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Abstract

The first steps in the analysis of RNA sequencing (RNA-seq) data are usually
to map the reads to a reference genome and then to count reads by gene, by exon
or by exon-exon junction. These two steps are at once the most common and also
typically the most expensive computational steps in an RNA-seq analysis. These
steps are typically undertaken using Unix command-line or Python software tools,
even when downstream analysis is to be undertaken using R.

We present Rsubread, a Bioconductor software package that provides high-
performance alignment and counting functions for RNA-seq reads. Rsubread pro-
vides the ease-of-use of the R programming environment, creating a matrix of read
counts directly as an R object ready for downstream analysis. It has no software
dependencies other than R itself. Using SEQC data and simulations, we compare
Rsubread to the popular non-R tools TopHat2, STAR and HTSeq. We also com-
pare to counting functions provided in the Bioconductor infrastructure packages.
We show that Rsubread is faster, uses less memory and produces read count sum-
maries that more accurately correlate with true values. The results show that users
can adopt the R environment for alignment and quantification without suffering
any loss of performance.

1 Introduction

RNA sequencing (RNA-seq) is currently the method of choice for performing genome-
wide expression profiling. One of the most popular strategies for measuring expression
levels is to align RNA-seq reads to a reference genome and then to count the number of
aligned reads that overlap each annotated gene [1, 2, 3]. Alternatively, reads might be
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counted by exon or by exon-exon junction [4]. Read mapping and read counting thus
constitute a common workflow that summarizes RNA-seq reads into a count matrix,
which can be used for downstream analyses such as differential expression. These two
steps often represent the most computationally expensive part of an RNA-seq analysis.

R is one of the world’s most popular programming languages [5]. The TIOBE Pro-
gramming Community index places it 14th overall at the time of writing and first
amongst languages designed specifically for statistical analysis (https://www.tiobe.
com/tiobe-index). Building on R, Bioconductor is arguably the world’s most promi-
nent software development project in statistical bioinformatics [6]. Bioconductor contains
many highly cited packages for the analysis of RNA-seq read counts, including limma
[7, 8], edgeR [9] and DESeq2 [10] for differential expression analyses and DEXSeq [4] for
analysis of differential splicing. Key attractions of Bioconductor include the ease-of-use
of the R programming environment, the well organized package management system,
the wealth of statistical and annotation resources, the interoperability of different pack-
ages and the ability to document reproducible analysis pipelines. All the RNA-seq data
analysis packages rely, however, on read alignment and summarization, which typically
have to be performed outside of R. This complicates the analysis pipeline, introducing
additional software dependencies and creating substantial obstacles for non-expert uses.

The last decade has seen rapid development of splice-aware read alignment software.
TopHat was the first successful and popular RNA-seq aligner [11]. Later aligners such
as STAR [12], Subread, Subjunc [13] and HISAT [14] were dramaticaly faster while
improving also on accuracy. RNA-seq read counting algorithms have developed at almost
the same pace, including BEDTools [15], featureCounts [1], htseq-count [3] and Rcount
[16]. htseq-count is a Python script while the other counting or mapping tools are stand-
alone programs written in C or C++.

QuasR is a Bioconductor package that attempts to fill the gap, providing RNA-seq
read alignment and read counting in the form of R functions [17]. QuasR is however
an interface to C programs from 2010 or earlier, specifically to Bowtie version 1.1.1
[18], SpliceMap 3.3.5.2 [19] and SeqAn 1.1 [20]. These older tools do not reflect the
considerable improvements in algorithms achieved during the last 8 years.

This article presents Rsubread, a Bioconductor package that implements current high-
performance RNA-seq read alignment and read counting algorithms in the form of R
functions. Rsubread incorporates the C programs Subread, Subjunc and featureCounts,
together with other functionality. It is continuously maintained so as to track the latest
versions of the C programs. Rsubread allows RNA-seq data analyses, from raw sequence
reads to scientific results, to be conducted entirely in R [21, 22]. Except for read align-
ment itself, all Rsubread functions produce standard R data objects, allowing seamless
integration with downstream analysis packages.

