker et al., 2018; Liem et al., 2017). 49 
While the details vary according to modality, the general strategy has been to 1) extract image-related 50 
features, 2) build a model on a training set composed of healthy participants using these features to 51 
predict participant age, 3) apply that model to a testing set, producing a predicted age for each 52 
individual, 4) compute the difference between a participant’s predicted age and chronological age 53 
(often referred to as Brain Age Gap Estimate, BrainAGE, or brain predicted age difference, brain-54 
PAD), 5) test for relationships between other variables of interest and BrainAGE, and 6) make 55 
inferences about accelerated or delayed brain aging (Cole and Franke, 2017). Variables of interest 56 
have included physical fitness (Ritchie et al., 2017), physical activity (Steffener et al., 2016), 57 
cognitive impairment after traumatic brain injury (Cole et al., 2015), mortality risk in elderly 58 
participants (Cole et al., 2018), acute ibuprofen administration in healthy participants (Le et al., 2018) 59 
or status of various diseases and disorders such as diabetes (Franke et al., 2013), Alzheimer’s disease 60 
(Gaser et al., 2013; Löwe et al., 2016), psychiatric disorders (Koutsouleris et al., 2014; Nenadić et al., 61 
2017) and human immunodeficiency virus (Wilkins, 2017).  62 
Support Vector Regression (SVR) with a radial kernel is a commonly used machine learning 63 
algorithm to predict age and compute BrainAGE (Franke et al., 2010), along with other methods such 64 
as Gaussian process and relevant vector regression (Drucker et al., 1997). The residual error of these 65 
age-predicting models, BrainAGE, is necessarily correlated with age, which results in an 66 
overestimation of the age of younger individuals and an underestimation of the age of older 67 
individuals. This is due to the fact that these algorithms, like all regression methods, are subject to the 68 
fundamental phenomenon of “regression towards the mean” (Galton, 1886). A theoretical basis for 69 
this phenomenon is presented in section 2.1. In practice, the correlation between chronological age 70 
and BrainAGE is visually evident in many figures of chronological versus predicted age (Cole et al., 71 
2018; Franke et al., 2010). While most studies involving BrainAGE have not discussed the age-72 
BrainAGE correlation, some have accounted for this correlation by using predicted age as the 73 
primary outcome, which is similar to the correction we propose (Erus et al., 2015; Habes et al., 74 
2016).  75 
The age-BrainAGE correlation may affect the apparent relationship between BrainAGE and variables 76 
of interest when these other variables are also related to age. In the clinical neuroscience domain, for 77 
example, we may be interested in covariates including physiological variables such as body 78 
composition or psychological measures of mood or testing performance, some of which have clear 79 
relationships with age. In this study, we examine the detectability of multiple covariate effects in 80 
both real and simulated data. Using real data, we characterized relationships between BrainAGE, age, 81 
and other variables of interest. Then, we generated a known “ground truth” with characteristics 82 
similar to what we observed in real data. In our simulation model, age has a direct effect on the 83 
variables of interest, which may in turn affect simulated imaging features. We include both linear and 84 
nonlinear effects at each level.  85 
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The goals of the current study are: 1) to highlight the universal correlation between chronological age 86 
and BrainAGE in theory and practice and 2) develop a general framework for simulating age-87 
dependent data that can be used to investigate the effect of the age-BrainAGE correlation in 88 
subsequent analyses.  One of the challenges of determining the best practices for using BrainAGE in 89 
statistical modeling is related to the fact that variables of interest may be related to age, but not 90 
directly related to accelerated or delayed brain aging. In that case, spurious relationships with 91 
BrainAGE may be observed. Our results strongly support the proposal that models including 92 
BrainAGE as an independent variable should be adjusted for chronological age as well. 93 

2 Methods 94 

We begin with a theoretical explanation for regression toward the mean and the concurrent 95 
correlation between the residuals and observed values for any regression. Then, we show in our own 96 
data the relationships between chronological age, BrainAGE, and other covariates of interest as a 97 
basis for the parameters in our simulations. Finally, we describe a simulation approach to generate 98 
data with a comparable age effect on brain image features and show how the age-BrainAGE 99 
correlation can contribute to observed relationships, even when the simulated independent variables 100 
do not associate with imaging features. The R scripts for simulation and analysis are publicly 101 
available on the GitHub repository https://github.com/lelaboratoire/BrainAGE-simulation. 102 

2.1 Theoretical Basis for the age-BrainAGE Correlation 103 

2.1.1 Regression Toward the Mean 104 

Consider 𝑛 data points 𝑦#, 𝑥# , 𝑖 = 1,… , 𝑛 used to fit a simple linear regression 𝑦 = 𝛼 + 𝛽𝑥 + 𝜀.  105 
Least-square estimation leads to  106 

