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 Abstract (max 218/250)  16 

Depression is characterized by a marked decrease in social interactions and blunted sensitivity 17 

to rewards. Surprisingly, despite the importance of social deficits in depression, non-social 18 

aspects have been disproportionally investigated. As a consequence, the cognitive 19 

mechanisms underlying atypical decision-making in social contexts in depression are poorly 20 

understood. In the present study, we investigate whether deficits in reward processing interact 21 

with the social context and how this interaction is affected by self-reported depression and 22 

anxiety symptoms. Two cohorts of subjects (discovery and replication sample: N = 50 each) 23 

took part in a task involving reward learning in a social context with different levels of social 24 

information (absent, partial and complete). Behavioral analyses revealed a specific detrimental 25 

effect of depressive symptoms – but not anxiety – on behavioral performance in the presence 26 

of social information, i.e. when participants were informed about the choices of another player. 27 

Model-based analyses further characterized the computational nature of this deficit as a 28 

negative audience effect, rather than a deficit in the way others’ choices and rewards are 29 

integrated in decision making. To conclude, our results shed light on the cognitive and 30 

computational mechanisms underlying the interaction between social cognition, reward 31 

learning and decision-making in depressive disorders. 32 

33 
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 MAIN TEXT 34 

 35 

Introduction  36 

 37 

One of the core clinical symptoms of depression is anhedonia, which refers to a reduced 38 

motivation to engage in daily life activities (motivational anhedonia) and a reduced enjoyment 39 

of usually enjoyable activities (consummatory anhedonia) (1, 2). In principle, this clinical 40 

manifestation could be explained by reduced reward sensitivity, both in terms of incentive 41 

motivation and in terms of reinforcement processes (3–5). A direct prediction of this hypothesis 42 

is that depressive symptoms should be associated with reduced reward sensitivity in learning 43 

contexts both at the behavioral and neural level. However, while some studies do find 44 

evidence that depressive symptoms in the general population and in clinical depression are 45 

associated with blunted reward learning and reward-related signals in the brain (6, 7), others 46 

indicate no (8, 9) or mixed effects (5). As a consequence, there is no strong consensus about 47 

which components of reward processing are most predictive of depressive symptoms in both 48 

the general population and clinical depression (5).   49 

 50 

Another striking clinical manifestation of depressed symptoms is a marked decrease in social 51 

interactions. Depression is indeed associated with social risk factors, social impairments and 52 

poor social functioning (10). Surprisingly, despite the importance of the socio-cognitive 53 

impairments that are often associated with elevated depressive symptoms, non-social aspects 54 

have received disproportionate attention. Furthermore, when social aspects are investigated 55 

the focus is often on emotional processing and theory of mind but not on how social 56 

information is integrated to produce efficient goal-directed behavior (11). In the present study, 57 

our goal was to investigate whether the reward-learning deficit that is often associated with 58 

elevated depressive symptoms interacts with the social context (12).  59 

 60 

According to social learning theory, a sizable amount of decisions are not directly shaped by 61 

people’s personal history of reward and punishments, but are rather acquired through social 62 

observation (13). More specifically, this framework posits that human learning occurs mostly in 63 

social contexts, where subjects can be influenced by social cues (i.e. others’ choices and 64 

outcomes) (13, 14). In order to test how depressive symptoms affect the integration of social 65 

cues during reinforcement learning, we administered a variant of a previously validated 66 
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observational learning task on two independent samples of participants: an exploration sample 67 

and a replication sample (14, 15). Subjects also completed psychometric questionnaires 68 

assessing depression and anxiety (a co-morbid trait). The task included a ‘Private’ learning 69 

condition, in which participants only had access to the outcome of their own choice, and two 70 

social conditions: the ‘Social-Choice’ condition in which participants had access to the 71 

demonstrator’s choice, and the ‘Social-Choice+Outcome’ condition in which participants had 72 

access to the demonstrator’s actions and their outcome (Figure 1).  73 

 74 

Our design allowed us to test several hypotheses concerning the relation between depressive 75 

symptoms and learning performance in private and social contexts. First, our design allowed 76 

us to test whether or not depressive symptoms degrade reward learning per se, as assumed 77 

by the standard account of depression as a reward sensitivity deficit. Second, by comparing 78 

the ‘Private’ and the ‘Social’ learning contexts, we can assess whether or not depressive 79 

symptoms are associated to a learning deficit in ‘Social’ contexts, as predicted by evidence of 80 

socio-cognitive impairments in depressive patients. Finally, thanks to computational analyses, 81 

we can precisely characterize the learning deficit in the ‘Social’ context either as a primary 82 

social learning deficit (i.e., impaired imitation) or as a secondary social learning (i.e., a negative 83 

audience effect).  84 

 85 

86 
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Results  87 

Experimental protocol and quality checks 88 

An online experiment was particularly suited to test our hypothesis because - compared to 89 

laboratory-based experiments - it provides a more diversified pool of subjects, in terms of 90 

psychiatric traits and cognitive performance (16–19). Specifically, we tested 50 participants in 91 

the general population and then ran a direct replication of the experiment on a second 92 

independent sample of 50 participants. Levels of depressive and anxiety symptoms were 93 

assessed and spanned a large range (Table 1) (20), with good internal consistency (Hospital 94 