Many of the most popular RNA-seq algorithms are under continuous development.
We take the opportunity in this article to compare Rsubread with the current versions
of other tools. Previous studies have evaluated the performance of read aligners or
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quantifiers separately[13, 23, 1, 24]. In this article, we assess the performance of complete
alignment+count pipelines and evaluate their ability to correctly represent the expression
levels of genes and exons or to detect exon-exon junctions. Unlike previous studies, we
consider possible interactions or incompatibilities between aligners and quantifiers.

The purpose of the article therefore is three-fold. First, we describe the functionality
of the Rsubread package. Second, we demonstrate that the Rsubread is more than
competitive against alternative tools, whether available in R or not, in terms of speed,
memory footprint and accuracy. Third, we conduct comparisons treating read alignment
and summarization together, accounting for possible interactions between aligners and
read counting tools.

2 Materials and Methods

2.1 Software tools

This study compares Rsubread 1.30.5 with aligners STAR 2.6.0c and TopHat 2.1.1 and
with quantifiers HTSeq 0.10.0, IRanges 2.14.10, GenomicRanges 1.32.3 and DEXSeq
1.26.0. Rsubread, IRanges, GenomicRanges and DEXSeq are R packages available
from http://www.bioconductor.org. STAR and TopHat2 are Unix command-line
tools written in C++ available from https://github.com/alexdobin/STAR and https:

//ccb.jhu.edu/software/tophat respectively. HTSeq is a Python library available
from https://pypi.org/project/HTSeq.

To make a fair comparison across different workflows, aligners and quantifiers were
run with similar settings as far as possible. All aligners were instructed to output no more
than one alignment per read. STAR was run with the 2-pass mode. Rsubread and STAR
were set to output name-sorted reads for paired end data, but TopHat2 only supports
location-sorted reads. All read mapping tools were run with 10 threads. featureCounts
is the only read counting tool that supports multi-threaded running and was run with 4
threads in the evaluation.

All timings and comparisons reported in this article were undertaken on a CentOS 6
Linux server with 24 Intel Xeon 2.60 GHz CPU cores and 512 GB of memory.

2.2 SEQC Data

As an example of real RNA-seq data with known expression profiles, data generated by
the SEQC Project [2] was used. Two particular FASTQ files were used, one generated
from sequencing of Human Brain Reference RNA (HBRR) and one from Universal Human
Reference RNA (UHRR). Each file contains about 15 million 100bp read-pairs and was
generated from an Illumina HiSeq sequencer.

The SEQC Project includes expression values measured by TaqMan RT-PCR for
slightly over 1000 genes for both HBRR and UHRR. 958 of these TaqMan validated
genes were found to have matched symbols with genes in the RNA-seq data. The TaqMan
RT-PCR expression values are available from the seqc Bioconductor package.
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2.3 Simulations

Paired-end FASTQ files were generated using the same GRCh38/hg38 genome and gene
annotation as for the SEQC data. Germline variants including SNPs and short indels were
introduced to the reference genome at the rates of 0.0009 and 0.0001 respectively, before
sequence reads were extracted from the genome. Base substitution errors in sequencing
were simulated according to Phred scores at the corresponding positions in randomly
selected RNA-seq reads from an actual RNA-seq library (GEO accession GSM1819901),
thus error profile of simulated reads is similar to that of real RNA-seq reads.

FPKM values were generated from an exponential distribution and randomly assigned
to genes. The FPKM values were then mapped back to genewise read counts according to
known gene lengths in order to achieve a library size of 15 million read pairs. Fragment
lengths were randomly generated according to a normal distribution with mean 200
and variance 30. Fragment lengths below 110 or above 300 were reset to 110 or 300
respectively. Given the fragment length, a pair of 100bp sequences was randomly selected
from a gene assuming that all exons for that gene are equally expressed and sequentially
spliced.

