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ABSTRACT 

The genomics era has brought useful tools to dissect the genetic architecture of complex 

traits. We propose a reaction norm model (RNM) to tackle genotype-environment correlation 

and interaction problems in the context of genome-wide association analyses of complex 

traits. In our approach, an environmental risk factor affecting the trait of interest can be 

modeled as dependent on a continuous covariate that is itself regulated by genetic as well as 

environmental factors. Our multivariate RNM approach allows the joint modelling of the 

relation between the genotype (G) and the covariate (C), so that both their correlation 

(association) and interaction (effect modification) can be estimated. Hence we jointly 

estimate genotype-covariate correlation and interaction (GCCI). We demonstrate using 

simulation that the proposed multivariate RNM performs better than the current state-of-the-

art methods that ignore G-C correlation. We apply the method to data from the UK Biobank 

(N= 66,281) in analysis of body mass index using smoking quantity as a covariate. We find a 

highly significant G-C correlation, but a negligible G-C interaction. In contrast, when a 

conventional G-C interaction analysis is applied (i.e., G-C correlation is not included in the 

model), highly significant G-C interaction estimates are found. It is also notable that we find 

a significant heterogeneity in the estimated residual variances across different covariate levels 

probably due to residual-covariate interaction. Using simulation we also show that the 

residual variances estimated by genomic restricted maximum likelihood (GREML) or linkage 

disequilibrium score regression (LDSC) can be inflated in the presence of interactions, 

implying that the currently reported SNP-heritability estimates from these methods should be 

interpreted with caution. We conclude that it is essential to correctly account for both 

interaction and correlation in complex trait analyses and that the failure to do so may lead to 

substantial biases in inferences relating to genetic architecture of complex traits, including 

estimated SNP-heritability.   
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INTRODUCTION 

Variation in complex traits between people is determined both by genetic and non-genetic 

factors. The non-genetic component will include known environmental risk factors, but also 

unknown factors that are characterised by stochastic variation. The interplay between genetic 

and identifiable environmental factors has long been a topic of research interest1, since the 

identification of genotype-environment interactions has the potential to inform on health 

interventions to overcome genetic predisposition to disease. However, many so-called 

environmental risk factors (e.g., smoking, alcohol consumption, stressful life events, 

educational attainment) are themselves complex traits whose variation also reflects both 

genetic and non-genetic factors. For example, the relationship between smoking and body 

mass index (BMI) is complex, i.e. common causal genetic variants have biological effects on 

both traits (pleiotropy or genetic correlation)2 while BMI is also affected by smoking status 

(interaction)3; 4. The relationship between smoking and BMI is a good example for a complex 

association which can be best modelled using a framework that can account both for 

genotype-covariate correlation and interaction (GCCI).  

 

Both correlation (‘association’) and interaction (‘effect modification’) are fundamental in 

biology5-7, but it is critical to distinguish between them because their biological mechanisms 

differ, as do their implications. This association/interaction problem has been well posed in 

the classical twin study approach8, showing that association and interaction can be 

disentangled and correctly estimated with an appropriate model and sufficient data. 

Unfortunately, large well-powered data sets with measures on multiple family members are 

limited. However, genome-wide association studies (GWAS) now provide different type of 

genetically informative data to investigate GCCI. The genomic era has brought useful tools to 

dissect the genetic architecture of complex traits, where genetic variance and covariance can 
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be estimated based on genome-wide single nucleotide polymorphisms (SNPs) genotyped in 

large-scale population samples. The increased availability of sufficiently powered data sets, 

with information on measured genetic and non-genetic risk factors, motivates the need to 

develop appropriate statistical tools for GCCI analysis. 

 

The reaction norm model (RNM) has been developed and applied to GCCI analyses in 

ecology9 and agriculture10; 11. The RNM allows environmental exposures to be modelled such 

that the genetic effects of a trait can be fitted as a nonlinear function of a continuous 

environmental gradient. The possible modulators of the phenotypes of the trait are not limited 

to environmental exposures, but can include any covariates, regulated by environmental and 

genetic factors, which are shared with the phenotypes. In other words, the genetic effect, and 

therefore the phenotype, of one trait often depends on the phenotype of another trait. This can 

be modelled by introducing dependence between the phenotype and the covariate, where the 

covariate represents the phenotype of the modulating trait, with both phenotypes having 

shared genetic and environmental components.   

 

In the context of whole genome analyses of human complex traits, there is currently no 

approach that can fit GCCI effects to disentangle interaction from correlation at the genome-

wide level. Yet, ignoring either the genotype-covariate (G-C) correlation or the G-C 

interaction may cause biased estimates of variance components which form the basis of SNP-

heritability or interaction estimation8. Random regression-genomic restricted maximum 

likelihood (RR-GREML)12; 13 and G-C interaction (GCI)-GREML14 have been used to detect 

and estimate G-C interaction at the whole genome level for BMI modulated by smoking 

quantity12. However, the analytical approach used in their study was based on univariate 

models which did not account for G-C correlation, thereby assuming that there is no 
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correlation between the covariates and the outcomes. This can inflate signals indicating the 

presence of G-C interaction and lead to biased estimates by the failure to account for the G-C 

correlation. A further limitation with the existing methods is that these cannot be applied to 

continuous covariates without an arbitrary stratification into discrete exposure groups. 

Importantly, the methods used for the estimation of SNP heritability (such as GREML13; 14 

which is based on individual level data, or LDSC15-17 based on summary statistics) may give 

biased estimates for genetic and residual (error) variance if the trait of interest is moderated 

by (unknown) covariates due to failure in adequate capture of the interaction effects. It is 

currently not possible to use RR-GREML or GCI-GREML to assess such bias especially 

when using continuous covariates. 

 

In this study, we develop a whole-genome reaction norm model (RNM) that is 

computationally flexible and powerful when estimating genome-wide G-C interactions for 

complex traits. We also extend this approach to a whole-genome multivariate RNM (MRNM) 

framework to capture fully the GCCI effects, jointly modelling pleiotropy and interactions at 

the genome-wide level. As the proposed methods will be able to more realistically account 

for the complexity of GCCI effects, we hypothesize that they will lead to a significant 

reduction in bias and notably improve the estimation of the genetic architecture of complex 

traits.  

 

RESULTS 

Overview of methods 

We propose an extension of the whole-genome RNM that can estimate G-C interactions, 

where covariates can be continuous phenotypes of traits correlated with the response. In a 
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simplified form of this model, the response variable (y) representing the main trait is 

modulated by a continuous covariate variable (c) as 

𝑦𝑖 = 𝛼0𝑖 + 𝛼1𝑖 ∙ 𝑐𝑖 + 𝑒𝑖 

where α0i and α1i are the first and second order terms from a random regression of y on c (i.e. 

the regression coefficients may vary between individuals) and ci and ei  are the covariate 

value and the residual effect for the ith individual record (see Methods for the formal model 

specification and covariance structure). We assessed the power and accuracy in the 

estimation of G-C interaction for a complex trait modulated by continuous covariates, and 

compared the performance of RNM with current methods12-14 including RR-GREML and 

GCI-GREML which require stratification of  the data into discrete groups due to inability to 

allow for continuous covariates12.  In addition, we applied the standard GREML13; 14 and 

LDSC15-17 methods to estimate SNP-heritability for the main response variable (y), where y is 

modulated by one or more unknown covariates. With this analysis, we are able to explore the 

potential bias in results obtained by these methods in the presence of non-negligible G-C 

interactions. 

 

The RNM described above is used to model GCI effects without accounting for G-C 

correlation. As briefly explained in the Introduction, the same genetic factors can affect both 

the covariate trait and the main trait (response variable), and at the same time, the covariate 

trait phenotypes can directly modify the main trait. For example, both BMI and smoking have 

non-zero SNP-heritability18, there is a direct genetic association between BMI and smoking 

quantity, and BMI is known to be modulated by smoking. Typically, the covariate itself 

(here, smoking) is affected by genetic effects and residual error  (i.e. 𝑐𝑖 = 𝛽𝑖 + 𝜀𝑖), and there 

can be non-negligible correlations between α0 and β, α1 and β, and e and ε (for the full 

covariance structure, see Methods). We used multivariate RNM (MRNM) to take into 
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account the G-C correlation, and we compared its performance with the RNM model by 

assessing differences in bias, type I error rate and power of identifying G-C interactions using 

simulated data.  

 

The MRNM can be generalised to account for residual heterogeneity or residual-covariate (R-

C) interaction, that is   

𝑦𝑖 = 𝛼0𝑖 + 𝛼1𝑖 ∙ 𝑐𝑖 + 𝑒𝑖 = 𝛼0𝑖 + 𝛼1𝑖 ∙ 𝑐𝑖 + 𝜏0𝑖 + 𝜏1𝑖 ∙ 𝑐𝑖  

where α0i , α1i, and ci are defined as above, and 𝜏0𝑖 and 𝜏1𝑖 are the first and second order of 

random regression coefficients for the residual variance (see Methods).  