Anxiety Depression scale - depression subscale: Cronbach’s alpha 85%; anxiety subscale: 95 

Cronbach’s alpha 84%). 96 

Participants were paired with a virtual demonstrator and performed a probabilistic 97 

reinforcement learning task in three contexts: a ‘Private’, in which participants performed the 98 

task individually with no access to the demonstrator’s choices and outcomes, and two social 99 

conditions: the ‘Social-Choice’ condition in which participants had access to the demonstrator’s 100 

choices, and the ‘Social-Choice+Outcome’ condition in which participants had access to the 101 

demonstrator’s choices and their outcome. Overall, participants displayed robust instrumental 102 

learning by choosing the most rewarded symbol above chance in all conditions (‘Private’: M = 103 

0.65 ± 0.03, t(99) = 11.42, p < .001; ‘Social-Choice’ : M = 0.65 ± 0.03, t(99) = 11.63, p < .001; 104 

‘Social-Choice+Outcome’: M = 0.67 ± 0.03, t(99) = 12.36, p < .001; ± corresponds to the 95% 105 

confidence intervals; Figure 1A).   106 

 107 

Assessing observational learning 108 

Contrary to previous studies (14, 15), we used an online adaptive learning algorithm 109 

that determined the demonstrator’s behavior (Q-learning with learning rate = 0.5 and choice 110 

temperature = 10). As a consequence, the virtual demonstrators displayed realistic learning 111 

curves with some variability of performance. We predicted that observational learning would 112 

result in a correlation between the correct choice rate of the participants and that of the 113 

demonstrator in a given learning session. To test this prediction, we used a mixed linear 114 

regression with ‘Condition’ (‘Private’ vs ‘Social-Choice’ vs ‘Social-Choice+Outcome’) as a 115 

within-subject factor and the demonstrator’s performance in a given learning session as a 116 

between-subject variable. As predicted, a higher demonstrator’s percentage of correct choices 117 

(i.e., ‘good’ demonstrations) was associated with a higher participants’ rates of correct choices 118 
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in both social conditions (‘Social-Choice’ vs ‘Private’: t(495) = 2.70, p = .007; ‘Social-119 

Choice+Outcome’ vs ‘Private’: t(495) = 2.25, p =.025) but not in the Private condition (t(495) = 120 

0.10, p > .250; Figure 2A). 121 

In order to confirm that participants actually integrated the virtual demonstrator as a 122 

social partner, we measured the influence of participants’ rating of trustworthiness of the 123 

demonstrator’s face on social learning. An effect of perceived trustworthiness evaluations was 124 

found, such that participants who perceived the demonstrator’s avatar as more trustworthy had 125 

higher correct choice rates in the ‘Social-Choice’ (t(98) = 3.17, p = .002) and in the ‘Social-126 

Choice+Outcome’ conditions (t(98) = 2.58, p = .012) but not in the ‘Private’ condition (t(98) = 127 

1.08, p > .250; Figure 2B). This effect of the social evaluation of the demonstrator’s avatar 128 

confirms that participants processed the information in a social context. 129 

 130 

Correlation between depressive symptoms and performance 131 

To test the effect of depression, the mixed linear logistic regression also included depressive 132 

symptoms as a between-subject variable. Importantly, anxiety, which is a comorbid trait of 133 

depression (21, 22), was also included as a controlling factor (the regression also included a 134 

range of controls listed in Table 2). The analysis revealed a significant effect of depressive 135 

symptoms, such that the higher the depressive symptoms, the lower the rate of correct choices 136 

in the ‘Social-Choice’ condition compared to the ‘Private’ condition (t(489) = -2.64, p = .009; no 137 

other significant effect of depression and anxiety scores was evidenced: all ps > .250; Figure 138 

3A). Importantly, the negative effect of depression in the ‘Social-Choice’ condition was 139 

particularly robust, because it was found in both the discovery and the replication sample and 140 

in the blocks with stable and reversal contingencies (within-subject) (Figure 4).  141 

Finally, we tested whether the difference in correct choice rates between the ‘Social-142 

Choice’ and ‘Private’ conditions could accurately identify participants with ‘severe’ depression 143 

symptoms (i.e. scoring  > 10 on the HAD depression subscale (20)). The classification analysis 144 

revealed that the performance difference between the ‘Social-Choice’ and the ‘Private’ 145 

condition identified the participants with ‘severe’ depressive symptoms with a good accuracy of 146 

76 ± 1 % and both good a sensitivity, or True Positive Rate (78 ± 2%) and specificity, or True 147 

Negative Rate (63 ± 3%) of the classifier (Figure 3B).  148 

 149 
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Computational model-based analyses  150 

Although model-free analyses reveal a robust negative effect of depressive symptoms 151 

on learning in the ‘Social-Choice’ condition, they do not elucidate the cognitive mechanisms 152 

underlying this effect. Indeed, the effect of depressive symptoms could either be due to 153 

differences in social information processing, such as the demonstrator’s choices and outcomes 154 