2.4 Annotation

All evaluations and simulations used Rsubread’s built-in RefSeq gene annotation for
human genome GRCh38/hg38 (build 38.2). This is identical to NCBI annotation except
that overlapping exons from the same gene are merged to produce a non-overlapping set
of exons for each gene. This simplification reduces ambiguity and somewhat improves
the performance of all the read quantification tools. This annotation contains 28,395
genes and 261,752 exons.

2.5 Access to data and code

All the data and code used in this study can be freely accessed from http://bioinf.

wehi.edu.au/Rsubread/. Commands for running each workflow and for producing the
comparison results are included in the code.

3 Results

3.1 The Rsubread workflow

The Rsubread pipeline for read mapping and quantification consists of five R functions
(Table 1). buildIndex builds an index of the reference genome. This is a once-off operation
for each reference genome, as the same index file can be used for multiple projects. Either
align or subjunc is used to align sequence reads to the reference genome and featureCounts
produces a matrix of counts. propmapped is optional and produces a table of mapping
statistics. In terms of output, buildIndex, align and subjunc write files to disk whereas
featureCounts and propmapped produce R objects.
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Table 1: The main Rsubread functions for read alignment and quantification.

Function Description

buildIndex Create hash table of target genome
align Basic alignment with soft-clipping, for gene-level analyses
subjunc Alignment with identification of exon-exon junctions
propmapped Compute mapping statistics
featureCounts Compute count matrix for specified genomic features

Other Rsubread functions are briefly discussed in the Discussion section.

3.2 Building the index

buildIndex creates a hash table of the target genome from a FASTA file. The index can
be built at either single-base or 3-base resolution. Building the full index at single-base
resolution takes slightly longer than the gapped index (about 90 minutes vs 18 minutes
for the human or mouse genomes) and produces a larger file (about 15Gb vs 5Gb), but
allows subsequent alignment to proceed more quickly. The index needs to be built only
once for each genome so single-based resolution is set as the default choice in Rsubread
versions 1.30.4 and later. Building a gapped index may however be an efficient choice for
smaller projects and was the default in older versions of the software.

3.3 Alignment

Alignment itself is performed by either the align or subjunc functions. Both functions
accept raw reads, in the form of Fastq, SAM or BAM files, and output read alignments
in either SAM or BAM format.

The align function is exceptionally flexible. It performs local read alignment and
reports the largest mappable region for each read, with unmapped read bases being soft-
clipped. Its unique seed-and-vote design makes it suitable for RNA-seq as well as for
genomic DNA sequencing experiments. It automatically detects insertions and deletions.
align is recommended for gene-level expression analyses of RNA-seq or for any type of
DNA sequencing.

The subjunc function is similar to align but provides comprehensive detection of
exon-exon junctions and reports full alignments of intron-spanning reads. subjunc is
recommended for any RNA-seq analysis requiring intra-gene resolution.

Both align and subjunc achieve high accuracy via a two-pass process. The first pass
is the seed-and-vote step, by which a large number of 16mer subreads from each read
are mapped to the genome using the hash table. This step detects indels and exon-
exon junctions and determines the major mapping location of the read. The second pass
undertakes a detailed local re-alignment of each read with the aid of collected indels and
junctions. Subread and Subjunc were the first aligners to implement such a two-pass
strategy [13].

align and subjunc support reads from any of the major Next Generation Sequencing
(NGS) technologies. Users can specify the amount of computer memory and the number
of threads to be used, enabling the aligners to run efficiently on a variety of computer
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hardwares from super-computers to personal computers.
The propmapped function calculates the proportion of reads or fragments that are

successfully mapped, a useful quality assessment metric.