 

We compared the performance of previously published methods (RR-GREML12; 13 and GCI-

GREML14) with RNM and MRNM with simulated and real data from the UK Biobank19. The 

models used in these comparisons are summarised in Table S1, a brief description of the UK 

Biobank and details for the variables used in our analyses are given in Methods and 

Supplementary Note. In the analyses using the UK Biobank, we modelled BMI as the main 

trait and fitted separate models using information on pack years of smoking (SMK), 

neuroticism score (NEU) and the first principal component of genotypes (PC1) as the 

covariates. Models using PC1 as the covariate were used as a negative control, as the data 

used in these analyses was stringently restricted according to their ancestry, excluding all 

participants with values over 6 SD from the mean of the first and second PCs. Due to this 

stringent restriction based on ancestry, we would expect to see little or no evidence for 

interaction due to PC1. We used SMK and NEU because of their well-known association 

with BMI12; 20; 21 although the variance and covariance components of the interaction effects 

were not clearly known.   
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Type I error rate, power and estimates in the GCI model 

We used simulation (see Methods) to quantify type I error rate and power of detecting G-C 

interaction for the proposed RNM, RR-GREML and GCI-GREML, without considering G-C 

correlation. As shown in Figure 1, all methods could control type I error rate under the null 

model, when there was no G-C correlation and interaction. In contrast, when there were non-

negligible G-C interactions, RNM outperformed RR-GREML and GCI-GREML in detecting 

G-C interactions (Figure 2). The power to detect G-C interaction was slightly higher for RR-

GREML compared to GCI-GREML.  

We also tested if the methods can give unbiased estimates for variance components of 

random regression coefficients underlying the mechanism of G-C interaction. When G-C 

interactions were present, RNM gave unbiased estimates, whereas estimates from RR-

GREML and GCI-GREML differed from true values (Table 1). Note that RR-GREML and 

GCI-GREML required the stratification of the sample into discrete groups, resulting in an 

artificial heterogeneity of phenotypic variances across the discrete groups (Figure S1). 

 

Type I error rate, power and estimates in the GCCI model 

We also considered the GCCI model in simulations (Methods). As expected, in the presence 

of non-negligible genetic correlations between the main response and covariate variables (e.g. 

r>0.5), we saw spurious signals for G-C interaction in the univariate analysis using the RNM 

(Figure 3). However, MRNM performed notably better in these analyses, being able to 

control for type I error rate (0.046) in detecting G-C interaction (Figure 3). 

In the presence of G-C correlations and G-C interactions, both RNM and MRNM performed 

similarly in detecting G-C interactions (Figure 4) although the significance of the G-C 

interaction for RNM was slightly inflated due to over-estimated parameters (see var(α1) for 
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RNM in Table 2). Importantly, MRNM gave unbiased estimates for both G-C correlation and 

G-C interaction (Table 2).  

When using RNM, the spurious signals for detecting G-C interaction could be controlled by 

adjusting the main response for the covariate, i.e. using residuals (as the response) from the 

regression of the main response on the covariate (Figure S2 and S3). However, such 

adjustment was crude, and the genuine effects were sometimes over-corrected, again leading 

to biased estimates especially in the estimated variance of the main effects (Table S2). 

Allowing for residual-covariate (R-C) correlation and interaction 

In addition to GCCI, it is possible that the residual effects (ei) are correlated with the 

covariate (ci) and that there is interaction (RCCI) (see Eq. (3) or Methods). We tested various 

scenarios for detecting G-C interactions in the presence of R-C correlation and/or interaction 

(Figures S4–S8). In the absence of G-C interactions but with R-C interactions, type I error 

rate was well controlled in all methods (Figure S4, Table S3). In the presence of G-C 

interactions and R-C interactions, RNM had greater power to detect G-C interaction 

compared to RR-GREML or GCI-GREML (Figure S5 and Table S4). In the absence of G-C 

interaction but with G-C correlations and RCCI, all three methods were able to control type I 

errors in detecting G-C interaction (Figure S6 and Table S5). With the full GCCI model in 

the presence of G-C correlation and interaction, and R-C correlation and interaction, MRNM 

had greater power than RR-GREML or GCI-GREML (Figure S7 and Table S6). When 

increasing the variance explained by the G-C interaction, the statistical power reached 100% 

with all three methods (Figure S8 and Table S7). It is notable that MRNM gave unbiased 

estimates of the components whereas the other methods generated some degree of bias in the 

estimation (Tables S5, S6 and S7).  
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Bias in the estimated heritability using LDSC or GREML  

With simulated data based on the G-C or R-C interaction model, we showed that both the 

GREML and LDSC overestimated the residual variance for the main response variable hence 

underestimating the SNP-heritability (Figure 5). When the interaction component explained 

10% of the total variance, the estimated residual variance based on GREML or LDSC was 

1.5 times higher than the true simulated value (Figure 5). When the variance of the 

interaction was increased to 25% of the total variance, GREML or LDSC overestimated the 

residual variance up to 3-fold. However, RNM generated unbiased estimates for the residual 

variance in most cases. It was noted that the estimated genetic variance was mostly unbiased 

whether using GREML, LDSC or RNM. 

 

Real data 

We used the first wave of UK Biobank (UKBB1, see Methods) to compare various models 

that test interaction using RR-GREML (M1) and GCI-GREML (M2), and the proposed new 

approaches RNM (M3-7) and MRNM (M8-M12) (Table 3). We conducted GCCI analyses 

with BMI as the outcome trait using either SMK, NEU or PC1 (negative control) as the 

covariate of interest. 

 

Table 3 shows the p-values for interaction effects from the likelihood ratio tests and the 

corresponding estimates for variance and covariance components are presented in Table S8. 

We found that BMI was significantly modulated by SMK using RR-GREML (M1, p-value = 

1.00E-03) or GCI-GREML (M2, p-value = 1.99E-07), confirming published results12. 

However, these methods did not account for G-C correlation or RCCI (Table S6 and S7). 

Using RNM (M3–7), we found that the combined G-C and R-C interaction effects were 
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highly significant (M3–5). We then used RNM to test for the G-C interaction corrected for R-

C interaction (M7) and found similar results (p-value = 1.83E-04 and var(α1) = 0.47 with SE 

= 0.12) compared to those obtained using RR-GREML (M1) and GCI-GREML (M2). It is 

noted that residual heterogeneity (reflected by R-C interaction) was partly controlled in M1 

and M2 as these models adjusted for group differences with the covariate stratified into four 

discrete groups, which however generated biased estimates as shown in Table S6 and S7 

from simulation. We next applied MRNM to test for interactions, accounting for both G-C 

interaction and G-C correlation effects (M8–12). We found that the signal for the combined 

G-C and R-C interaction increased (M8–10) compared to that seen using RNM, which turned 

out to be mostly due to the increased R-C interaction (M11). It is likely that this was due to 

the large negative residual correlation between BMI and SMK (Figure 6 and Table S8) which 

could be more properly modelled in MRNM than in RNM. We finally tested G-C interaction 

controlled for G-C correlation, and R-C correlation and R-C interaction (M12), and showed 

that the signal for G-C interaction was negligible (p-value = 3.26E-02) and not significant 

after considering the number of covariates (n=3) tested in this study. This was probably due 

to the fact that the non-negligible G-C correlation (Figure 6 and Table S8) would inflate the 

signal of G-C interaction in M1, 2 and 7 (all based on univariate framework). As shown in 

the simulations, the MRNM was the most reliable model (Table S6 and S7). Hence, this 

demonstrates that conclusions from models using the MRNM applied to real data can differ 

from those obtained using methods based on more simplified models (Figure 6 and Table 

S8).  

  

We also analysed BMI using NEU20; 21 as the covariate in the various models, observing 

evidence for interaction with RR-GREML (p-value = 6.82E-04) but not GCI-GREML(M1 

and 2 in Table 3). We found strong G-C and R-C interactions when using either RNM (M3-5) 
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or MRNM (M8-10). Evidence for interaction remained when the G-C interaction effects were 

adjusted for R-C interaction effects (p-value = 3.77E-04 for M7 and 1.08E-03 for M12) or 

vice versa (7.73E-06 for M6 and 2.36E-05 for M11). This shows that G-C and R-C 

interactions are both important and contribute to the shared aetiology between BMI and NEU. 

As shown in Figure 7, both genetic and residual effects on BMI are significantly modulated 

by individual NEU while there also is a strong genetic association between them. It was noted 

that in contrast to BMI-SMK analysis, the results between RNM and MRNM were similar, 

possibly reflecting different shared genetic and environmental architecture between BMI and 

NEU, compared to BMI and SMK. The estimated genetic architecture from BMI-NEU 

analyses is depicted in Figure 7, Table S8 and Figure S9.  

 

Lastly, we used PC1 as the covariate in the same analyses (Table 3) and as expected, found 

no significant interaction effects in this negative control analysis. Compared to SMK or NEU, 

the R-C interaction was dramatically less (Table 3 and Table S8), probably because PC1 was 

calculated from genotype data for which the residual component was relatively small. We 

also found no evidence of G-C interaction, which was probably due to the fact that the 

sample was so homogeneous such that there was little power to detect interaction effects 

modulated by population difference.  