𝛽 = 𝑟/0
12
13
,														𝛼 = 𝑦 − 𝛽𝑥, 107 

where 𝑟/0 is the Pearson correlation between x and y, 𝑠/ and 𝑠0 are the standard deviation, 108 
respectively.  Substituting the formulas into the fitted values 𝑦 = 𝛼 + 𝛽𝑥 yields 109 

𝑦 − 𝑦
𝑠0

= 𝑟/0
𝑥 − 𝑥
𝑠/

. 110 

In this setting, regression toward the mean refers to the phenomenon that the standardized predicted 111 
value of y is closer to its mean than that of x to its mean for any imperfect correlation, −1 < 𝑟/0 < 1.  112 
The weaker the correlation, the greater the extent of regression toward the mean. For perfect 113 
correlations ( 𝑟/0 = 1), the standardized distance between the predicted value in 𝑦 to its mean equals 114 
that of 𝑥 to its mean and there is no regression toward the mean. The implication for BrainAGE is 115 
that the age of younger individuals tends to be overestimated and the age of older individuals tends to 116 
be underestimated. 117 
2.1.2 Partition of Variance or Analysis of Variance (ANOVA) 118 

In the general setting 𝑦 = 𝑓 𝑋 + 𝜀, where 𝑋 can be any dimension and 𝑓 ∙  can be any regression 119 
model, the variance of 𝑦 is partitioned into a part that can be explained by 𝑋, and a part due to 120 
random error: 𝜎0= = 𝜎>= + 𝜎?=.  Then 121 

Cov 𝑦, 𝑓 𝑋 = 𝜎>=, Cov 𝑦, 𝜀 = 𝜎?= 122 
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Corr 𝑦, 𝑓 𝑋 =
𝜎>=

𝜎>= + 𝜎?= 𝜎>=
=

𝜎>
𝜎>= + 𝜎?=

, Corr 𝑦, 𝜀 =
𝜎?

𝜎>= + 𝜎?=
 123 

For 𝑦 = 𝑓 𝑋 , 𝑦 = 𝑓 𝑋 + 𝜀 and 124 

Corr 𝑦, 𝑓 𝑋 =
𝜎>

𝜎>= + 𝜎?=
, Corr 𝑦, 𝜀 =

𝜎?
𝜎>= + 𝜎?=

 125 

where 𝜎>= = Var 𝑓 𝑋 = Var 𝑦  and 𝜎?= = Var 𝜀 . 126 

Thus, Corr 𝑦, 𝜀 > 0 unless 𝑓 𝑋  predicts y perfectly with 𝜎? = 0.  The correlation formulas suggest 127 
that the correlation between residual and 𝑦 decreases with the correlation between 𝑦 and 𝑦, i.e. 128 
prediction accuracy of 𝑓 𝑋 .  Figure S1 illustrates this phenomenon using a simple simulation where 129 
𝑦 was a function of x plus random normal noise. As the noise decreases (and fit increases), the 130 
correlation between 𝑦 and the residuals decreases as well.  131 
In the context of BrainAGE, the goal is to find 𝑓 ∙  that best predicts chronological age (𝑦) using 132 
brain measures as 𝑋, and BrainAGE is computed as −𝜀 = 𝑦 − 𝑦.  Because 𝑓 𝑋  never predicts 133 
chronological age perfectly, BrainAGE remains correlated with age.  When BrainAGE is used as the 134 
response variable in subsequent analyses to make inferences on a covariate 𝑍, it is important to check 135 
whether 𝑍 is associated with chronological age.  If 𝑍 is not associated with chronological age, then 136 
one may simply evaluate the bivariate association between BrainAGE and 𝑍.  On the other hand, if 𝑍 137 
is associated with both chronological age and BrainAGE, chronological age may confound the 138 
relationship between BrainAGE and 𝑍 (Elwood, 1992) and should be taken into account.  139 
Confounding effects can be addressed at study design (e.g., randomization and matching) or in 140 
statistical analysis (e.g., stratification of the confounder or including the confounder as a covariate 141 
(Pourhoseingholi et al., 2012).  For example, Franke et al. (2010) considered a variable 𝑍 that 142 
represents two groups (ill versus healthy) and selected two groups of individuals with similar 143 
chronological age (so 𝑍 is not associated with chronological age) to compare their BrainAGE.  In the 144 
current work, we include chronological age as a covariate and evaluate this approach in the context of 145 
BrainAGE. 146 

2.2 Empirical Data 147 

We used two separate datasets to illustrate the correlation between BrainAGE and chronological age 148 
and the effect this can have on associations with covariates of interest. All data were collected at the 149 
Laureate Institute for Brain Research between 2009 and 2017. All protocols were approved by 150 
Western Institutional Review Board (www.wirb.com). Participants signed written informed consent 151 
and received financial compensation for their participation. 152 
 153 
2.2.1 Training Dataset 154 