(i.e. a primary social learning deficit) or to differences in the weighting of the information 155 

generated by participants’ own choices when social information is also available (i.e. a 156 

secondary social learning deficit or audience effect). These two hypotheses are hard to tease 157 

apart based on raw behavioral analyses, because both predict a reduced correct choice rate in 158 

the ‘Social’ conditions. Thus, to arbitrate between these two possibilities, we fitted a previously 159 

validated social reinforcement learning model (14, 23). This model allows for biasing 160 

participants’ choice depending on their demonstrator’s choice in the ‘Social-Choice’ (i.e. 161 

imitation) condition and to update the value attributed to each symbol depending on the 162 

demonstrator’s outcome in the ‘Social-Choice+Outcome’ condition (i.e. vicarious trial-and-163 

error). Compared to the original model and to directly assess the ‘socially induced individual 164 

learning deficit’ hypothesis (14), we allowed participants to have different individual learning 165 

parameters in the ‘Private’ and in the two social conditions (‘Social-Choice’ and ‘Social-166 

Choice+Outcome’ conditions; Figure 5A).  167 

 168 

Computational effects of depressive symptoms 169 

We analyzed the model parameters fitted on participants’ actual behavior with structural 170 

equation modeling using depression scores as the independent variable. Higher depression 171 

scores were specifically associated with lower learning rates in the ‘Social’ conditions 172 

(depression: z = -2.41, p = .016; other ps > .199; Figure 5B). Interestingly, high depression 173 

scores were not solely associated with decreased learning rates in the ‘Social’ conditions, but 174 

also with decreased learning rates in the ‘Social’ conditions compared to the ‘Private’ condition 175 

(t(98) = -2.25, p = .027; Figure 4C), which indicates that the presence of social information 176 

decreased the learning rate of the most depressed participants. Adopting a computational 177 

psychiatry approach, we tested whether the difference in learning rates between the ‘Private’ 178 

and ‘Social’ conditions could identify ‘severe’ depressive symptoms (i.e. HAD depression 179 

subscale score above 10 (20)). The difference in learning rates detected participants with 180 

severe depressive symptoms with good accuracy (79 ± 1%), good sensitivity (84 ± 1%), but 181 
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low specificity (53 ± 3%). A comparison between a classifier based on the model parameters 182 

and a classifier based on correct choice rates revealed that the model-based classifier was 183 

more accurate at detecting participants with ‘severe’ depressive symptoms (t(198) = 3.69, p < 184 

.001), and more sensitive (t(198) = 5.09, p < .001) but less specific (t(198) = -3.73, p < .001) 185 

than the classifier based on correct choice rates. 186 

 187 

Model simulations analyses 188 

Model-based analyses indicated that depression severity specifically reduced individual 189 

learning rate in ‘Social’ conditions (αP): a parameter that is used both in the ‘Social-Choice’ 190 

and the ‘Social-Choice+Outcome’ condition. Model-free behavioral analyses showed that the 191 

learning deficit associated with depression severity was specific to the ‘Social-Choice’ 192 

condition. To ascertain that this computational result was compatible with our model-free 193 

observation, we ran the same statistical analysis on simulated data (24). Crucially, data 194 

simulated using the fitted parameters accurately recovered the decrease in performance 195 

associated with depression scores in the ‘Social-Choice’ condition compared to the ‘Private’ 196 

condition (t(488) = -2.18, p = .030; Figure 4D) as well as the non significant effect of 197 

depression scores in the ‘Social-Choice+Outcome’ condition compared to the ‘Private’ 198 

condition (t(488) = -1.32, p = .188) and in the ‘Private’ condition (t(96) = -0.37, p > .250).  Thus, 199 

the simulations captured the specificity of the behavioral effect of depression scores and 200 

illustrate that our model provides an accurate description of the data.  201 

 202 

Checking parameter recovery 203 

 As we were interested in the modulation of specific parameters by depression scores 204 

we tested whether our task allowed us to successfully retrieve a correlation between 205 

parameters in simulated datasets, an important quality check often referred to as ‘parameter 206 

recovery’ (24). To do so, we ran 100 sets of simulations for each parameter, each simulating 207 

100 participants, with the parameter of interest correlating with an arbitrary variable and the 208 

other parameters being randomly fixed in a defined range. The simulated data were then fitted 209 

using our social reinforcement-learning model. Overall parameter recovery was very good, 210 

especially for the parameters of the social conditions, with significant correlations were found 211 

in the 100% of the simulated datasets (average correlation coefficient of the parameters: r = 212 

0.73 ± 0.01). Importantly, the recovery of the correlations was specific to the manipulated 213 
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parameter with false alarms detected in less than 10% of the cases except for learning rate 214 

and choice temperature in the ‘Private’ condition (which was not our condition of interest) 215 

(Figure 5C).  This result indicates that it is very unlikely that a correlation of one of our 216 

parameters with participants’ HAD depression scores is actually due to an effect of depression 217 

scores on another parameter. 218 

  219 
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Discussion  220 

In the present study we assessed reinforcement learning with a behavioral paradigm involving 221 

both private and social contexts, while concomitantly assessing depressive and anxiety 222 

symptoms. First, we replicate previous findings showing that subjects integrate the 223 

demonstrator’s choices and outcomes, which is consistent with the idea that social learning 224 

processes (both in terms of imitation and vicarious trial-and-error) play a role in human 225 

reinforcement learning (14, 15, 25–27). Second, we show that the severity of depressive 226 

symptoms is associated with a learning impairment that is specific to the learning context 227 

where participants are informed about the demonstrator’s choices (social context). This 228 

negative effect was robust to the inclusion of anxiety, and robust across experiments and 229 

outcome contingencies. Finally, computational analyses allowed us to characterize the effect 230 

of depressive symptoms as a secondary social learning deficit, i.e. a reduction of the learning 231 

rate in social contexts.  232 

 233 

We found that depressive symptoms had a specific effect on imitation in the ‘Social-Choice’ 234 

condition. Crucially, the effect was robust to the inclusion of anxiety, which did not modulate 235 

performance in our task. That anxiety has no effect may come as a surprise given that 236 

previous studies have found that anxiety is associated with deficits in social and non-social 237 

reinforcement learning (28). One possible explanation is that this anxiety is more strongly 238 

linked to classical fear conditioning, rather than reward-based instrumental learning (29). 239 