3.4 Counting reads

The featureCounts function counts the number of reads or read-pairs that overlap any
specified set of genomic features. It can assign reads to any type of genomic region.
Regions may be specified as simple genomic intervals, such as promoter regions, or can
be collections of genomic intervals, such as genes comprising multiple exons. Any set of
genomic features can be specified in GTF, GFF or SAF format, either as a file or as an
R data.frame. SAF is a Simplified Annoation Format with columns GeneID, Chr, Start,
End and Strand.

featureCounts produces a matrix of genewise counts suitable for input to gene ex-
pression analysis packages such as limma [7], edgeR [9] or DESeq2 [10]. Alternatively, a
matrix of exon-level counts can be produced suitable for differential exon usage analyses
using limma, edgeR or DEXSeq [4].

featureCounts outputs the genomic length and position of each feature as well as the
read count, making it straightforward to calculate summary measures such as RPKM
(reads per kilobase per million reads).

featureCounts includes a large number of powerful options that allow it to be opti-
mized for different applications. Reads that overlap more than one feature can be ignored,
multi-counted or counted fractionally. Reads can be extended before counting to allow
for probable fragment length. Minimum overlap or minimum quality score metrics can
be specified. Reads can be counted in a strand specific or non-specific manner. Reads
that span exon-exon junctions can be counted, as can reads that are internal to exons.

3.5 Counting reads at the exon level

RNA-seq data can be used not only for gene expression but also to investigate alternative
use of exons occurring during transcription of genes. To detect alternative exon use, the
abundance of exons needs to be accurately measured. Of particular importance is the
mapping and counting of exon-spanning reads that span two or more exons in the same
gene. Exon-spanning reads typically account for around 20 to 30 percent of reads in an
RNA-seq dataset.

To use Rsubread for exon-level RNA-seq analysis, the subjunc aligner should be used
for read mapping as it performs full alignment for each read. Reads mapped by subjunc
can then be assigned to exons using featureCounts, which should be run at the feature
level to allow reads to be assigned to exons instead of genes. Multi-overlapping reads
should be counted so that exon-spanning reads can be assigned to all their overlapping
exons.

3.6 Built-in annotation

Rsubread comes with annotation for human and mouse genes already installed, so that
GTF or SAF files do not need to be specified for these species. The built-in annotation

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/377762doi: bioRxiv preprint 

https://doi.org/10.1101/377762
http://creativecommons.org/licenses/by-nc-nd/4.0/


align−F align−G STAR TopHat2

R
ea

d 
m

ap
pi

ng
 ti

m
e 

(M
in

s)

0
10

20
30

40
50

Figure 1: Run times of read aligners. Each aligner used ten threads to map 15 million
100bp read-pairs from the SEQC UHRR sample to the human reference genome GRCh38.
Rsubread::align is faster than STAR or TopHat2 regardless of whether the full index
(align-F) or a gapped index (align-G) is used.

follows NCBI RefSeq gene annotation with the simplification that overlapping exons from
the same gene are merged. This simplification reduces annotation ambiguity and proves
beneficial for most RNA-seq expression analyses. Built-in annotation is provided for the
mm9, mm10, hg19 and hg38 genome builds. Rsubread’s built-in hg38 annotation was
used for the simulations and comparisons reported in this article.

3.7 Quantification at the gene-level: speed and memory

We now compare the Rsubread gene-level workflow, which consists of align and feature-
Counts, to other workflows that generate read counts for genes. Rsubread is compared to
aligners TopHat2 [25] and STAR [26] combined with quantification tools htseq-count [3],
summarizeOverlaps and featureCounts. Google Scholar searches suggest that these are
currently the most popular tools for generating gene-level counts. htseq-count is part of
the HTSeq Python library. summarizeOverlaps is a function in the Bioconductor package
GenomicRanges.

First we assessed the running time of the read aligners on the SEQC UHRR sample
(Figure 1). align was slightly faster when run with the full genome index (align-F)
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Figure 2: Running time of different quantification tools. Labels under each bar indicate
the quantification method and the aligner (in parenthesis) that produced the mapped
reads used for counting. Mapped reads were assigned to NCBI RefSeq human genes.
FeatureCounts is the only tool that supports multi-threaded read counting and it was
run with four threads.

as opposed to the gapped index (align-G), with both options being faster than STAR
or TopHat2. STAR was 50% slower than align-F and TopHat2 more than an order of
magnitude slower.