Structural MRI data were collected from 475 healthy volunteers (mean age ± sd = 30.5 ± 10.3 years; 155 
age range = 18 – 60 years; 259 female) between 2009 and 2017. Each participant was scanned in a 156 
3T GE MR750 whole body scanner. Scans were acquired using axial T1-weighted MP-RAGE 157 
sequences with a 24cm FOV, 256x256 acquisition matrix, 8-degree flip angle and .9375x.9375mm 158 
in-plane resolution with no gap. Other parameters varied within the following ranges: 5.736 to 159 
6.292ms TR, 1.896 to 2.104ms TE, 0.9 to 1.2mm slice thickness, with either an 8- (General Electric, 160 
Milwaukee, WI) or 32- (Nova Medical Inc., Wilmington MA) channel phased array coil. Healthy 161 
neuropsychiatric status was assessed using either the MINI-international Neuropsychiatric Interview 162 
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(Sheehan et al., 1998) or the Structured Clinical Interview for DSM-IV (First et al., 2002) (First, 163 
Michael B., Spitzer, Robert L, Gibbon Miriam, and Williams, Janet B.W., 2002). 164 
 165 
2.2.2 Testing Dataset 166 
Structural MRI data were collected from 489 (mean age ± sd = 34.6 ± 10.6 years; age range = 18 – 167 
56 years; 312 female) participants as part of Tulsa 1000, a longitudinal observational study including 168 
people with mood/anxiety, substance use, eating disorders and healthy controls. Inclusion criteria for 169 
the participant populations were Patient Health Questionnaire ≥ 10, Overall Anxiety Severity and 170 
Impairment Scale ≥8, Drug Abuse Screening Test > 3, or SCOFF ≥ 2. Exclusion criteria included a 171 
history of significant brain trauma, neurological disorders, change in medication within six week 172 
prior to scanning, bipolar disorder, and schizophrenia. Scanning parameters for this dataset were: 173 
24cm FOV, 256x256 acquisition matrix, 186 axial slices, 0.9mm slice thickness with no gap, 174 
TR/TE=5/2.012ms, using an 8-channel phased array coil (General Electric, Milwaukee, WI). Testing 175 
and training sets differed on mean age (t = 6.2, p < 0.0001, mean difference 4.2 years) and sex 176 
composition (χ2 = 8.2, p = 0.004). 177 
All participants in the testing dataset also underwent an intense battery of assessments including self-178 
report, clinical interviews, neuropsychological testing, and body composition analysis. For full 179 
details, please see (Victor et al., 2018). From these, we selected 154 measures, which were used to 180 
illustrate the normal range of correlations with age and how these can affect the relationship between 181 
BrainAGE and covariates of interest.  182 
 183 
2.2.3 Image Processing 184 

All images in both the testing and training sets were processed using Freesurfer version 6.0.0 (Dale et 185 
al., 1999) in order to produce grey/non-grey matter masks. Then, using a procedure similar to Franke 186 
(Franke et al., 2010) but implemented in AFNI, all grey matter masks were transformed to MNI 187 
space via affine transformation, smoothed with an 8mm gaussian kernel, and downsampled to 188 
8x8x8mm voxels. This produced a set of 3707 voxels per participant, with the value at each voxel 189 
representing the fraction of that voxel comprised of grey matter.   190 
R (version 3.2.2) and R package caret (version 6.0.76) were used to fit a support vector regression 191 
(SVR) model with radial basis functions. The ε (tolerance margin) was fixed at and cost parameters 192 
were tuned using 5 repeats of 10-fold cross validation in the training set. The hyperparameter space 193 
was sampled using a grid search that fixed ε at 0.000145 and allowed cost to vary from 0.25 to 4096. 194 
The final best model (cost = 2) was then applied to the testing set to produce one predicted age for 195 
each participant. BrainAGE was taken to be predicted age minus chronological age. 196 
Additionally, we define the Brain Age Gap Estimate Residualized (BrainAGER) to be the residual of 197 
the regression of BrainAGE on age to remove the remaining linear bias of age. This way, we have a 198 
measure of deviation from expected age that is linearly uncorrelated with chronological age. 199 