Depressive symptoms might thus undermine social reinforcement learning in instrumental and 240 

reward-maximization contexts, while anxiety might affect the same processes when outcomes 241 

are independent from the participants’ choices (i.e. Pavlovian learning) and when outcomes 242 

have a negative valence (aversive contexts).  243 

 244 

Model-free analyses per se do not allow us to pinpoint the psychological mechanisms 245 

underlying the negative effect of depressive scores on correct choice rates in the ‘Social-246 

Choice’ context. The absence of interaction between the demonstrator’s performance and 247 

depressive symptoms suggests that depressive symptoms did not lead participants to 248 

disproportionally follow ‘bad examples’ or to be insensitive to ‘good examples’. However, 249 

interpretations based on negative results are, at best, unsafe. To formally characterize the 250 

psychological mechanisms of the detrimental effects of depressive symptoms we thus turned 251 

to model-based analyses.  252 
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 253 

We fitted subjects’ choice with a slightly modified version of a previously validated social 254 

reinforcement-learning model (14). As in standard algorithms, the model assumes that 255 

subjects learn option values via the calculation of a reward prediction error, which are 256 

moderated by a learning rate (αP) and that choices are generated via a soft-maximization 257 

process, whose stochasticity is governed by a temperature (βP) (30). In addition to this ‘private’ 258 

learning module, the model also displays sensitivity to social information: in the ‘Social-Choice’ 259 

condition the demonstrator’s choice biases the subsequent subject’s choice (the magnitude of 260 

this effect is governed by an imitation rate κ) and in the ‘Social-Choice+Outcome’ condition the 261 

demonstrator’s outcome is integrated into the subject’s value function with a vicarious learning 262 

rate (αO). Finally, we also allowed for different private learning rates and temperatures in the 263 

‘Social’ contexts (αS and βS). This precise model parameterization allowed us to disentangle 264 

two different hypotheses concerning the drop in performance associated with depressive 265 

symptoms in the ‘Social-Choice’ condition. A correlation between depression scores and 266 

imitation rates and/or vicarious learning rates would imply what we define a ‘primary’ social 267 

learning impairment (i.e. an impairment of the social learning processes per se). On the 268 

contrary, a correlation between the ‘Social’ context-specific learning rate and/or temperature 269 

would imply a ‘secondary’ social learning impairment (i.e. an impairment of the private learning 270 

processes in presence of social information). We found that depressive scores negatively 271 

correlated with the private learning rate in the social context (αS), thus indicating that the effect 272 

is consistent with a secondary impairment and is specific to the learning (as opposed to the 273 

decision) process.  In other words, our computational results suggest that one possible way in 274 

which depressive symptoms affect learning in social contexts is conceptually similar to a 275 

negative audience effect  (31, 32), where the presence of social signals (the demonstrator’s 276 

choices) induces a reduction of subjects’ instrumental performance.  277 

 278 

From a methodological point of view, our study exemplifies how computational approaches can 279 

provide new insights on the way in which cognitive processes vary with clinical symptoms. 280 

Indeed, computational modeling demonstrated that the effect of depressive symptoms was 281 

selective of the way individual information was processed (33, 34). It is worth noting that these 282 

conclusions were only allowed after a careful testing of the ability of our task to precisely 283 

identify which model parameter would be influenced by depressive symptoms (24). The exact 284 

cognitive and psychological mechanisms that mediate the negative effect of social signals in 285 
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instrumental performance remain to be characterized. One possibility given that depression is 286 

associated with lower cognitive functioning in general (35) is that the mere presence of others 287 

exacerbates these difficulties by capturing already scarcer attentional resources. Alternatively, 288 

negative perception of self and negative comparison to others are core symptoms of 289 

depression (36). Therefore, it is possible that the most depressed participants perceived their 290 

demonstrator’s behavior as more reliable, thus underweighting the information they acquired 291 

through their own experience.  292 

 293 

Our results provide new evidence that depression-related reward learning deficits are highly 294 

context-dependent (3–5), and suggest that the differences in learning rates associated with 295 

depressive symptoms may only arise in social contexts (5, 9). Crucially, our results suggest 296 

that supposedly neutral aspects of the experimental setup (such as whether or not the task is 297 

done in the presence or absence of an experimenter), may affect the results and explain 298 

inconsistent findings (42). In line with recent propositions, our results also suggest that a 299 

deeper investigation of socio-cognitive impairments in depression may provide important new 300 

insights (10, 11). Finally, we suggest that developing tools assessing reward learning outside 301 

and inside social contexts (characterized either by the presence of another player or by the 302 

social nature of the outcomes (43)) may prove useful to improve diagnosis and personalize 303 

treatments of depressive syndromes in the long term.   304 

 305 

An obvious limitation of our study, is that we did not control for participants’ actual diagnosis 306 

and treatment, which may be problematic since medication interacts with decision-making in 307 

depression (44). Therefore, our results would benefit from being replicated in carefully 308 

controlled population, while controlling for medication status and medical history. This 309 

replication would allow us to further measure the diagnostic value of our behavioral task and 310 

associated computational model-based analyses. Indeed, in the present study, we only tested 311 

its ability to detect high depressive scores as identified by a self-rated scale (20) . It would be 312 

particularly interesting to test whether our behavioral and computational measures improve 313 

existing self-assessments that detect clinically diagnosed cases of depression.  314 