TopHat2 and align-G had the smallest memory footprints for the same operation
(supplementary Figure S1). align-F used twice as much memory and STAR over four
times as much.

Next we ran the quantification tools to assign the mapped UHRR reads to RefSeq
human genes. This showed featureCounts to be 16 – 175 times faster than the other
tools (Figure 2). featureCounts was equally as fast regardless of the alignment used.
summarizeOverlaps and htseq-count were slower when working on the TopHat2 alignment
than the STAR alignment. In this evaluation, align and STAR output name-sorted
aligned reads whereas TopHat2 output location-sorted reads.

featureCounts used easily the least memory for the quantification step (supplementary
Figure S2). htseq-count used only slightly more memory than featureCounts when read

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/377762doi: bioRxiv preprint 

https://doi.org/10.1101/377762
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2: Gene-level accuracy comparison. The table gives Pearson correlations between
true log2-expression levels and log2-FPKM values produced by each workflow. The align-
F + featureCounts workflow gives the best correlation in each case.

Workflow UHRR HBRR Simulation

align-F + featureCounts 0.851 0.870 0.955
align-G + featureCounts 0.850 0.869 0.955
STAR + featureCounts 0.848 0.867 0.901
STAR + htseq-count 0.845 0.864 0.877
STAR + summarizeOverlaps 0.845 0.864 0.877
TopHat2 + htseq-count 0.843 0.863 0.921
TopHat2 + summarizeOverlaps 0.843 0.863 0.921

Columns “UHRR” and “HBRR” are for the SEQC UHRR and SEQC HBRR samples respectively. For

the SEQC columns, the log2-expression values of 958 genes measured by TaqMan RT-PCR are taken as

true values. Column “Simulation” shows simulation results for 28,395 genes. For all columns, an offset

of 0.25 was added to raw gene counts to avoid taking logarithms of zeros.

pairs were name-sorted, but it used >40 times more memory when the read pairs were
location-sorted. summarizeOverlaps had high memory usage for both name-sorted and
location-sorted reads because it loads all the reads into memory at once.

In summary, Rsubread outperformed the STAR-based workflows in both speed and
memory use. While TopHat2 has a slightly smaller memory footprint than Rsubread for
alignment, it was far too slow to be competitive.

3.8 Quantification at the gene-level: accuracy

Next we compared workflows for accuracy in quantifying gene expression levels. First
we ran the workflows on the UHRR and HBRR samples from the SEQC Project. Read
counts generated from each workflow were then compared to the expression levels of 958
genes as measured by TaqMan RT-PCR, a high-throughput quantitative PCR technique.
RNA-seq counts were converted to log2-FPKM (fragments per kilobases per million)
values and TaqMan RT-PCR data were also converted to log2 scale.

Rsubread workflows are found to yield the highest correlation with TaqMan RT-
PCR data for both UHRR and HBRR samples (Table 2). All workflows produce higher
correlation for HBRR sample than for UHRR sample, which is expected because the
UHRR sample is made up from multiple cancer cell lines.

Next we compared the workflows on simulated data. All the workflows were run on a
simulated FASTQ file of 15 million read pairs. Read counts were converted to log2-FPKM
and compared to the known log2-FPKM values from which the simulated sequence reads
were generated. The Rsubread workflows are again found to achieve the best correlation
with the true expression values (Table 2). Both Rsubread workflows yield correlation
> 0.95, much higher than those for other workflows.

In general, align was more accurate than STAR and featureCounts was more accu-
rate than either htseq-count or summarizeOverlaps. summarizeOverlaps uses the same
counting strategy as that developed by htseq-count and therefore gives the same results.
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Table 3: Exon-level accuracy comparison. The table shows the Pearson correlation be-
tween the true log2-FPKM expression values of exons and log2-FPKM values produced
by each workflow. Rsubread workflows give the best correlation with true values.