2.3 Simulation  200 

To investigate the effect of the age-BrainAGE correlation on subsequent modeling results, we 201 
simulated hierarchical correlation structures among brain features, chronological age and covariates 202 
using a generative biological model (Fig. 1). We then generated two groups of independent variables. 203 
Within each group of variables, some are dependent on age and others are not. One group was used 204 
in the simulation of neuroimaging features, while the other was not. We randomly split the data set 205 
into two subsets, trained SVR on the training set and computed BrainAGE on the testing set. On the 206 
testing set, we conducted linear regressions of BrainAGE on all independent variables, both with and 207 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2018. ; https://doi.org/10.1101/377648doi: bioRxiv preprint 

https://doi.org/10.1101/377648
http://creativecommons.org/licenses/by/4.0/


   Simulation of BrainAGE and covariates 

 
6 

without chronological age. With 1,000 replications, we assessed the significance of the contribution 208 
from the independent variables by examining the distribution of the resulting p-values. 209 
2.3.1 Model Definition 210 

 211 
Figure 1. BrainAGE simulation and analysis framework (Eqs. 2-4). (a) Linear and non-linear age 212 
basis functions (ABFs) 𝑓# (orange, black and blue lines). For a particular individual 𝑖, the ABFs are 213 
combined to create volume 𝑘’s grey matter proportion 𝑣#K (orange, black and blue arrows) and age-214 
dependent covariates of interest, 𝑍#L(𝐴) with a different set of coefficients 𝛼L. (b) Some of the 𝑍#L are 215 
then fed back into the 𝑤#K when generating volume 𝑣#K, which leads to two levels of age association 216 
between covariate and BrainAGE. (c) Proportional grey matter volume (volumetric data) generated 217 
from non-linear combinations of ABFs. (d) Predicted-age and BrainAGE computed from simulated 218 
volumetric data and simulated chronological age with Support Vector-based regression; (e) Test for 219 
association between BrainAGE and covariates of interest. 220 
 221 
A realistic simulation model should capture the properties of normal age-related brain volumetric 222 
data, such as brain region-dependent changes and nonlinear chronological age dependence (Fjell et 223 
al., 2013). A realistic simulation should also include the ability to generate age-dependent deviations 224 
from the normal population and age-dependent covariates that may influence BrainAGE nonlinearly.  225 
We consider a biological causal path model and develop a novel age-basis-function approach for 226 
simulating BrainAGE data with covariates (Fig. 1, Fig. S2). 227 
Denoting age by 𝐴, we assumed an underlying (unobserved) biological process represented by 𝑚 228 
functions of age, denoted as 𝑓R 𝐴 , which we referred to as age basis functions (ABFs). Here, 229 
without a function space defined, the term “basis” is used loosely to indicate the elementary functions 230 
that can be combined linearly to form any variable of interest y: 231 

 𝒚	 = 𝒘𝒎𝒇𝒎 𝑨𝒎X𝟏 + 𝝐. ( 1 ) 232 

In this study, we implemented three monotone decreasing ABFs that can generate a wide range of 233 
non-linear functions (Fig. S3), and used these ABFs to simulate covariates of interest and the features 234 
extracted from an imaging modality.  235 
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Simulating covariates. A covariate of interest 𝑍L for participant 𝑖 with chronological age 𝐴# was 236 
generated by  237 

𝑍#L = 𝛼RL𝑓R 𝐴#[
RX\ 	+		𝜖^L  ( 2 ) 238 

where 𝛼RL is a covariate-specific weight and the covariate-specific error 𝜖^L~𝑁 0, 𝜎L=  denotes a 239 
Gaussian noise with mean 0 and standard deviation 𝜎L. 240 

Simulating imaging modality.   241 

The proportional grey-matter volume for voxel 𝑘 of a participant 𝑖 with chronological age 𝐴# was 242 
generated by 243 

𝒗𝒊𝒌 = 𝒘𝒎𝒊𝒌𝒇𝒎 𝑨𝒊𝟑
𝒎X𝟏 	+		𝝐𝒊  ( 3 ) 244 

or, in short, 𝑣#K = 𝑓 𝐴# +		𝜖#, where 𝜖# represents Gaussian noise with mean 0 and standard 245 
deviation 𝜎e. This setting allows capturing within-participant correlations (4b) and spatial 246 
dependence within participants (4c):  247 

Var 𝑣#K = Var 𝑓 𝐴# + 𝜎f=       (4a) 248 

Cov 𝑣#K, 𝑣#gK	 = Cov 𝑓 𝐴# , 𝑓 𝐴#g + 𝜎f=       (4b) 249 

Cov 𝑣#K, 𝑣#Kg	 = Var 𝑓 𝐴#        (4c) 250 

Note that the weight function 𝑤𝒎𝒊𝒌 𝐴#  allows the weights of ABFs to vary across individuals and 251 
volumes, and as a function of an individual’s chronological age.   252 

To further make the imaging modality dependent on some covariates, we let  253 

𝑤R#K = 𝑤RK + 𝐷𝒊        ( 5 ) 254 

where 𝑤RK is the population mean weight for ABF 𝑓𝒎 at voxel 𝑘, and the participant level departures 255 
𝑫𝒊 depends on the first 𝑞 variables (covariates): 256 