 315 

Our results have implications beyond their clinical relevance. Consistent with the ‘social 316 

learning theory’ participants imitated demonstrators’ choices (‘Social-Choice’ condition) and 317 

learned from their outcomes (‘Social-Choice+Outcome’ condition) (13, 14). At the behavioral 318 
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level, these two psychological processes were manifest in the fact participants’ performance 319 

was modulated by the demonstrators’ performance. In particular, we found that participants 320 

observing a demonstrator performing ‘well’ performed better in the social compared to the 321 

private learning context. Importantly the opposite was also true: participants observing low 322 

performing demonstrators displayed lower performance in the social compared to the private 323 

context. This latter result is in apparent contrast with the normative view that imitation should 324 

be biased toward successful individuals in order to be evolutionary adaptive (45–47). This is 325 

also in contrast with recent empirical evidence using a very similar paradigm and showing that 326 

imitation rate is modulated by the actual performance of the demonstrator, so that 327 

demonstrators making random (i.e., non reward-maximizing) decisions are less imitated (15).  328 

Two differences between the previous design and ours may explain this discrepancy. First, the 329 

previous study involved mild electric shocks (primary reinforcer), while our study involved 330 

abstract points to be converted into money (secondary reinforcer). More importantly perhaps, 331 

the previous design involved a between-subjects design with two groups of participants paired 332 

either with a consistently good or with a consistently bad participant, while in our experiments 333 

the performance of the demonstrator was allowed to fluctuate in a within-subject manner 334 

around an optimal behavior. Therefore, it could also be argued that our experiment is not well-335 

suited for measuring demonstrators’ performance effects on participants’ imitation behavior as 336 

such effects require a relatively long and stable reputation building process (48, 49).       337 

 338 

The question remains whether or not in our task social learning (imitation and vicarious trial-339 

and-error) engaged domain-specific social cognitive module or domain-general information 340 

processing modules. In the absence of additional data (such as neuroimaging) we cannot 341 

provide a definitive answer. However, evidence from post-learning face ratings provides some 342 

clues (50). We found a positive correlation between performance in the social contexts and the 343 

demonstrator’s judgment of trustworthiness. Even if we cannot infer a causal link and its 344 

direction from the post-learning face evaluation, these results suggest that a specific socio-345 

cognitive module (face evaluation) correlated with instrumental performance, thus 346 

demonstrating the engagement of social information-specific processing and our reinforcement 347 

learning task.  348 

 349 

 350 

 351 

352 
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Materials and Methods 353 

Participants 354 

Two independent cohorts of 100 American participants, similar in terms of reported age (mean 355 

reported age across the two cohorts: 33.39 ± 2.03) and of reported male/female ratio (mean 356 

reported male/female ratio across the two cohorts: 35%; see Table) were recruited via Amazon 357 

Mechanical Turk to participate in this online study. Each participant received a fixed 4$ amount 358 

for completing the 40-minute task to which a bonus earned during the experiment was then 359 

added (average bonus: 0.49$). Participant received a description of the study and signed an 360 

informed consent before starting the experiment. The study was approved by the ethical 361 

committee. The first cohort corresponded to a ‘discovery experiment’ where we explored the 362 

relation between instrumental performance and clinical scores; the second cohort 363 

corresponded to a ‘replication experiment’ where we tested the robustness and replicability of 364 

the effect identified in the first experiment. 365 

 366 

Experimental design 367 

Participants performed the probabilistic instrumental learning task described in the Results 368 

section (Figure 1A). The task was programmed on Qualtrics and was composed of six 369 

learning blocks of 20 trials each. In each block, participants had to choose between two cues. 370 

Cues were characters of the agathodaimon font and were always presented in pair and only in 371 

one block per subject. The cue-to-condition attribution was randomized across subjects. 372 

Participants made their choice by pressing the E or P keys to choose the leftmost or rightmost 373 

symbol. Participants were given no explicit information on reward probabilities, which they had 374 

to learn through trial and error. In addition, they were encouraged to accumulate as many 375 

points as possible, with their final amount of points being translated into bonus money at the 376 

end of the experiment (conversion rate: 40 points equals 1$ bonus). In each pair, cues were 377 

associated with reciprocal reward probabilities (20/80% or 30/70%). For instance, in a 30/70% 378 

pair, the most rewarded cue provided a positive outcome (+1 point) 70% of the times and a 379 

negative outcome (-1 point) 30% of the time, while the less rewarded cue provided a negative 380 

outcome 70% of the time and a positive outcome 30% of the time.  381 

Participants were told they had been paired with another player at the beginning of the 382 

experiment with whom they played in turn in each trial. As in previous studies (Suzuki et al. 383 

