Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

BASILIScan: a tool for high-throughput analysis of intrinsic disorder patterns in homologous proteins

Michał S Barski
doi: https://doi.org/10.1101/378018
Michał S Barski
Section of Virology, Department of Medicine, St Mary’s Hospital, Imperial College London, London W2 1PG
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Background Intrinsic structural disorder is a common property of many proteins, especially in eukaryotic and virus proteomes. The tendency of some proteins or protein regions to exist in a disordered state usually precludes their structural characterisation and renders them especially difficult for experimental handling after recombinant expression.

Results A new intuitive, publicly-available computational resource, called BASILIScan, is presented here. It provides a BLAST-based search for close homologues of the protein of interest, integrated with a simultaneous prediction of intrinsic disorder together with a robust data viewer and interpreter. This allows for a quick, high-throughput screening, scoring and selection of closely-related yet highly structured homologues of the protein of interest. Comparative parallel analysis of the conservation of extended regions of disorder in multiple sequences is also offered. The use of BASILIScan and its capacity for yielding biologically applicable predictions is demonstrated. Using a high-throughput BASILIScan screen it is also shown that a large proportion of the human proteome displays homologous sequences of superior intrinsic structural order in many related species.

Conclusion Through the swift identification of intrinsically stable homologues and poorly conserved disordered regions by the BASILIScan software, the chances of successful recombinant expression and compatibility with downstream applications such as crystallisation can be greatly increased.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted July 26, 2018.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
BASILIScan: a tool for high-throughput analysis of intrinsic disorder patterns in homologous proteins
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
BASILIScan: a tool for high-throughput analysis of intrinsic disorder patterns in homologous proteins
Michał S Barski
bioRxiv 378018; doi: https://doi.org/10.1101/378018
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
BASILIScan: a tool for high-throughput analysis of intrinsic disorder patterns in homologous proteins
Michał S Barski
bioRxiv 378018; doi: https://doi.org/10.1101/378018

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (3586)
  • Biochemistry (7545)
  • Bioengineering (5495)
  • Bioinformatics (20732)
  • Biophysics (10294)
  • Cancer Biology (7951)
  • Cell Biology (11610)
  • Clinical Trials (138)
  • Developmental Biology (6586)
  • Ecology (10168)
  • Epidemiology (2065)
  • Evolutionary Biology (13578)
  • Genetics (9520)
  • Genomics (12817)
  • Immunology (7906)
  • Microbiology (19503)
  • Molecular Biology (7641)
  • Neuroscience (41982)
  • Paleontology (307)
  • Pathology (1254)
  • Pharmacology and Toxicology (2192)
  • Physiology (3259)
  • Plant Biology (7018)
  • Scientific Communication and Education (1293)
  • Synthetic Biology (1947)
  • Systems Biology (5418)
  • Zoology (1113)