 𝑫𝒊 = 𝜸 𝒁𝒊𝒋(𝑨𝒊)
𝒒
𝒋X𝟏   ( 6 ) 257 

Other measurable variables, Zj>q, do not contribute to the weights deviation. In addition to the age-258 
related imaging features that are generated from the ABFs, we also added 25% “background” 259 
features that do not correlate with age. Other parameters such as standard deviation of the noise ϵ 260 
were chosen with the objective of yielding R2 and MAE values that closely match our empirical 261 
results when the volumetric features were used as inputs to the support vector regression (SVR) 262 
model to estimate chronological age. Nevertheless, the choice of parameters and even the simulation 263 
design matrix do not affect the overall improvement in the regression that includes age as an 264 
explanatory variable from the regression without age. 265 
Finally, we carried out linear regressions of the covariates of interest on BrainAGE, with and without 266 
including age as an explanatory variable in the model. Over 100 replications, we assessed the 267 
detectability of the covariates as significant contributors to BrainAGE by examining their p-value 268 
distributions. In the ideal case, we should detect relationships between BrainAGE and covariates 269 
𝑍L′𝑠. 270 
2.3.2 Simulation steps 271 

1. Draw 1,000 age values from the uniform distribution 𝑈(20, 80). 272 
2. For each 𝑚 = 1, 2, 3,	draw 100 𝑤R#K values from N(0, 𝜎t) for each region 𝑘. 273 
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3. Set 𝛼RL = 0 for some m and j (Table S1). Randomly draw the remaining 𝛼RL from the 274 
uniform distribution 𝑈(−2,−1) to construct the 𝑗 covariate for each participant 𝑖 (Eq. 4).  275 

4. Construct the volumetric data set. For each imaging feature 𝑘 of participant 𝑖 (Eq. 2), add 276 
noisy volumetric features that do not correlate with age. 277 

5. Randomly apply 50% of the (age, volumetric) data for training and 50% for validation. Train 278 
the SVR model using the R package e1071 with hyperparameters set as default on the 279 
training set and apply the model on the validation set to compute the BrainAGE scores. 280 

6. On the testing set, run linear regressions of BrainAGE on all covariates, with and without age.  281 
7. Assess the significance of the covariates by looking at the confidence intervals of their 282 

coefficients as well as the distribution of the resulting p-values.  283 
In steps 3 and 4, we simulated 16 covariate types in each of 1000 replicate data sets (Table S1).  The 284 
16 variables were simulated by using all 8 possible combinations of the three age basis functions. 285 
Half of them contributed to the weights wmik (A), which consequently affected the grey matter 286 
density.  For example, Z2 and Z10 were both derived from only the linear basis function f1, but Z10 287 
does not influence the aging.  288 
Additionally, the complete simulation procedure was carried out for two scenarios: one with 289 
relatively large and another with relatively small effects of the covariates on BrainAGE. This was 290 
achieved by modifying the constant γ in Eq. (3) so that, in one case, the final weights wmik have a 291 
larger fold change on the original weights. In particular, the fold change is computed as  292 

𝐹𝐶 = 	
𝑤R#K
𝑤RK

	= 	
𝑤RK + 𝐷R#K

𝑤RK
, 293 

where 𝐷R#K is the average of Dmik(A) across all ages. 294 

3 Results 295 

3.1 Empirical 296 

3.1.1 Covariate Correlations with Age 297 
Observed Pearson correlations between age and the 154 clinical variables ranged from -0.33 298 
(PROMIS physical function) to 0.29 (waist circumference) (Fig. S4). Because any confounding 299 
effect of the correlation between age and covariates of interest is likely to be worse with larger 300 
correlations, we focused on simulated covariates that correlated with age with an r of up to 0.3.  301 
3.1.2 Age Prediction Accuracy and Bias 302 