Neuron 2012), the behavior of the demonstrators was determined by a reinforcement learning 384 
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algorithm (Q-learning) with a reasonable set of free parameters (𝛼 = 0.5, ß = 10; see below for 385 

a description for the Q-learning and its parameters). To avoid social perceptual biases, the 386 

other player was represented by a neutral avatar, chosen to be generally perceived as neither 387 

dominant or submissive nor trustworthy or untrustworthy (51). Participants had to choose their 388 

own avatars in a set of other 16 identities (8 female, 8 male) at the beginning of the task. 389 

Participants performed this task in three different contexts with different amounts of social 390 

information: a ‘Private’ condition in which they did not have access to the demonstrator’s 391 

behavior, a ‘Social-Choice’ condition in which participants could see the demonstrator’s 392 

behavior but not their outcomes and a ‘Social-Choice+Observation’ in which participants could 393 

observe the demonstrator’s decisions and outcomes. Importantly, participants performed each 394 

condition (‘Private’, ‘Social-Choice’ and ‘Social-Choice+Outcome’) twice. In the ‘Stable’ type of 395 

contingency, outcome probabilities were set at 30/70% and did not change during the block. In 396 

the ‘Reversal’ type of contingency, outcome probabilities were set at 20/80%.and was inverted 397 

across cue after 10 trials (in average). Finally, at the end of the experiment, participants rated 398 

their demonstrator’s avatar on three personality traits (trustworthiness, dominance and 399 

competence) and completed the Hospital Anxiety and Depression Scale (20) as well as the 400 

Peters et al. Delusions Inventory, that was included in the exploratory analysis of the 401 

‘discovery’ experiment and then discarded in absence of any significant effect and its inclusion 402 

did not affect the effect of depression.  403 

 404 

Statistical analyses 405 

Percentage of correct choices 406 

Percentage of correct choices were extracted for each block and used as a dependent 407 

variable. A mixed linear regression with both random intercept and random slopes was 408 

conducted on correct choice rates taking participants’ ID as a random factor, condition 409 

(‘Private’, ‘Social-Choice vs ‘Social-Choice+Outcome’) as within-subject variables and 410 

depression and anxiety scores as well as demonstrator’s performance and trustworthiness 411 

judgment as between-subject variables (Table 2).  412 

 413 

Diagnostic value 414 

Out of sample tests were used to assess the diagnostic value of our task, i.e., its ability to 415 

distinguish participants scoring below the ‘severe symptoms’ threshold in depression scale 416 
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from those above this threshold. 50 participants were randomly extracted from the entire 417 

sample and used to optimize a classifier of ‘severe’ depressive symptoms (HAD depression 418 

subscale score above 10 (20)) using either the difference in correct choice rates between the 419 

‘Social-Choice’ and the ‘Private’ conditions (model-free measure) or the difference in learning 420 

rates between the Private and social information conditions (𝛼S minus 𝛼P; model-based 421 

measure; see below). The classifier and the associated optimal cut-off was tested on the 50 422 

remaining participants. This operation was repeated 100 times in order to estimate the average 423 

accuracy, sensitivity and sensibility of the classifiers. 424 

 425 

Computational analyses 426 

Computational model 427 

To fit the behavioral data, we used a social reinforcement learning model previously presented 428 

by Burke et al. (14). Individual learning and decision-making where modeled with classical 429 

softmax (eq.1) and delta-rule (eq.2) functions, respectively governed by learning rate and 430 

choice randomness (or temperature) parameters:   431 

(1)  𝑃!(𝑠! ,𝑎!) = 1 (1+ 𝑒 !!! !! ∗!) 432 

(2)   𝑄!!! 𝑠! ,𝑎! = 𝑄! 𝑠! ,𝑎! +  𝛼! ∗ 𝑅𝑃𝐸! 433 

 434 

Where RPEt is the reward prediction error calculated as follows (eq.3): 435 

(3)   𝑅𝑃𝐸! =  𝑅! −  𝑄! 𝑠! ,𝑎!  436 

The only change we made was the inclusion of different learning rates and inverse 437 

temperature parameters in the ‘Private’ (𝛼P , 𝛽P) and social information (𝛼S , 𝛽S)  conditions. 438 

During the ‘Social-Choice’ condition, the model assumes that the Demonstrator’s choice 439 

induces an ‘action’ prediction error (APEt; (eq.4)), which measures how surprising the 440 

Demonstrator’s choice is, given the subject’s current estimate of the option values:  441 