Workflow Correlation

subjunc-F + featureCounts 0.982
subjunc-G + featureCounts 0.982
STAR + featureCounts 0.950
STAR + dexseq count 0.927
STAR + countOverlaps 0.950
TopHat2 + dexseq count 0.942
TopHat2 + countOverlaps 0.980

A offset of 0.25 was added to raw exon counts to avoid taking logarithms of zero values.

3.9 Quantification at the exon level: speed and memory

Next we compared workflows to obtain exon-level read counts. Rsubread workflows for
exon-level analysis comprise the subjunc program, which was run with a full genome in-
dex (subjunc-F) or a gapped index (subjunc-G), and the featureCounts programs. Rsub-
read was compared to TopHat2 + dexseq count, TopHat2 + countOverlaps, STAR +
dexseq count, STAR + countOverlaps and STAR + featureCounts. dexseq count.py is
a Python script that comes with the DEXSeq package for counting RNA-seq reads by
exon. countOverlaps is a function in IRanges package. For all pipelines, reads spanning
multiple exons were counted for all the relevant exons.

All workflows were run on the SEQC UHRR data. For read mapping, subjunc-F
was the fastest, followed by STAR, subjunc-G and TopHat2 (supplementary Figure S3).
STAR and subjunc-G were almost equal while subjunc-F was about 20% faster. TopHat2
was about 10 times slower.

For read counting, featureCounts is more than an order of magnitude faster than coun-
tOverlaps or dexseq count, regardless of which aligner output was used (supplementary
Figure S4). Dexseq count was the slowest counting tool.

subjunc uses much less memory than STAR (supplementary Figure S5) and feature-
Counts uses less memory than dexseq count or countOverlaps (supplementary Figure
S6). As for the gene-level results, TopHat2 used slightly less memory than subjunc-G
but at too high a price in terms of running time.

In summary, subjunc-F and featureCounts constitute the fastest workflow for exon-
level analysis of RNA-seq data. featureCounts uses the least memory of any quantification
tool and subjunc uses less memory than STAR.

3.10 Quantification at the exon level: accuracy

We used the same simulated data as for the gene-level comparison to assess the accuracy
of the exon-level workflows. Overlapping exons found between genes were removed from
analysis to avoid counting ambiguity. Exons from genes appearing in more than one
chromosome, or appearing in both strands of the same chromosome, were also removed

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/377762doi: bioRxiv preprint 

https://doi.org/10.1101/377762
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 4: Aligner performance in mapping junction reads and reporting exon-exon junc-
tions. Results are based on simulated data.

Workflow Junctions Junction reads
Recall Prec F1 Recall Prec F1

subjunc-F 99.80 99.53 99.66 95.51 98.18 96.82
subjunc-G 99.82 99.43 99.63 95.50 98.16 96.81
STAR 98.48 99.87 99.17 89.87 98.06 93.78
TopHat2 99.12 99.91 99.51 90.15 98.57 94.17

Column “Recall” gives the percentage of correctly called junctions (or junction reads) out of all junctions

(or junction reads) generated in the simulated dataset. Column “Precision” gives the percentage of

correctly called junctions (or junction reads) out of all reported junctions (or junction reads). Column

“F1” gives the F1 score that is the harmonic mean of precision and recall.

because dexseq count cannot process such exons. 5000 exons were excluded from this
analysis in total (out of 261,752 exons). Read counts from remaining exons were then
converted to log2-FRKMs for comparison.

As was seen in the gene-level comparison, the two Rsubread workflows both out-
performed the other workflows (Table 3). subjunc and TopHat2 were more accurate
than STAR. featureCounts was more accurate than countOverlaps and countOverlaps
was more accurate than dexseq count. The accuracy of the workflows was affected by
both read mapping and counting. The STAR + dexseq count workflow had the worst
correlation of the workflows. Replacing dexseq count with featureCounts improved the
accuracy, but it remained lower than that for the two pure Rsubread workflows.