After fitting on the training dataset, SVR achieved a mean absolute error of 4.84 years and explained 303 
64% of the variance in age in the testing dataset (Fig. 2a). This is comparable to the cross-validated 304 
performance on the training set, where MAE was 5.1 years and R2 was 0.59. The correlation between 305 
age and predicted age was 0.82. On the other hand, regression towards the mean lead to a negative 306 
relationship between age and BrainAGE (r = -0.63, Fig. 2c). After removing the linear trend as 307 
shown in Figure 2c, we observed no relationship between age and BrainAGER (r = 0.001, Fig. 2e). 308 
More explicitly, BrainAGE had a positive expected value at low chronological age and a negative 309 
expected value at high chronological age, while BrainAGER has an expected value of 0 regardless of 310 
actual age. 311 
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 312 
Figure 2. Similar out-of-sample R2 when applying SVR to predict age as well as negative correlation 313 
between BrainAGE and chronological age between T1000 data and simulated data. (a-b) 314 
Chronological age versus predicted age in the testing dataset, with a mean absolute error (MAE) of 315 
4.78 years and R2 = 0.65 in (a) and MAE = 5.15, R2 = 0.841 in (b). Overlaying black 45-degree line 316 
and blue regression line showed regression toward the mean. (c-d) Chronological age versus 317 
BrainAGE (r=-0.63). Negative correlation between BrainAGE and chronological age indicates 318 
younger participants tend to have positive BrainAGE and old participants tend to have negative 319 
BrainAGE. (e-f) After removing the linear trend in b-c, there is no relationship between age and 320 
BrainAGER (r = 0.001). BrainAGER has an expected value of 0, regardless of chronological age.  321 
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3.1.3 Relationships among age-covariate, covariate-BrainAGE, and covariate-BrainAGER 322 
correlations 323 

In order to investigate the effect that the correlation between BrainAGE and chronological age can 324 
have on the conclusions of an imaging study, we computed the correlations between each of the 325 
covariates and age, BrainAGE and BrainAGER. Larger age-covariate correlations lead to larger 326 
differences in measured correlation between that covariate and BrainAGER or BrainAGE (Fig. 3a, 327 
colored points far from the 45° line). When age did not correlate with a covariate, BrainAGE and 328 
BrainAGER tended to give similar results (grey points, near the 45° line). When age positively 329 
correlated with covariates (e.g., BMI), BrainAGER gave more positive values, and when age 330 
negatively correlated with covariates (e.g., PROMIS physical function), BrainAGER yields more 331 
negative values. Similarly, the greater the variance explained by age, the greater the squared 332 
difference in r between using BrainAGE or BrainAGER (3b).  333 
Table 1 shows the top 22 variables that are significantly correlated with either BrainAGE or 334 
BrainAGER after FDR correction for 154 tests. Notably, 18 variables were related to BrainAGE, and 335 
the strongest relationships were among variables strongly correlated with age, including body 336 
composition (percent body fat r = -0.2, percent body water r = 0.2, percent dry lean mass r = 0.2) and 337 
sensation seeking (r = 0.18). BrainAGER was only significantly correlated with six variables 338 
including waist to hip ratio (r = 0.15), color naming scaled (r = -0.15), and lean body mass (r = 0.17).  339 

 340 
Figure 3. Relationship between age-covariate correlation and the difference in measured correlation. 341 
The difference between using BrainAGE and BrainAGER depends on the age-covariate relationship. 342 
(a) Covariate-BrainAGER correlations as a function of the covariate-BrainAGE correlation, with 343 
points colored according to the Age-Covariate correlation. The 45-degree line is shown, and 344 
covariates more strongly related to age are further from the line. (b) The squared difference in r 345 
between using BrainAGE and BrainAGER as a function of the variance explained by age. 346 

3.2 Simulation 347 

3.2.1 Negative correlation between BrainAGE and chronological age in simulated MRI data 348 

We set the parameters of our simulation algorithm to achieve realistic characteristics of experimental 349 
data, such as correlation distribution between volumes and chronological age and the negative 350 
correlation between computed BrainAGE and chronological age. This negative correlation was also 351 
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present in previous models such as with Gaussian Process Regression (Cole et al., 2017) and 352 
Relevant Vector Regression (Franke et al., 2010). Simulated results closely mirrored empirical 353 
results. The simulated testing data had MAE of 4.58 years and R2 of 0.71 (2b). In our simulated data, 354 
we observed an overestimation of younger participant’s ages and an underestimation of older 355 
participant’s ages (Fig. 2d). After removing the effect of age on BrainAGE, simulated BrainAGER 356 
had an expected value of 0 regardless of actual age (2f). 357 

 rBrainAGE pBrainAGE rBrainAGER pBrainAGER rage 
PROMIS_PainInterfTscore -0.128 0.047 0.021 0.91 0.227 

PhysFunc 0.162 0.006 -0.061 0.655 -0.331 
BAS_FunSeeking 0.159 0.007 0.047 0.7 -0.201 

TES_TotalOccurrence -0.14 0.025 0.01 0.971 0.226 
IRI_EmpaConcern -0.145 0.019 -0.086 0.416 0.11 

IntSexAct 0.151 0.011 0.021 0.91 -0.22 
UPPSP_SensSeek 0.181 0.002 0.053 0.655 -0.231 

CDDR_PosReinforcement 0.151 0.047 0.128 0.238 -0.073 
PROMIS_AlcoholNegConsqTscore 0.172 0.004 0.147 0.03 -0.095 
PROMIS_AlcoholPosConsqTscore 0.176 0.003 0.071 0.545 -0.193 
PROMIS_AlcoholPosExpectTscore 0.127 0.047 0.081 0.455 -0.098 