(4)   𝐴𝑃𝐸! =  1−  𝑄! 𝑠! ,𝑎!  442 

The APEt is then used to bias the subject’s choice probability (eq.5) in the subsequent trial and 443 

the effect is scaled by a parameter  𝜅 ∈ {0-1}:  444 

(5)   𝑃!!! 𝑠! ,𝑎! = 𝑃! 𝑠! ,𝑎! +  𝜅 ∗ 𝐴𝑃𝐸! 445 
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Finally, in the ‘Social-Choice+Outcome’ trials, the model assumes that the Demonstrator’s 446 

outcome induces an ‘observational’ reward prediction error (eq.5), which is scaled by 447 

observational learning rate 𝛼! ∈ {0-1} (eq.6):   448 

(5)   𝑂𝑃𝐸! =  𝑅(𝑝𝑎𝑟𝑡𝑛𝑒𝑟)! −  𝑄! 𝑠! ,𝑎!  449 

(6)   𝑄!!! 𝑠! ,𝑎! = 𝑄! 𝑠! ,𝑎! +  𝛼! ∗ 𝑂𝑃𝐸! 450 

 451 

To sum up, our computational modeling allowed us to address both primary social learning 452 

deficits (i.e. learning deficits captured by the parameters 𝜅 and 𝛼!, which are specific to social 453 

information) and secondary social learning deficits (i.e. learning deficits captured by the 454 

parameters 𝛽S and 𝛼! , which are specific to individual learning in contexts where social 455 

information is available).   456 

We optimized the model parameters by minimizing the Laplace approximation to the model 457 

evidence (log of the posterior probability: LPP) (eq.7):   458 

 459 
(7)  𝐿𝑃𝑃 = log (𝑃 data 𝜃!,…! )+ log (𝑃 𝜃! )!

!!!  460 
 461 

Where D represents the data, 𝜃!,…! the model, and 𝜃! represents one of the n parameters of 462 

the computational model. The LPP represents a trade-off between the model’s accuracy and 463 

complexity: it increases with the likelihood of the model given the data (a measure of fit) and 464 

decreases with the number of parameters. By including priors over the parameters, this 465 

method avoids degenerate parameter estimation. In our analysis, the priors were defined as a 466 

gamma function (gampdf(1.2,5)) for the temperature parameters (range: 0<β<Infinite) and as a 467 

beta function (betapdf(1.1,1.1)) for the learning and imitation rates (ranges: 0<α<1, 0<κ<1) as 468 

described in (52) 469 

Importantly, LPP analysis suggested that the social reinforcement learning fit the data better 470 

than a simple Q-learning model without social influence, even accounting for its extra-471 

complexity (social reinforcement learning model: posterior probability: 90 ± 3 %; exceedance 472 

probability: 100%). As a control analysis, in order to ensure that our model comparison 473 

criterion was not over-fitting prone, we fit the behavior of the virtual demonstrators that we 474 

generated with a Q-learning model. This model recovery analysis (24) correctly indicated that 475 

the simple Q-learning model explained the demonstrators’ data better (social reinforcement 476 

learning model: posterior probability: 100 ± 0 %; exceedance probability: 100%). 477 
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Because the model parameters were correlated with each other (maximal correlation: r = 0.53), 478 

we used structural equation modeling to analyze the influence of depression scores on the 479 

model parameters. This technique allowed to test the influence of depression scores on each 480 

parameter while simultaneously accounting for the inter-correlations of the dependent 481 

variables (the model free parameters) and of the independent variable (the depression score). 482 

 483 

Model simulation analyses 484 

Finally, we assessed the ability of the model to recover the observed behavioral effect of 485 

depressive symptoms using model simulations (24). For each participant, we simulated 486 

behavioral data for each condition based on their best fitting parameters. Importantly, a 487 

simulated demonstrator was also generated, such that the simulated data were completely 488 

independent of the contingencies actually experienced by the participants. This procedure was 489 

repeated 100 times, to avoid any effect of participant’s and demonstrator’s history of choice 490 

and outcomes. Analysis of the recovered percentage of correct choices was ran on the 491 

averaged rates of correct choices across the 100 simulations using a linear mixed regression 492 

taking the exact same predictors as the mixed general linear model used for analyzing 493 

participants’ percentage of correct choices.  494 

 495 

  496 
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 Figures and Tables 609 

 610 

Figure 1: behavioral task. 611 
In each condition, participants played in turn with a simulated demonstrator. In each private trial, after each 612 
choice, participants received a reward or a punishment. In the Private condition, participants did not see the 613 
choice or the outcome of the demonstrator. In the Choice observation condition, the choice of their demonstrator 614 
was displayed at each trial. In the Social-Choice+Outcome condition, both the choice and the outcome of the 615 
demonstrator were displayed. Note that the Social-Choice and the Social-Choice+Outcome also involved private 616 
trials.  617 
  618 
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 619 
 620 
  621 

Figure 2: assessing social reinforcement learning 622 

(A) Effect of demonstrator’s behavior. The demonstrator’s performance and the participant’s depression score 623 
influenced the correct choice rate in the ‘Choice’ and in the ‘Social-Choice+Outcome’ conditions, such that 624 
observing a virtual player with a low correct choice rate (‘Bad’ demonstration ; light green) induced a lower correct 625 
choice compared to observing a virtual player with a high correct choice rate (‘Good’ demonstration; dark green) 626 
(‘Social-Choice’: t(198)= 3.17, p = .002; ‘Social-Choice+Outcome’ : t(198)= 2.47, p = .014). (B) Effect of 627 
perceived trustworthiness. Participants who rated the demonstrator’s avatar as trustworthy had a higher correct 628 
choice rate in the ‘Social-Choice’ and ‘Social-Choice+Outcome’ conditions compared those who rated the avatar 629 
as untrustworthy (‘Social-Choice’: t(76)= 3.22, p =.002, ‘Social-Choice+Outcome’: t(76)= -2.87, p =.005)  630 
 631 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 27, 2018. ; https://doi.org/10.1101/378281doi: bioRxiv preprint 

https://doi.org/10.1101/378281
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 24 of 29 
 