 

 

An appropriate interpretation of the significance of G-C and R-C interactions for BMI-

NEU  

The signal of G-C interaction adjusted for R-C interaction (M12) could be underestimated 

because the R-C model (M10) captured G-C interaction effects and overestimated R-C 
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interaction effects (see the estimated G-C interaction variance component of MRNM R-C 

model in Table S4-S7). To correct for the bias due to overestimating the R-C interaction, we 

used the unbiased estimate of R-C interaction variance component from the full model (H1 

for M12 in Table 3) that included both G-C and R-C interaction components, on which other 

estimated parameters were conditioned, when applying the R-C model. We term this the 

corrected R-C model. P-values from comparing the corrected R-C and the full models would 

then indicate the significance level of G-C interaction more realistically than p-values from 

comparing uncorrected R-C and full models (see Figure S10). The same applied to the G-C 

model, i.e. it overestimated G-C interaction effects, and a corrected G-C model should be 

used when compared with the full model to get an appropriate significance of R-C interaction 

effects. 

 

These corrected R-C and G-C models were only applied when the full model was 

significantly better than either R-C or G-C model such that the estimates from the full model 

were the most reliable among the models. This was the case for BMI-NEU (the full model 

had a better-fit than either G-C (p-value = 2.36E-05) or R-C (p-value = 1.08E-03) as shown 

in Table 3). For BMI-SMK or BMI-PC1, the full model was not significantly better than 

reduced models after a multiple testing correction. Therefore, we only applied corrected 

models for BMI-NEU interactions to obtain their corrected significances. In the BMI-NEU 

analysis, a corrected significance level for G-C and R-C interaction was p-value = 6.98E-10 

and 1.54E-13, respectively, which was improved from M11 and 12 in Table 3 because it 

accounted and corrected for collinearity between two compared model (R-C vs FULL or G-C 

vs FULL model). As demonstrated in Figure S10, significance level should be carefully 

interpreted and obtained using the true or a near-true value in the reduced model when testing 

hypotheses. 
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Inflated residual variance using GREML 

We observed in simulation data that residual variances for a trait estimated from LDSC or 

GREML were inflated when there were G-C or R-C interactions (Figure 5 and Table S6 and 

S6), and this led to underestimates of SNP heritability. Hence, with real data, we tested the 

differences in the estimates of residual variances for BMI estimated from GREML and RNM 

(Table 4). For SMK and NEU that had significant interaction effects, the estimated residual 

variances from GREML were significantly higher than those from RNM (1.89% difference 

with p-value = 5.99E-04 and 2.04% difference with p-value = 7.12E-03) (Table 4). As 

expected, there was no significant difference between the models when PC1 was considered 

as the covariate, because it had no interaction effects. We also fitted both SMK and NEU 

simultaneously and found that the difference between estimated residual variances from 

GREML and RNM was increased (3.28% with p-value 1.57E-04) (Table 4). The estimated 

variance components for the interaction effects from the joint model (Table S9) and the 

separate models (M4 in Table S8) did not differ. We also observed that the estimated genetic 

variance varied little between using GREML or RNM (Figure 5 and M3 in Table S3-4), 

hence biased residual variance directly caused biased SNP-heritability estimates. Inflated 

residual variance therefore underestimated SNP-heritability, as also observed from an 

extensive meta-analysis across diverse study-cohorts 18; 22; 23 that possibly increased the 

heterogeneity of covariates shared by the study-samples, hence increased the variance due to 

G-C and/or R-C interactions (Figure 8). When comparing MRNM and MVGREML, the 

results did not differ much (Table S10) although there were additional parameters such as cov 

(α1, β) and cov (τ1, ε) that were not explicitly parameterised in GREML. We did not fit 

multiple covariates jointly in MRNM because of our focus on SNP-heritability comparisons 
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based on univariate models (i.e. GREML vs. RNM) and due to the need to control 

computational demands. 

 

Meta-analysis approach and validation 

For very large datasets, our proposed approach may become computationally infeasible. A 

solution could be to divide the data in various subsets and undertake a meta-analysis. In this 

section, we show that a meta-analysis24 of GCCI and RCCI results across difference data 

subsets is useful and reliable. We simulated phenotypes using UKBB1 genotype data and 

compared results from meta-analysis of multiple sub-samples with results from each 

individual sub-sample. 

As expected, the values of –log10(P) and likelihood ratio in the meta-analyses were larger 

than those in each single study (Figure S11). The power increased further as the number of 

studies (and the total sample size) increased as shown in Figure S11. The correlation between 

p-values from a meta-analysis based on two groups and p-values from data combining two 

groups approached to one when the sample size in each group increased to 10K although the 

regression slope was less than one (Figure S12). As expected, with the same sample size, the 

power of meta-analyses decreased with the number of groups (e.g. 10K x 2 vs. 4K x 5 in 

Figure S12) although it was still higher than that from a single group (Figure S11). This 

indicates that our approach combined with meta-analysis can be applied to any sample size, 

ensuring that the power keeps increasing with further additions to large-scale biobank data. 

The increased power in meta-analyses was also evident in real data analyses. We randomly 

divided the UKBB1 data set into two groups of equal size (33,140 each for SMK, 27,179 

each for NEU and PC1) and obtained meta-analysed p-values (Table S11) and estimates 

(Table S12). In agreement with the simulation, the meta-analysed p-values were not 
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substantially different from those based on the whole data that greatly improved the power 

compared to using a single study (g1 or g2) (Table S11). 

We further performed meta-analyses across the UKBB1 and the second wave of UK Biobank 

data (UKBB2). UKBB2 excluded the overlapping and highly related samples from UKBB1, 

and it was used as an independent validation data sets (see Methods for more detail). From 

the meta-analyses, the significance of R-C interaction effects for BMI-SMK and BMI-NEU 

increased from P-value = 1.97E-135 to P-value <0E-300 and from 4.12e-48 to 2.73E-121, 

respectively (M8 in Table S13). G-C interaction effects for BMI-NEU became more 

significant and the p-values decreased from 1.1E-03 to 5.7E-05 (M12 in Table S13). The 

meta-analysed estimated variance components are shown in Table S14.  

 

Box 1. Summary 

1. For continuous covariates, the proposed RNM is a more appropriate model, compared to 

RR-GREML and GCI-GREML. 

2. Covariates can be regulated by genetic and environmental factors that are possibly shared 

with the main response (GCCI and RCCI effects), which is the most plausible mechanism for 

many complex traits. It is desirable to model GCCI and RCCI effects appropriately (using 

multivariate RNM). 

3. LDSC and GREML estimates for SNP-heritability should be carefully interpreted or 

revisited if covariate information is available (Figure 8), and (M)RNM can access the 

biasedness (Table 4). 

4. The proposed models can be applied to any sample size including from large-scale biobank 

data by meta-analysis of results from sub-samples, for which the analyses are 

computationally feasible. 
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5. Our proposed approach is flexible and allows for multiple covariates to be fitted 

simultaneously (Table 4). 

 

 

DISCUSSION 

Complex traits are determined by both genetic and environmental effects. Some 

environmental covariates of complex traits may themselves be determined by genetic and 

non-genetic factors. Genotype-covariate correlation and interactions (GCCI) and residual-

covariate correlation and interaction effects (RCCI) may be important underlying factors 

shaping complex trait phenotypes25, yet not many studies have conducted analyses to detect 

these effects jointly in one model because of a lack of proper analysis models. In this study, 

we propose a flexible (multivariate) RNM to estimate genotype-covariate correlation and 

interactions and residual-covariate correlation and interaction effects for complex traits, 

which is powerful and reliable. A further benefit with our proposed model is that it can fit 

continuous covariates that must otherwise be stratified into discrete groups if using the 

currently available methods of RR-12; 13 or GCI-GREML14.  

 

We showed in simulations that current univariate approaches including RR-12; 13 and GCI-

GREML14 gave biased estimates (Table S5, S6, and S7) and lower power (Table S6 and S7 or 

Figure S5, S7, and S8) in general, compared to the proposed (multivariate) RNM. When G-C 

correlations were ignored, there were spurious or inflated signals for G-C interactions and 

estimations were biased. Although using adjusted phenotypes corrected for the covariate 

(regressing phenotypes on the covariate) could control false positives, the estimates could be 

significantly biased (Table S2). In contrast, the proposed multivariate RNM could effectively 
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control false positives while providing unbiased estimates and reasonable power. This may 

have a significant implication in obtaining unbiased estimation of the genetic architecture of 

complex traits. In line with simulations, the results from real data analyses (Table 4) of BMI 

with pack years of smoking and neuroticism as covariates also showed that the signals for 

significant G-C interaction might be biased in M1, M2 and M7. 

 

The methods currently used for estimation of G-C interactions, the RR- and GCI-GREML 

methods, require that for a continuous covariate (e.g. SMK), the outcome of interest (e.g. 

BMI) should be stratified into multiple discrete groups according to the level of the covariate. 

This causes heterogeneous phenotypic variance across the groups (Figure S1), which may 

have non-negligible effects on the estimation of genetic and interaction components in the 

methods (as shown in Tables S6 and S7). Moreover, the discrete grouping ignores the 

difference of covariate values for the individuals within each group, and results in some loss 

of information. In contrast, RNM or MRNM is a flexible model to fit a continuous covariate 

and gives unbiased estimates in the simulation (Table S6 and S7). With real data, the 

estimated interaction components for the BMI-SMK analysis were 0.47 (SE=0.14), 1.15 

(SE=0.23) and 0.30 (SE=0.12) for RR-GREML, GCI-GREML and MRNM, respectively. 