3.11 Detection and quantification of exon-exon junctions

Exon-exon junctions can be discovered directly by the correct mapping of junction-
spanning reads (junction reads). Most RNA-seq aligners report the locations of exon
splice sites (donor and receptor sites). The number of reads supporting the splice sites
detected are often reported as well, providing a quantitive measurement for the junctions
events. Analysis of discovered junctions and their abundance is an important step in
the discovery of alternative splicing events. Junction data can be further combined with
exon-level and gene-level expression data in order to detect differentially spliced genes.

Nevertheless, junction reads can be difficult to map correctly because they may span
an intron tens of thousands of bases long and indeed might span more than one intron.
Here we assess the performance of the aligners for mapping junction reads and calling
junctions. We used the same simulated data as above. There are 233,021 exon-exon
junctions in the simulated data and 25% of the simulation reads are junction reads.

subjunc-F and subjunc-G had better overall performance than STAR or TopHat2 as
measured by the F1 summary of precision and recall (Table 4). In particular, subjunc-F
and subjunc-G outperformed STAR and TopHat2 in mapping of junction reads by a clear
margin. STAR was slightly less sensitive than the other aligners in mapping junctions
reads or detecting junctions.
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4 Discussion

Read mapping and quantification are computationally-intensive operations that lay the
foundation for most analyses of NGS data. The time-consuming and resource-hungry
nature of these operations is a major bottleneck for larger projects. Meanwhile, R is an
easy-to-learn scripting language that is widely used for statistical analyses of NGS data
once the processing of the raw reads is completed. Rsubread provides functions for read
mapping and quantification within the R programming environment, allowing an entire
NGS analysis, from reads to results, to be completed in a single R session. Rsubread
can work with Bioconductor packages limma, edgeR and DESeq2 to complete an entire
RNA-seq analysis in R from read mapping through to the discovery of genes that exhibit
significant expression changes [21, 22]. It has proved a valuable resource for NGS analyses
in biomedical research [27].

As well as ease-of-use, this study has shown that Rsubread outperforms the most pop-
ular competing alignment and quantification tools regardless of programming language.
Rsubread was generally found to be faster, to use less memory and to provide more ac-
curate expression quantification than the competitor tools. The improved accuracy of
the Rsubread workflows should translate into more accurate downstream analyses such
as discovery of differentially expressed genes. The main exception is that TopHat2 used
slightly less memory for alignment than Rsubread. TopHat2 however was an order of
magnitude slower and hence was not considered competitive overall. Our comparisons
included only the two or three most popular RNA-seq aligners and the two or three most
popular counting tools and are not intended to be a comprehensive study of all cur-
rent RNA-seq tools. Nevertheless, the comparisons are representative of current practice
and are sufficient to show that users can adopt the R environment for alignment and
quantification without suffering any loss of performance.

The Rsubread package continuously tracks the stand-alone C programs provided by
the Subread project (http://subread.sourceforge.net), meaning that the R func-
tions always give equivalent performance to the corresponding C programs. Users of
R can therefore take advantage of the Rsubread user-interface without compromising
performance.

We chose STAR and TopHat2 for the comparisons in this article because they re-
main easily the most popular RNA-seq aligners in the published literature. The TopHat
website has recently recommended, however, that users migrate to HISAT2 instead. Our
comparisons show that HISAT2 is indeed fast and economical with memory but is less
able than the other aligners to detect exon-exon junctions (data not shown). Rsubread
outscores HISAT2 on all the accuracy criteria presented in this article (data not shown).

Although the main focus of this study is on the analysis of RNA-seq data, Rsubread
can be used also for the analysis of other types of sequencing data such as histone ChIP-
seq and ATAC-seq. The align function can be used for read mapping and featureCounts
can be used to produce read counts for promoter regions or gene bodies to provide a
measurement of peak abundance [28, 29].

The Rsubread package includes other functions beyond the scope of this article in-
cluding sublong (for long read mapping), exactSNP (SNP identification), atgcContent
(compute nucleotide frequencies), detectionCall, and promoterRegions.
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