PROMIS_AlcoUseTscore 0.169 0.004 0.124 0.108 -0.112 
DryLeanMass 0.095 0.17 0.162 0.017 0.042 

FatMass -0.155 0.009 0.02 0.91 0.26 
LeanBodyMass 0.091 0.183 0.166 0.017 0.052 

PercentBodyFat -0.202 <0.001 -0.051 0.655 0.251 
Water 0.09 0.191 0.167 0.017 0.056 

W.HRatio -0.019 0.834 0.154 0.03 0.223 
PercentWater 0.2 <0.001 0.054 0.655 -0.245 

PercentDryLean 0.207 <0.001 0.044 0.727 -0.267 
CW_ColorNamingScaled -0.092 0.196 -0.151 0.03 -0.041 

CW_InhibitionVsColorNamingScaled 0.135 0.04 0.086 0.416 -0.108 

Table 1. Correlation and significance after FDR adjustment of each covariate with BrainAGE 358 
(rBrainAGE, pBrainAGE) or BrainAGER (rBrainAGER, pBrainAGER). The last column contains the direct 359 
correlation between each covariate and age (rage). For brainAGE, where age is not adjusted, there are 360 
17 covariates with FDR adjusted p-values <.05 and for BrainAGER, which residualizes age, there are 361 
six covariates with adjusted p-value < .05. Cells with p less than 0.05 are bold. 362 
 363 
3.2.2 Reduction of false discoveries in regression that include age as explanatory variable 364 

In the linear models regressing BrainAGE on the 16 covariates of interest with simulated large effect 365 
sizes (FC = 1.255), we observed the following: when age was not included as an explanatory 366 
variable, many age-related covariates were shown to have statistically significant association with 367 
BrainAGE (Fig. 4a, c), even when they did not contribute to the weights that made up the 368 
neuroimaging features (Fig. 4, orange boxplots above the horizontal). These false positives (FP) 369 
were simply the result of the relationship between these covariates and chronological age that are part 370 
of the BrainAGE’s defining formula. Moreover, several covariates that were simulated to contribute 371 
to the brain structure volumes had p-values on average above 0.05 (Fig 4, blue boxplots below the 372 
horizontal).  373 
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 374 
Figure 4. Significance of linear regression of covariates with BrainAGE for 100 replicate 375 
simulations. Each data set contains 16 age-dependent covariates with differing age dependencies 376 
(linear and nonlinear) and effects on volumetric variation. Blue boxes are variables that have a direct 377 
(TRUE) effect on BrainAGE, orange boxes are variables that do not have a direct effect on 378 
BrainAGE (FALSE), and this effect is relatively large in the top (a, b) and small in the bottom (c, d) 379 
plots. Boxplots on the left (a, c)do not use age as an explanatory variable and models on the right (b, 380 
d) include age as an explanatory variable. “Significance” was measured by –log(p). Horizontal line is 381 
at –log(0.05). 382 
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When age was included in the regression as an extra explanatory variable, the significance increased 383 
(p-values decreased) for all variables that were generated to have an association with the imaging 384 
features, even variables that were already detected in the previous regression without age (Fig. 4b, d). 385 
Further, the decrease in significance (increase in p-values) for unrelated covariates indicated a 386 
significant decrease in the number of false positives. Variation in the p-values across covariates came 387 
from their different (linear and nonlinear) age dependencies and effects on volumetric variation. In 388 
other words, the real “significance” of a covariate depended on from which age basis functions it was 389 
generated and how it affected the brain features (w1k, w2k or w3k). Simulations with a smaller effect 390 
size (FC = 1.170, Fig 4c, d) showed a similar effect, though attenuated, for covariates that were 391 
contributors to wmk. The positive rate (true and false) across 100 replications is quantified in 392 
Supplementary Table S2. Values in this table represent the portion of each boxplot above the 393 
horizontal line, which is the TP rate for covariates that had an influence on imaging features and FP 394 
rates for covariates that did not.  395 