The difference between the methods could be explained by the reasons above, i.e. arbitrary 

grouping and confounding interaction/correlation for the RR- and GCI-GREML methods. 

Based on the analysis method that we believe to be the most appropriate for the data 

(MRNM) the G-C interaction estimate was much reduced and only borderline significant 

while R-C interaction was much more significant. 

 

In the presence of G-C or R-C interactions, estimated SNP-heritability of the main response 

variable by GREML or LDSC could be biased (Figure 5). The biased estimates reflect that 
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the interaction effects are absorbed by residual variance and the overall estimated residual 

variance was inflated. The residual variance estimated from GREML was significantly higher 

than that from RNM for the BMI-SMK, BMI-NEU or BMI-SMK/NEU analysis using the 

real data (Table 4). Currently reported SNP-heritabilites estimated based on meta analysis of 

GWAS summary statistics from diverse study-cohorts tend to be lower when the number of 

study-cohorts is larger (as a proxy of heterogeneity) (Figure 8), which can be partly explained 

by not properly modelling G-C and R-C interactions. This observation has an important 

implication because estimates from such meta-analyses (using LDSC) should be carefully 

interpreted  when known key covariates were not included in the GWAS analysis model that 

generated the input for the LDSC analysis. 

 

In this study, we found a strong negative R-C correlation (-0.20) and weak positive G-C 

correlation (0.12) between BMI and smoking, which may support the phenomenon observed 

in several studies that heavier smokers tend to have lower BMI. The R-C interaction was 

shown to be highly significant (p-value = 6.1E-137 (M9) in Table 3). This suggests that the 

information about R-C interaction component is crucial such that that the main phenotypes 

(BMI) can be possibly controlled by changing the covariate (SMK), provided that the 

covariate is modifiable. In this example, the implication is that the intervention of increasing 

smoking could be used to control BMI26. While in this example the advice may not be 

practical for other health reasons, the principle can be used to other traits and diseases with 

modifiable covariates. The information from the G-C correlation and interaction can be 

useful for an early intervention (e.g. genomic medicine) although the magnitude of the effects 

are relatively small, compared to R-C components. We also investigated NEU and found 

strong G-C and  R-C interactions (p-value = 4.12E-48 (M8)), indicating the personality trait 

NEU is a major covariate influencing the environmental factor for BMI as well as revealing a 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 26, 2018. ; https://doi.org/10.1101/377796doi: bioRxiv preprint 

https://doi.org/10.1101/377796
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

novel genetic architecture of BMI to interact with different levels of NEU (Figure 7). Both 

genetic and residual variances of BMI are significantly modulated by NEU, as well as there is 

significant genetic correlation between BMI and NEU. We included analyses using PC1 as 

the covariate in the model, conducting this analysis was as a negative control analysis (i.e. 

little variance among the homogenous sample), and, as expected, there were no significant 

interactions (Table 3). In other circumstances, for example when using diverse samples from 

the population or even across different ethnic populations, then analyses that fit PC1 as a 

covariate might generate significant interaction estimates. 

 

The proposed approach can be extended to include epigenetic and gene-expression data as 

novel covariates, which could reveal the genetic architecture associated with interactions and 

correlations that involve such variables. The proposed approach will enable us to make a 

better use of the extensive data resources available, with the prospect of transforming our 

ability to gain biological insights from genetic, epigenetic and gene-expression data. It is 

possible to use models that fit multiple covariates simultaneously as we did for fitting both 

SMK and NEU jointly (Table 4), which increase the proportion of the total phenotypic 

variance explained by the interaction components. Genomic partitioning analyses to describe 

GCCI and RCCI effects across the genome will be also useful to shed light on the latent 

genetic architecture of complex traits and diseases, which is possible by using the proposed 

approaches in this study. 

 

We did not perform an inverse normal transformation (INT) for the pre-adjusted phenotype 

(e.g. BMI). In contrast, such transformations were vigorously applied in the analysis 

Robinson et al.12. They also applied INT within each group after the arbitrary stratification 

according to the level of the covariate, which is a stringent adjustment. In this study, 
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however, we did not use INT because 1) the distribution of phenotypes (BMI) was reasonably 

normal, 2) using INT is not always the best solution because it may bias the significance and 

estimation27 3) phenotypes were already adjusted for the covariate and 4) there was negligible 

difference with and without INT for the whole phenotypes in our analyses. As shown in 

Figure S1, the arbitrary stratification could generate artefact heterogeneity for phenotypic 

variance between groups, for which it may not be feasible to correctly control such artefact 

heterogeneity and generate unbiased estimates. Nonetheless, discrete grouping causing this 

inconsistency is not applied to RNM or MRNM. 

 

An alternative approach to disentangle interaction from association is through the classical 

structural equation models8 applied to twin- or pedigree-based data. However, availability of 

such data is limited, restricting our ability to study GCCI effects for a wide range of complex 

traits and covariates. For example, phenotypes moderated by ancestry components (e.g. 

ethnic composition in humans or breed composition in animals) cannot be studied by an 

approach that is based on twins or relatives. It is also difficult to disentangle the genetic and 

shared environmental effects when using a pedigree-based approach. Standard REML 

packages (e.g. ASReml28) can be used to test the GCCI effects although it is questionable that 

the classical REML algorithm, which has been optimised for pedigree-based studies, can be 

computationally tractable when fitting genetic covariance structures based on genomic 

information13. Therefore, it maybe infeasible investigate the GCCI effects using the classical 

REML packages although they have been applied widely in livestock29; 30  and ecological 

genetics9; 31; 32 to explore the phenotype-genotype relationship across environmental 

gradients. When extending analyses to cover large-scale data such as the UK Biobank19, it is 

essential to develop computationally efficient methods that also correctly capture the GCCI 

effects, based on genomic information. 
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There are a number of limitations in this study. Firstly, we did not consider higher order 

interactions, considering only interaction of order = 2 for both G-C and R-C interactions. A 

further study is required to validate performance with higher orders interactions to generalise 

the proposed approach. Secondly, our approaches are flexible, but computationally 

demanding. For a large data set, it may not be computationally feasible to conduct an analysis 

within a short time although the meta-analysis approach can get around the problem. Thirdly, 

the proposed methods do not estimate the direction of causality that can be determined by 

existing methods, e.g. Mendelian Randomization. However, it is desirable to develop an 

efficient approach to determine the direction of causality in the context of MRNM (based on 

random effects models). Fourth, in application to real data we do not take account of 

ascertainment biases that may generate interactions and correlations in the sample of data 

which means that our results may not be representative of the populations from which the 

samples are drawn33; 34 although linear mixed models, on which RNM and MRNM are based, 

are robust to such bias35; 36. 

In conclusion, we showed that the multivariate RNM is able to effectively disentangle 

interaction from correlation and to generate unbiased estimates for G-C and R-C components. 

The concept of GCCI and RCCI is more plausible in explaining the genetic architecture of 

complex traits associated/interacted with covariates, which will shift the paradigm from a 

univariate to multivariate framework and from linear to non-linear models in complex trait 

analyses.  

 

METHODS 

Reaction norm model (RNM) 
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To account for phenotypic plasticity and norms of reaction in response to different covariate 

or environmental conditions among samples29; 30, the dependent variable for individual i can 

be modelled as   

𝑦𝑖 = 𝑏𝑖 + 𝑔𝑖 + 𝑒𝑖 =  𝑏𝑖 + ∑ 𝛼𝑧𝑖 ∙ 𝑐𝑖
𝑧𝑘

𝑧=0 + 𝑒𝑖                                                      (1) 

where yi is the phenotypic observation, bi represents fixed effects such as sex, gi is the 

random genetic effect, αzi is the zth order of random regression coefficients (z = 0 ~ k), ci is 

the covariate value, and ei is the residual effect. The variance-covariance matrix of random 

regression coefficients (K) is    

𝐊 = cov(𝛂𝐳, 𝛂𝐥) = [
var(𝛂𝟎) ⋯ cov(𝛂𝟎, 𝛂𝐤)

⋮ ⋱ ⋮
cov(𝛂𝟎, 𝛂𝐤) ⋯ var(𝛂𝐤)

] 

and the genetic (co)variance between N individuals , each with a covariate value, is  

𝐕g = var (

g1 ⋯ g1,N

⋮ ⋱ ⋮
g1,N ⋯ gN

) = Φ𝐊Φ′ 

where Φ is the matrix of polynomials evaluated at given covariate values. Given that this 

model does not explicitly parameterise the correlation between yi and ci, it naively assumes 

that yi and ci are uncorrelated. For this reason, this model is also referred to as a genotype-

covariate interaction (GCI) model. 

 

Multivariate reaction norm model (MRNM) 

The naïve assumption of the univariate RNM (or GCI model) that yi and ci are uncorrelated is 

often violated. In a more proper model, the covariate for individual i is decomposed as 𝑐𝑖 =

𝜇𝑖 + 𝛽𝑖 + 𝜀𝑖, where 𝜇i is fixed effects (e.g. sex), βi is the random genetic effect, and εi is the 

residual effect. When considering the main response (y) and covariate (c) together, the 

covariance structure of the multivariate genetic components becomes  
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𝐕g,β = var (

g1 ⋯ g1,N (g1, β)

⋮ ⋱ ⋮ ⋮
g1,N ⋯ gN (gN, β)

(g1, β) ⋯ (gN, β) β

) = (
𝚽𝐊𝐲𝚽′ 𝚽𝐊𝐲,𝐜

𝐊𝐲,𝐜
′ 𝚽′ var(𝛃)

)         (2) 

where Ky is the same as K defined above, and Ky,c is the covariance matrix of multivariate 

random regression coefficients, defined as 

𝐊y,c = cov(𝛂𝐳, 𝛃) = (
cov(𝛂𝟎, 𝛃)

⋮
cov(𝛂𝐤, 𝛃)

). 

The covariance structure of the multivariate residual components is 

𝐑e,ε = (
var(𝐞) cov(𝐞, 𝛆)

cov(𝐞, 𝛆) var(𝛆)
). 

 Under this model, the variance-covariance structure consists of var(𝛂𝟎), var(𝛂𝐤), 

cov(𝛂𝟎, 𝛂𝐤), var(𝐞), var(𝛃), var(𝛆), cov(𝛂𝟎, 𝛃), cov(𝛂𝐤, 𝛃), and cov(𝐞, 𝛆).  For this reason, 

this model is referred to as a genotype-covariate correlation and interaction (GCCI) model. 

Importantly, values for cov(𝛂𝟎, 𝛃), cov(𝛂𝐤, 𝛃) or cov(𝐞, 𝛆) are often non-negligible. 

Neglecting these terms can cause confounding between G-C correlation and interaction, 

thereby generating spurious signals and biased estimates for the interaction. Yet many studies 

do not account for G-C correlations when estimating and testing G-C interaction12. 

 

Multivariate reaction norm model (MRNM) accounting for heterogeneous residual 

variance, i.e. residual-covariate correlation and interaction (RCCI) 

The models we described so far assume that the residual variance, var(𝐞), is homogeneous 

across different values of the covariate. However, it is often possible that residual-covariate 

(R-C) correlation and interaction exist, resulting in heterogeneous residual variance. To 

account for this possibility, MRNM can be further extended as 

𝑦𝑖 = 𝑏𝑖 + 𝑔𝑖 + 𝑒𝑖 =  𝑏𝑖 + ∑ 𝛼𝑧𝑖 ∙ 𝑐𝑖
𝑧𝑘

𝑧=0 + ∑ 𝜏𝑧𝑖 ∙ 𝑐𝑖
𝑧𝑚

𝑧=0                                         (3) 
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where the residual term in model (1) is expressed as the random regression coefficients 𝜏𝑧𝑖 

with a function of the zth order polynomial of the covariate (z = 0 ~ m). 

The variance-covariance structure of the genetic effect for this model is the same as for the 

multivariate reaction norm model described in Eq. (2) above. The variance-covariance 

structure of the multivariate residual components becomes  

𝐑e,ε = var (

e1 ⋯ e1,N (e1, ε)

⋮ ⋱ ⋮ ⋮
e1,N ⋯ eN ⋮

(e1, ε) ⋯ ⋯ ε

) = (
𝚽𝐌𝐲𝚽′ 𝚽𝐌𝐲,𝐜

𝐌𝐲,𝐜
′ 𝚽′ var(𝛆)

)                    (4) 

where 𝐌𝒚 is the variance and covariance matrix of random regression coefficients for the 

residual components and can be written as  

𝐌𝒚 = (
var(𝛕𝟎) ⋯ cov(𝛕𝟎, 𝛕𝐦)

⋮ ⋱ ⋮
cov(𝛕𝟎, 𝛕𝐦) ⋯ var(𝛕𝐦)

); 

𝐌𝒚,𝒄 is the covariance matrix of multivariate random regression coefficients for the residual 

components and can be expressed as 

𝐌𝒚,𝒄 = cov(𝛕𝐳, 𝛆) = (
cov(𝛕𝟎, 𝛆)

⋮
cov(𝛕𝐦, 𝛆)

); and 𝑣𝑎𝑟(𝛆) is the residual variance of the covariate.  

 

RNM with multiple covariates 

RNM can be further extended to include more than one covariates. The main trait for 

individual i, yi, can then be expressed as  

𝑦𝑖 = 𝑏𝑖 + 𝑔𝑖 + 𝑒𝑖 =  𝑏𝑖 + 𝛼𝑖0 + ∑ ∑ 𝛼𝑖𝑗𝑧 ∙ 𝑐𝑖𝑗
𝑧𝑞𝑗

𝑧=1
𝑥
𝑗=1 + 𝑒𝑖  

where 𝑥 is the number of random effects, which equates to the number of covariates included. 

Each random effect has random regression coefficients, 𝛼𝑖𝑗𝑧, with z = 1 ~ 𝑞𝑗,fitted with the jth 

covariate. It is assumed that there is no correlation between the random effects. 
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The variance-covariance matrix for each random effect is the same K as above, that is of 

random regression coefficients (K) is 

𝐊𝒋 = cov(𝛂𝐣𝐳, 𝛂𝐣𝐥) = [

var(𝛂𝐣𝟎) ⋯ cov(𝛂𝐣𝟎, 𝛂𝐣𝐤)

⋮ ⋱ ⋮
cov(𝛂𝐣𝟎, 𝛂𝐣𝐤) ⋯ var(𝛂𝐣𝐤)

]. 

Similarly, the genetic (co)variance between N individuals, each with a set of covariate values, 

can be obtained as 𝐕g = ∑ 𝚽𝐣𝐊𝐣𝚽𝐣
′  where 𝚽𝐣 is the matrix of polynomials evaluated at given 

values of the jth covariate. 

This can be feasibly extended to MRNM with RCCI although the number of parameters 

increases exponentially. All models described above (i.e., RNM and MNRM) can be fitted 

using MTG213. 

 

Simulated data 

Phenotypic simulation was based on individual genotypes from the GWAS data of the 

Atherosclerosis Risk in Communities Study (ARIC) cohort. We used autosomes only and 

applied the standard quality control (QC) to genotypes, which included MAF > 0.01, SNP 

call rate > 0.95, sample call rate > 0.95 and Hardy-Weinberg Equilibrium p-value > 0.001, 

keeping qualified genotyped SNPs. After the QC, 583,058 SNPs and 8,291 individuals 

remained. We estimated pair-wise relatedness from the remaining SNPs and randomly 

excluded one individual from each pair with an estimated relatedness greater than 0.05. This 

reduced the sample to 7,263 individuals.  

 

Simulation under GCCI model 
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We simulated phenotypes for the main response (y) and covariate (c) under the GCCI model 

with the first order interaction effect, i.e. k=1. In the simulation, we used the following 

covariance structure for the Ky matrix in Eq. (2)  

𝐊y = cov(𝛂𝐳, 𝛂𝐥) = [
var(𝛂𝟎) cov(𝛂𝟎, 𝛂𝟏)

cov(𝛂𝟎, 𝛂𝟏) var(𝛂𝟏)
] = [

1 0.05
0.05 var(𝛂𝟏)

]. 

We used a wide range of the G-C interaction with 𝑣𝑎𝑟(𝜶𝟏) set at 0, 0.25, 0.5, 0.75 or 1. For 

the covariate, 𝑐𝑖 = 𝜇𝑖 + 𝛽𝑖 + 𝜀𝑖, var(𝛃) and var(𝛜) were set at 1. 

 

The Ky,c matrix (Eq. 2) was specified as 

𝐊y,c = cov(𝛂𝐳, 𝛃) =  [
cov(𝛂𝟎, 𝛃)
cov(𝛂𝟏, 𝛃)

] = [
0.5
0

], 

The values for the Re,ε matrix were used in the simulation as 

𝐑e,ε = [
var(𝐞) cov(𝐞, 𝛆)

cov(𝐞, 𝛆) var(𝛆)
] = [

1 0.3
03 1

]. 

 

For null model, we set the interaction variance, i.e., var(alpha1), at zero. We assessed type I 

error rate and power of detecting G-C interaction under the null and full model, respectively.  

 

Simulation under GCCI model with R-C correlation and/or interaction 

Similar to the simulations above, we used values for the Ky matrix in Eq. (2) as  

𝐊y = cov(𝛂𝐳, 𝛂𝐥) = [
var(𝛂𝟎) cov(𝛂𝟎, 𝛂𝟏)

cov(𝛂𝟎, 𝛂𝟏) var(𝛂𝟏)
] = [

1 0.05
0.05 var(𝛂𝟏)

], 

We performed simulations with var(α1) set at 0.25 or 1. For the covariate, both 𝑣𝑎𝑟(𝜷) and 

𝑣𝑎𝑟(𝝐) were set at 1. 

The Ky,c , 𝑴𝒚 and 𝑴𝒚,𝒄 matrix (Eq. 3 and Eq. 4) were specified as follows: 

𝐊y,c = cov(𝛂𝐳, 𝛃) =  [
cov(𝛂𝟎, 𝛃)
cov(𝛂𝟏, 𝛃)

] = [
cov(𝛂𝟎, 𝛃)

0
] with cov(𝛂𝟎, 𝛃) = 0 or 0.5, 
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𝐌𝐲 = [
var(𝛕𝟎) cov(𝛕𝟎, 𝛕𝟏)

cov(𝛕𝟎, 𝛕𝟏) var(𝛕𝟏)
] = [

1 0.05
0.05 var(𝛕𝟏)

] with var(𝛕𝟏) = 0.25 or 1 

and 

𝐌𝐲,𝐜 = (
cov(𝛕𝟎, 𝛆)

cov(𝛕𝟏, ε)
) = (

cov(𝛕𝟎, 𝛆)
0

) with cov(𝛕𝟎, 𝛆) = 0 or 0.3. 