4 Discussion 396 

This study aims to highlight the relationship between chronological age and BrainAGE and its 397 
transitive effect on the relationship between BrainAGE and covariates of interest that are also related 398 
to age. We propose a solution to this problem: either use BrainAGER, or in the simple case of post-399 
hoc linear regression, use chronological age as a covariate in subsequent analyses. We developed a 400 
simulation framework to generate data with complex, but known, relationships between the original 401 
imaging features, age, and a set of covariates that may also be related to age. Then, we were able to 402 
quantify the effect that accounting for age has on the ability to detect actual and spurious correlations 403 
with covariates in subsequent analyses.  404 
Our main findings can be separated into three parts: analytical, empirical, and simulated data results. 405 
The analytical results provide a theoretical basis for the age-BrainAGE correlation, and the analyses 406 
using real and simulated data demonstrate this effect in practice. For the empirical data, there were 407 
three main findings: 1) many variables that may be of interest are correlated with age with Pearson 408 
coefficients of up to r = 0.3, 2) BrainAGE is strongly negatively correlated with chronological age (r 409 
= -0.63 in our dataset), 3) BrainAGER provides a measure of deviation between predicted and actual 410 
age that is not dependent on age, and has substantially different correlations with covariates that are 411 
correlated with age when compared to BrainAGE.  412 
Since it is unknown which covariates are actually related to premature aging, we then developed a 413 
simulation framework to generate synthetic data. Simulated data showed: 1) similar characteristics to 414 
actual data when used to train and test a model on separate datasets, and 2) increased detectability of 415 
true positives and decreased occurrence of false positives when accounting for the age-covariate 416 
relationship, with this being modulated by the size of the simulated effect on physiology. 417 
Based on our observations in both real and simulated data, we recommend that the relationship 418 
between chronological age and BrainAGE should be accounted for. The two methods proposed in 419 
this study are either: 1) regress age on BrainAGE, producing BrainAGER, which is centered on 0 420 
regardless of a participant’s actual age or 2) include age as a regressor when doing follow-up 421 
analyses. In fact, these two methods will produce the same coefficients in the case of linear 422 
regression, with slightly larger t-statistics in the second case. The advantage of using BrainAGER is 423 
simplicity and generalizability; it could be used as the dependent variable in any arbitrary model, 424 
rather than being confined to simple linear regression. While the focus of this study is not to show 425 
specific correlates of premature aging, it is worth noting that 17 variables significantly correlated to 426 
BrainAGE whereas only 6 were related to BrainAGER, with 1 variable (PROMIS Alcohol Negative 427 
Consequences) overlapping between the two sets (Table 1). Thus, accounting for the age-BrainAGE 428 
relationship results in a vastly different set of positive findings and would lead to a remarkably 429 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2018. ; https://doi.org/10.1101/377648doi: bioRxiv preprint 

https://doi.org/10.1101/377648
http://creativecommons.org/licenses/by/4.0/


   Simulation of BrainAGE and covariates 

 
14 

different interpretation of these data. More explicitly, not correcting the age-BrainAGE correlation 430 
would lead to an extensive set of spurious results in this dataset. 431 
Limitations 432 
There are a few cases where the age-BrainAGE correlation is not relevant. When comparing two 433 
groups with matched age, any differences in BrainAGE are not likely to be caused by the relationship 434 
with age. When the individuals being examined are in a restricted age range, there is not likely to be 435 
much contribution from the age-BrainAGE correlation. Also, when the variable of interest is not 436 
related to age, removing the effect of age makes almost no difference (Fig 3b). However, when these 437 
cases are not true, our findings suggest that we should include age as an explanatory variable in a 438 
final model that aims to detect association of brain anomalies with covariates of interest.   439 
The magnitude of the age-BrainAGE correlation is directly related to the accuracy of the prediction 440 
model. The fact that the residuals are correlated with observed values is a characteristic of regression 441 
in general, regardless of the specific data domain, and has a theoretical basis described in section 2.1. 442 
Several factors may decrease the model performance on our testing set, and thereby increase the age-443 
BrainAGE correlation. Specifically, the distribution of age ranges in our samples is non-uniform, 444 
which may lead to more weight being given to the middle of the distribution.  There are substantial 445 
differences between the testing and training sets we used including age, sex, and diagnosis. It may 446 
therefore be possible to improve model performance on the testing set by subsampling the training 447 
set to have a more uniform distribution of ages and to match the testing set on several factors. 448 
However, model performance is already comparable across testing and training sets (R2 of 0.59 and 449 
MAE of 5.1 years, compared to 0.64 and 4.84) and is comparable with what has been previously 450 
reported.  451 
Although the simulation was carefully designed and executed, because of the model’s complexity, 452 
we have not fully explored all scenarios with different simulation parameters. However, we have 453 
identified effect size as the most important parameter and showed how it influenced the results. 454 
When varying other parameters, we still observed a reduction in the number of false positives when 455 
age is included as an explanatory variable in the final regression (results not shown). Moreover, 456 
while determining the parameters, we aimed to obtain realistic patterns as we observed in real data, 457 
such as similar distributions of the correlation values.  458 
By constructing and studying an appropriate generative model containing covariates that have linear 459 
and non-linear relationship with age, we demonstrated that the correlation between covariates and 460 
age should be considered when making inferences about the relationship between BrainAGE and 461 
these covariates. 462 
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