 

We assessed bias, type I error rate and power for LDSC 15; 16, GREML14, MVGREML13, RR-

GREML12, GCI-GREML14, RNM, and MRNM using simulated data generated as above. 

Subsequently, we compared the performance of the methods.  

 

Real data 

Data and Quality control 

We used the UK Biobank data19, which initially contained 488,377 individuals and 

92,693,895 imputed SNPs across autosomes. Stringent quality control was applied to the 

genotype data at both individual and SNP levels. Specifically, we excluded individuals who 

met one of the following criteria: 1) does not have white British ancestry, 2) has a genotype 

missing rate > 0.05, 3) whose reported gender does not match with the gender inferred using 

genotype data, and 4) has a putative sex chromosome aneuploidy. At the SNP level, we 

excluded SNPs with an INFO score < 0.6, with a minor allele frequency (MAF) < 0.01, with 

a Hardy-Weinberg equilibrium P-value <1E-4, or with a call rate < 0.95. For multiple records 

of the same SNP, we randomly selected one and removed duplicates. We also excluded 

ambiguous SNPs and only kept HapMap 3 SNPs. 

In addition, we excluded individual population outliers, namely individuals with the first or 

second PC outside six standard deviations of its respective population mean. For individuals 

who were in both UKBB1 and UKBB2, we calculated the discordance rate between imputed 
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genotype of the two versions for each individual and for each SNP, and excluded individuals 

and SNPs with a discordance rate lager than 0.05. We also excluded one individual randomly 

from any pair with a genomic relationship larger than 0.05. After the QC above, 288,866 

individuals and 1,130,918 SNPs remained. Of these remaining individuals 91,472 were from 

UKBB1, who were used in the main analyses and 197,394 were from UKBB2, who were 

used in the validation and meta-analyses. 

 

Main response variable and covariates 

We applied the novel (M)RNM model using BMI as the main response variable to estimate 

the GCCI/RCCI components with each of several covariates, including pack years of 

smoking (SMK), neuroticism score (NEU) or the first principal component (PC1) provided 

by the UK Biobank. We also fitted the model that includes multiple covariates (e.g. SMK and 

NEU) jointly, i.e., RNM with multiple covariates. For all analyses, covariates were 

standardized as mean zero and variance 1. Prior to model fitting, we adjusted the main 

response variable (BMI) for confounders including genotype batch, assessment centre at 

which participant consented, year of birth, sex, age, diet variation, diet change, the first 15 

PCs, SMK, weekly alcohol consumption (ALC) and Townsend deprivation index at 

recruitment (TDI). The distribution of each covariate is in Figure S13.  

When including the covariate (i.e. SMK, NEU, or PC1) as the second trait in a MRNM, it 

was also pre-adjusted for the confounders in a similar way as for the main trait (i.e., BMI). 

For instance, as the second trait in a MRNM, SMK was pre-adjusted for BMI, genotype 

batch, assessment centre at which participant consented, year of birth, sex, age, diet variation, 

diet change, the first 15 PCs, ALC, and TDI. NEU was pre-adjusted for BMI, genotype batch, 

assessment centre at which participant consented, year of birth, sex, age, diet variation, diet 
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change, the first 15 PCs, ALC, TDI and SMK. PC1 was pre-adjusted for BMI, genotype 

batch, assessment centre at which participant consented, year of birth, sex, age, diet variation, 

diet change, the first 15 PCs except the first one (PC1), ALC, TDI, SMK and NEU.  

 

Detailed information regarding covariates used in the interaction models is described below 

and that for other confounders used to adjust the main phenotypes is in Supplementary note. 

 

SMK  

We combined pack years adult smoking as proportion of life span exposed to smoking (UK 

Biobank data field: 20162) and ever smoked (UK Biobank data field 20160) as SMK. The 

distribution of SMK is in Figure S13. For RR-GREML and GCI-GREML, following 

Robinson et. al.12, we stratified SMK into four levels: 8,773 individuals with SMK > 0.8, 

9,192 individuals with 0.5 ≤ SMK ≤ 0.8, 11,741 individuals with 0< SMK <0.5, and 36,575 

individuals with SMK =0 (i.e. never smoked). 

Neuroticism score (NEU) 

The neuroticism score (data field 20127) of a given individual was indexed by the number of 

‘yes’s to 12 touchscreen questions that evaluate neurotic behaviours. The distribution of NEU 

is in Figure S13. For RR-GREML and GCI-GREML, we stratified the data into four groups 

according to  NEU level: 20,901 individuals with NEU ≤ 2, 16,161 individuals with 2 < NEU 

≤ 5, 10,895 individuals with 5 < NEU ≤ 8, and 6,417 individuals with 8 < NEU ≤ 12. 

PC1 

PCs were pre-calculated by the UK Biobank. Detailed information regarding the calculation 

is described elsewhere37. Briefly, PCs-loadings were estimated using fastPCA38 based on 

407,219 unrelated individuals and 147,604 markers that were pruned to minimise linkage 

disequilibrium, onto where all samples were projected, to generate a set of PC scores. For 
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RR-GREML and GCI-GREML, we stratified the sample into four groups based on quartiles 

of PC1. 

 

Meta analyses of real data 

The proposed MRNM requires individual-level genotype data, which makes it 

computationally demanding. As sample size increases (e.g. the second wave of UK Biobank), 

the computing time increases substantially. To complete the analyses within a reasonable 

timeframe, we used a meta-analysis approach. We performed two sets of meta-analyses, one 

across two groups within UKBB1 to assess the performance of the meta-analysis, compared 

to that of the whole UKBB1 data analysis, and the other across UKBB1 and UKBB2. 

 

Meta-analyses within UKBB1 

We randomly divided the UKBB1 into two groups of equal size (denoted as g1 and g2), and 

fitted all models mentioned above for each group. P-values from each group were meta-

analysed using the Fisher’s method24. We then compared these p-values with those based on 

the whole UKBB1 data set.  

 

Meta-analyses across UKBB1 and UKBB2 

In UKBB2, 197,394 individuals with genotype data passed the QC, of which 94K have no 

missing covariates and main response. Similar to meta-analyses within UKBB1, we randomly 

divided the UKBB2 into two groups of equal size (denoted as G1 and G2), and fitted all 

models mentioned above for each group. We then meta-analysed the results from G1, G2, 

and UKBB1 (denoted as G0) using the Fisher’s method24. For UKBB2, the same pre-
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adjustment as for UKBB1 was applied to the main response and covariates as the second trait 

in MRNM. 

 

Software  

MTG2: https://sites.google.com/site/honglee0707/mtg2 
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FIGURES AND TABLES 

 
 

Figure 1. Type I error rate for detecting G-C interaction is under control for RNM, RR-

GREML and GCI-GREML. 

Five hundred replicates of data were simulated under a null model that assumed no genotype-

covariate interaction. The model is specified as y = α0 + α1×c + e with c = β + ε, where the 
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variance-covariance structure between α0, β, and α1 (in this order) is [
1 0 0
0 1 0
0 0 0

] and that 

between e and ε is [
1 0
0 1

]. For every replicate, each of the three models was fitted to obtain a 

p-value for the G-C interaction via a comparison between the null (H0) and alternative 

hypothesis (H1) models. For RNM, the H0 and H1 models were y = α0 + e and y = α0 + α1×c + 

e. For RR-GREML and GCI-GREML, the H0 and H1 models were y = α0 + e and y = α0 + 

α1×c + e. In RR-GREML and GCI-GREML, samples were arbitrarily stratified into four 

different groups according to the covariate levels. RR-GREML explicitly estimate residual 

variance for each of the four groups whereas GCI-GREML assumes homogeneous residual 

variance across the four groups and estimates a single residual variance. This figure shows 

the proportions of significant p-values, i.e., type I error rate, for RNM, RR-GREML and GCI-

GREML, which are 0.048, 0.048 and 0.034, respectively. Note that p-values are inverse 

normal transformed, such that the statistical significance level, i.e., 1.65, shown as dashed 

lines, is equivalent to the 0.05 level before the transformation.  
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Figure 2. RNM has more statistical power than RR-GREML and GCI-GREML for 

detecting G-C interaction. 

One hundred replicates of data were simulated under a model that assumed the presence of a 

genotype–covariate interaction. The model is specified as y = α0 + α1×c + e with c = β + ε, 

where the variance-covariance structure between α0, β, and α1 (in this order) is 

[
1 0 0.05
0 1 0

0.05 0 0.25
] and that between e and ε is [

1 0
0 1

]. For every replicate, each of the three 
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models was fitted to obtain a p-value for the G-C interaction via a comparison between the 

null (H0) and alternative hypothesis (H1) models. For RNM, the H0 and H1 models were y = 

α0 + e and y = α0 + α1×c + e. For RR-GREML and GCI-GREML, the H0 and H1 models were 

y = α0 + e and y = α0 + α1×c + e. In RR-GREML and GCI-GREML, samples were arbitrarily 

stratified into four different groups according to the covariate levels. RR-GREML explicitly 

estimate residual variance for each of the four groups whereas GCI-GREML assumes 

homogeneous residual variance across the four groups and estimates a single residual 

variance. This figure shows the proportions of significant p-values, i.e., statistical power, for 

RNM, RR-GREML and GCI-GREML, which are 1, 0.9 and 0.69, respectively. Note that p-

values are inverse normal transformed, such that the statistical significance level, i.e., 1.65, 

shown as dashed lines, is equivalent to the 0.05 level before the transformation.  
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Figure 3. Spurious signals generated by incorrect (univariate) model can be controlled 

by applying multivariate RNM for detecting G-C interaction. 

Five hundred replicates of data were simulated under a null model that assumed genotype-

covariate correlation but no genotype-covariate interaction. The model is specified as y = α0 + 

α1×c + e with c= β + ε, where the variance-covariance structure between α0, β, and α1 (in this 

order) is [
1 0.5 0

0.5 1 0
0 0 0

] and that between e and ε is [
1 0.3

0.3 1
]. For every replicate, a 

univariate RNM and a multivariate RNM were fitted separately to obtain a p-value for the G-

C interaction by comparing the null (H0) and alternative hypothesis (H1) model. For the 

univariate RNM, the H0 and H1 models were y = α0 + e and y = α0 + α1×c + e. For the 

multivariate RNM, the H0 and H1 models were y = α0 + e with c = β + ε and y = α0 + α1×c + e 

with c = β + ε. This figure shows the proportions of significant p-values, i.e., type I error rate, 

for both models, which are 0.998 (univariate RNM) and 0.046 (multivariate RNM). Note that 
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p-values are inverse normal transformed, such that the statistical significance level, i.e., 1.65, 

shown as dashed lines, is equivalent to the 0.05 level before the transformation.  
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Figure 4. Univariate RNM and multivariate RNM have a similar level of statistical 

power for detecting G-C interaction.  

A hundred replicates of data were simulated under a model that assumed the presence of 

genotype–covariate correlation and interaction. The model is specified as y = α0 + α1×c + e 

with c = β + ε, where the variance-covariance structure of α0, β, and α1 (in this order) is 

[
1 0.5 0.05

0.5 1 0
0.05 0 0.25

] and that of e and ε is [
1 0.3

0.3 1
]. For every replicate, a univariate RNM 

and a multivariate RNM were fitted separately to obtain a p-value for the G-C interaction by 

comparing the null (H0) and alternative hypothesis (H1) model. For the univariate RNM, the 

H0 and H1 models were y = α0 + e and y = α0 + α1×c + e. For the multivariate RNM, the H0 

and H1 models were y = α0 + e with c = β + ε and y = α0 + α1×c + e with c = β + ε. This figure 

shows the proportions of significant p-values, i.e., statistical power, for the two models, 
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which are 1 for both. Note that p-values are inverse normal transformed, such that the 

statistical significance level, i.e., 1.65, shown as dashed lines, is equivalent to the 0.05 level 

before the transformation.  
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Figure 5. Estimated residual and genetic variances from data simulated under G-C 

(left) or R-C interaction model (right), using GREML, LDSC and RNM. 

Prop. G-C or R-C interaction is the proportion of variance due to α1 or τ1 (see below) in the 

total phenotypic variance (i.e. var(α1))/var(y) in G-C interaction model or var(τ1)/var(y) in R-

C interaction model). 

Simulation for G-C interaction (α1): The phenotype data were generated using y = α0 + α1×c 

+ e with c = β + ε. The variance-covariance structure of α0, β, and α1 (in this order) is 

[
1 0 0.05
0 1 0

0.05 0 var(𝛂𝟏)
] with var(α1) = 0, 0.25, 0.5, 0.75 and 1 and that for e and ε is [

1 0
0 1

]. 
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Simulation for R-C interaction (τ1): The phenotype data were generated using y = α0 + τ0 + 

τ1×c with c = β + ε. The variance-covariance structure of α0 and β is [
1 0
0 1

] and that of τ0, ε, 

and τ1 (in this order) is [
1 0 0.05
0 1 0

0.05 0 var(𝛕𝟏)
] with var(τ1) = 0, 0.25, 0.5, 0.75 and 1.  

The error bar is a 95% confidence interval, which was estimated over 100 replicates. 

The model for GREML is y= α0 + e and the model for RNM in the left panel is y = α0 + α1×c 

+ e. The model for RNM in the right panel is y = α0 + τ0 + τ1×c. 
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Figure 6. Estimated variance components and correlations from MRNM for BMI-SMK 

analysis. 

Var(τ0): Estimated residual variance for BMI as the main outcome 

Var(α0): Estimated genetic variance for BMI as the main outcome 

Var(ε): Estimated residual variance for SMK as the covariate 

Var(β): Estimated genetic variance for SMK as the covariate 

re: Estimated residual correlation between BMI and SMK 

rg: Estimated genetic correlation between BMI and SMK  

Error bars are 95% confidence interval 
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Re matrix is the residual (co)variance structure between different covariate levels (see Eq. 4), 

which is derived using estimated random regression coefficients and polynomial matrix as Re 

= 𝚽𝐌𝐲𝚽′. 𝚽 is the matrix of polynomials evaluated at given covariate values, where entries 

of the first column are all 1s and the second column is the standardized covariates of 

respective individuals. 𝐌𝐲 is the variance-covariance matrix of estimated random regression 

coefficients from MRNM as 𝐌𝐲 =[
var(𝛕𝟎) cov(𝛕𝟎, 𝛕𝟏)

cov(𝛕𝟎, 𝛕𝟏) var(𝛕𝟏)
] =

[
16.81 (SE 0.18) 0.41 (SE 0.12)

0.41 (SE 0.12) 0.42 (SE 0.16)
]. 

Vg matrix in is the genetic (co)variance structure between different covariate levels (see Eq. 

2), which is derived based on the estimated random regression coefficients and polynomial 

matrix as Vg = 𝚽𝐊𝐲𝚽′. 𝚽 is the matrix of polynomials evaluated at given covariate values, 

where entries of the first column are all 1s and the second column is the standardized 

covariates of respective individuals. 𝐊𝐲 is the variance-covariance matrix of random 

regression coefficients estimated from MRNM as 𝐊𝐲 = [
var(𝛂𝟎) cov(𝛂𝟎, 𝛂𝟏)

cov(𝛂𝟎, 𝛂𝟏) var(𝛂𝟏)
] =

[
4.66 (SE 0.15) 0.07 (SE 0.10)
0.07 (SE 0.10) 0.30 (SE 0.12)

].  
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Figure 7. Estimated variance components and correlations from MRNM for BMI-NEU 

analysis. 

Var(τ0): Estimated residual variance for BMI as the main outcome 

Var(α0): Estimated genetic variance for BMI as the main outcome 

Var(ε): Estimated residual variance for NEU as the covariate 

Var(β): Estimated genetic variance for NEU as the covariate 

re: Estimated residual correlation between BMI and NEU 
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rg: Estimated genetic correlation between BMI and NEU 

Error bars are 95% confidence interval 

Re matrix is the residual (co)variance structure between different covariate levels (see Eq. 4), 

which is derived based on the estimated random regression coefficients and polynomial 

matrix as Re = 𝚽𝐌𝐲𝚽′. 𝚽 is the matrix of polynomials evaluated at given covariate values, 

where entries of the first column are all 1s and the second column is the standardized 

covariates of respective individuals. 𝐌𝐲 is the variance-covariance matrix of random 

regression coefficients estimated from MRNM as 𝐌𝐲 = [
var(𝛕𝟎) cov(𝛕𝟎, 𝛕𝟏)

cov(𝛕𝟎, 𝛕𝟏) var(𝛕𝟏)
] =

[
16.45 (SE 0.21) 0.54 (SE 0.11)
0.54 (SE 0.11) 0.06 (SE 0.18)

]. 

Vg matrix in is the genetic (co)variance structure between different covariate levels (see Eq. 

2), which is derived based on the estimated random regression coefficients and polynomial 

matrix as Vg = 𝚽𝐊𝐲𝚽′. 𝚽 is the matrix of polynomials evaluated at given covariate values, 

where entries of the first column are all 1s and the second column is the standardized 

covariates of respective individuals. 𝐊𝐲 is the variance-covariance matrix of random 

regression coefficients estimated from MRNM as 𝐊𝐲 = [
var(𝛂𝟎) cov(𝛂𝟎, 𝛂𝟏)

cov(𝛂𝟎, 𝛂𝟏) var(𝛂𝟏)
] =

[
4.94 (SE 0.17) 0.38 (SE 0.11)
0.38 (SE 0.11) 0.28 (SE 0.13)

]. 
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Figure 8. Estimated SNP-heritability of body mass index (BMI) decreases when using 

increasing numbers of cohorts. 

The UKBB1 estimate was reported by Ge et al.18, which used GWAS summary statistics 

based on the samples from the first wave of UK Biobank. 

The GIANT2010 and GIANT 2015 estimates were reported by Duncan et al.22, which used 

GWAS summary statistics based on the GIANT consortium samples from ~80 and 125 

cohorts, respectively. 

The UKBB1+GIANT2015 estimate was reported by Ni et al.23 

Bars are 95% confidence interval.
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Table 1. Estimated variance components of random regression coefficients from data simulated under a model that assumed the 

presence of genotype-covariate interaction.  

Parameters var(e) var(α0) var(α1) cov(α0, α1) 

True value 1.00 1.00 0.25 0.05 

RNM   1.00 (0.11)a 1.00 (0.11) 0.25 (0.02) 0.05 (0.02) 

RR-GREMLb 1.17 (0.31)  

1.00 (0.12) 

0.98 (0.13) 

1.20 (0.35) 

2.01 (0.21) 0.50 (0.16) 0.10 (0.11) 

GCI-GREMLb 1.08 (0.22) 0.86 (0.13) 0.56 (0.23)  
aStandard deviation (in brackets) of estimates from 100 replicates.  

bFor RNM, the model was y = α0+ α1×c + e. For RR-GREML and GCI-GREML, the model was y = α0+ α1×c + e. In RR-GREML and GCI-

GREML, samples were arbitrarily stratified into four different groups according to the covariate levels. RR-GREML explicitly estimate residual 

variance for each of the four groups whereas GCI-GREML assumes homogeneous residual variance across the four groups and estimates a 

single residual variance. 
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Table 2. Estimated variance components of random regression coefficients from data simulated under a model that assumes the 

presence of genotype-covariate correlation (i.e. cov(α0, β) > 0) and interaction (i.e. var(α1) > 0).  

Parameters var(e) var(ε) cov(e,ε) var(α0) var(α1) cov(α0, α1) var(β) cov(α0, β) cov(α1, β) 

True value 1.00 1.00 0.30 1.00 0.25 0.05 1.00 0.50 0.00 

RNM 0.93 

(0.11) 

 

N/A 

 

N/A 

0.95 

(0.11) 

0.31 

(0.02) 

0.05 

(0.02) 

 

N/A 

 

N/A 

 

N/A 

MRNM 1.00 

(0.11) 

1.00 

(0.09) 

0.29 

(0.08) 

0.96 

(0.11) 

0.25 

(0.02) 

0.05 

(0.02) 

1.00 

(0.09) 

0.51 

(0.08) 

0.00  

(0.02) 

Estimates and standard deviations (in brackets) are based on 100 replicates.  

For RNM, the model was y = α0 + α1×c + e. For MRNM, the model was y = α0 + α1×c + e with c = β + ε.  
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Table 3. P-values of likelihood ratio tests for model comparisons in UKBB analyses of BMI as the main trait, considering either SMK, 

NEU or PC1 as a covariate 

Index   Model comparison SMKa NEUb PC1c 

Univariate 

M1 
H0 𝐓𝟏 = 𝛂𝟎                 + 𝐞  

NULL vs RR-GREMLd 1.00E-03 6.28E-04 7.00E-01 
H1 𝐓𝟏 = 𝛂𝟎 + 𝛂𝟏 ∙ 𝐜 + 𝐞  

M2 
H0 𝐓𝟏 = 𝛂𝟎                 + 𝐞  

NULL vs GCI-GREMLd 1.99E-07 6.18E-01 1.00E-00 
H1 𝐓𝟏 = 𝛂𝟎 + 𝛂𝟏 ∙ 𝐜 + 𝐞  

M3 
H0 𝐓𝟏 = 𝛂𝟎 + 𝐞  

NULL vs FULL RNM 1.89E-49 1.05E-49 8.39E-01 
H1 𝐓𝟏 = 𝛂𝟎 + 𝛂𝟏 ∙ 𝐜 + 𝛕𝟎 + 𝛕𝟏 ∙ 𝐜  

M4 
H0 𝐓𝟏 = 𝛂𝟎  + 𝐞  

NULL vs R-C RNM 8.76E-48 2.36E-48 5.63E-01 
H1 𝐓𝟏 = 𝛂𝟎  + 𝛕𝟎 + 𝛕𝟏 ∙ 𝐜  

M5 
H0 𝐓𝟏 = 𝛂𝟎 + 𝐞  

NULL vs G-C RNM 1.19E-44 1.15E-46 5.02E-01 
H1 𝐓𝟏 = 𝛂𝟎 + 𝛂𝟏 ∙ 𝐜 + 𝐞  

M6 
H0 𝐓𝟏 = 𝛂𝟎 + 𝛂𝟏 ∙ 𝐜 + 𝐞  

G-C RNM vs FULL RNM 1.35E-07 7.73E-06 9.74E-01 
H1 𝐓𝟏 = 𝛂𝟎 + 𝛂𝟏 ∙ 𝐜 + 𝛕𝟎 + 𝛕𝟏 ∙ 𝐜  

M7 
H0 𝐓𝟏 = 𝛂𝟎                 + 𝛕𝟎 + 𝛕𝟏 ∙ 𝐜  

R-C RNM vs FULL RNM 1.83E-04 3.77E-04 8.69E-01 
H1 𝐓𝟏 = 𝛂𝟎 + 𝛂𝟏 ∙ 𝐜 + 𝛕𝟎 + 𝛕𝟏 ∙ 𝐜  

Multivariate 

M8 
H0 𝐓𝟏 = 𝛂𝟎 +  𝐞                                    , 𝐓𝟐 = 𝛃 + 𝛆 

NULL vs FULL MRNM 1.97E-135 4.12E-48 8.98E-01 
H1 𝐓𝟏 = 𝛂𝟎 + 𝛂𝟏 ∙ 𝐜 + 𝛕𝟎 + 𝛕𝟏 ∙ 𝐜    , 𝐓𝟐 = 𝛃 + 𝛆 

M9 
H0 𝐓𝟏 = 𝛂𝟎 +  𝐞                                  , 𝐓𝟐 = 𝛃 + 𝛆 

NULL vs R-C MRNM 6.10E-137 2.18E-47 7.09E-01 
H1 𝐓𝟏 = 𝛂𝟎 +  𝛕𝟎 + 𝛕𝟏 ∙ 𝐜                 , 𝐓𝟐 = 𝛃 + 𝛆 

M10 
H0 𝐓𝟏 = 𝛂𝟎 +  𝐞                                  , 𝐓𝟐 = 𝛃 + 𝛆 

NULL vs G-C MRNM 2.93E-101 1.17E-45 7.09E-01 
H1 𝐓𝟏 = 𝛂𝟎 + 𝛂𝟏 ∙ 𝐜 + 𝐞                  , 𝐓𝟐 = 𝛃 + 𝛆 

M11 
H0 𝐓𝟏 = 𝛂𝟎 + 𝛂𝟏 ∙ 𝐜 + 𝐞                  , 𝐓𝟐 = 𝛃 + 𝛆 

G-C vs FULL MRNM 2.37E-37 2.36E-05 8.39E-01 
H1 𝐓𝟏 = 𝛂𝟎 + 𝛂𝟏 ∙ 𝐜 + 𝛕𝟎 + 𝛕𝟏 ∙ 𝐜   , 𝐓𝟐 = 𝛃 + 𝛆 

M12 H0 𝐓𝟏 = 𝛂𝟎                +  𝛕𝟎 + 𝛕𝟏 ∙ 𝐜   , 𝐓𝟐 = 𝛃 + 𝛆 R-C vs FULL MRNM 3.26E-02 1.08E-03 8.40E-01 
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H1 𝐓𝟏 = 𝛂𝟎 + 𝛂𝟏 ∙ 𝐜 + 𝛕𝟎 + 𝛕𝟏 ∙ 𝐜   , 𝐓𝟐 = 𝛃 + 𝛆 
aSMK: Pack years of smoking. 

bNEU: Neuroticism score treated as continuous variable. 

cThe first principal component provided by UKBB. 

dSamples used in the respective model were arbitrarily stratified into four different levels according to covariates, SMK, NEU and PC1. Residual 

variance was estimated in each level for RR-GREML whereas GCI-GREML assumes homogeneous residual variance across the four groups and 

estimates a single residual variance. 

Note: T1 is the residual of main trait adjusted for confounders. T2 is the residual of c adjusted for confounders.  
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Table 4. Statistical tests for the difference between residual variances of BMI estimated from RNMa and GREMLb 

 Differencec SEd Difference in % SE of Difference in % h2 (GREML) h2 (RNM) Pe 

SMK -0.316 0.092 1.887 0.549 0.221 0.224 5.99E-04 

NEU -0.336 0.125 2.044 0.760 0.227 0.231 7.12E-03 

PC1 0.016 0.088 -0.095 0.523 0.227 0.227 8.56E-01 

SMK-NEUf -0.588 0.156 3.279 0.870 0.227 0.233 1.57E-04 
aAlternative model (H1) of M3 in Table 3. 

bNull model (H0) of M3 in Table 3. 

cDifference = the residual variance estimated from RNM – the residual variance estimated from univariate GREML. 

dStandard error of the difference was calculated based on the theory in Supplementary Note. 

eP value was obtained based a two-tailed Wald test using the difference of residual variances and its SE. 

fThe model jointly fitted both SMK and NEU as multiple covariates (see Methods). 
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