 632 
 633 

Figure 3: effect of depression on reinforcement learning in social contexts.   634 

(A) Effect of depression. The participant’s depression score influenced the correct choice rate in the ‘Social-635 
Choice’ condition, such that participants with higher score had a lower correct choice rate in the ‘Social-Choice’ 636 
condition (median split: t(98) = -2.69, p = .008). (B) Model-free classification. The correct choice rate difference 637 
between the Private and the ‘Social-Choice’ conditions was significantly different between participants with 638 
‘Absent’ and ‘Severe’ depressive symptoms (t(83) = 3.61, p < .001). (C) Model-based classification. The 639 
difference between the learning rate of the ‘Private’ and the social information contexts was significantly different 640 
between participants with ‘Absent’ and ‘Severe’ depressive symptoms (t(83) = -3.20, p =.002). Absent and Severe 641 
depressive symptoms correspond to scores<8 and scores>10 on the HAD depression subscale, respectively.  642 
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 643 

 644 
 Figure 4: robustness of the result. The scatter plots represent the correlation between correct response rates 645 
in the ‘Social-Choice’ condition and depression scores separately for each experiment (right; exploration sample: r 646 
= -.29, t(48) = -2.15, p = .036; replication sample: r = -.37, t(48) = -2.75, p = .008) and reward contingency (right; 647 
exploration sample: r = -.27, t(98) = -2.83, p = .006; replication sample: r = -.27, t(48) = -2.81, p = .006; r and p: 648 
Pearson’s coefficient statistical significance.  649 
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 652 
Figure 5: social reinforcement learning model and computational results.  653 
(A) Computational model. A social reinforcement learning model was fitted on participants’ behavior. In the 654 
‘Private’ condition (‘Private context’), the model corresponded to a classical Q-learning (or Rescorla-Wagner) 655 
model. In Social context’ (‘Social-Choice’ and ‘Social-Choice+Outcome’ conditions), the model assumes that 656 
social information is integrated into the learning and decision process. Following Burke et al. (14), choice 657 
probability was updated based on the demonstrator’s action (imitation) in the ‘Social-Choice’ condition and the 658 
option value was updated when the demonstrator’s outcome was presented (counterfactual learning) in the 659 
‘Social-Choice+Outcome’ condition. The proposed model also allows for different private parameters (learning 660 
rate, αS, and choice randomness, βS) being in the Social context. (B) Parameter recovery. To assess the 661 
sensitivity and the specificity of our model fitting procedure, we conducted a parameter recovery analysis. The 662 
matrix represents the percentage of significant correlations detected between different combinations of 663 
parameters. The diagonal cases correspond to the correlations that are accurately recovered; the other cases 664 
correspond to correlations that are spuriously recovered. (C) Effect of depression on the model parameters. 665 
Depression was specifically associated with a decrease in the private learning rate in the Social context αS), even 666 
controlling for the correlation between the different model parameters (structural equation modeling). 667 
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 668 
Tables 669 
Table 1: descriptive statistics for age, gender, depression and anxiety scores. For each sample, the mean of each 670 

demographic variable is presented with its 95% confidence interval.  671 

 672 
 Age Sex ratio  

(% women) 
Depression  Anxiety  

First sample  
(N = 50) 

33.02 ± 1.25 
[22 – 62] 

28% 5.46 ± 1.26 
[0 – 19] 

6.40 ± 1.16 
[0 – 15] 

Second sample  
(N = 50) 

33.76 ± 3.28 
[19 – 61] 

42% 4.96 ± 1.27 
[0 – 16] 

6.30 ± 1.28 
[0 – 20] 

Statistical 
difference 

t(98) = 0.36 

p > .250 
X-squared = 1.58,  

df = 1, p-value = .208 
t(98) =  0.56 p > .250 t(98) =  0.12 p > .250 

 673 

 674 

  675 
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Table 2: statistical effect (mixed linear model) of social task conditions (‘Social-Choice’ and ‘Social-676 

Choice+Outcome’), performance of the virtual demonstrator, perceived trustworthiness (‘Trustworthiness’), 677 

psychiatric scores (‘Depression’ and ‘Anxiety’), and their interaction when comparing to the ‘Private’ condition.  678 

 679 

Effect Coefficient SEM DF T-value P-value 

Social-Choice -0.18 0.06 489 -2.58 0.010* 

Social-Choice+Outcome -0.13 0.07 489 -1.92 0.055° 

Demonstrator performance 0.01 0.06 489 0.15 0.883 

Trustworthiness 0.03 0.03 96 1.04 0.302 

Depression 0.01 0.02 96 0.47 0.638 

Anxiety -0.01 0.02 96 -0.46 0.643 

Social-Choice x Demonstrator 
performance 0.21 0.08 489 2.54 0.011* 

Social-Choice+Outcome x Demonstrator 
performance 0.20 0.09 489 2.18 0.030* 

Social-Choice x Trustworthiness 0.05 0.03 489 1.48 0.140 

Social-Choice+Outcome x 
Trustworthiness 0.04 0.03 489 1.22 0.222 

Social-Choice x Depression -0.05 0.02 489 -2.64 0.009** 

Social-Choice+Outcome x Depression -0.00 0.02 489 -0.00 0.999 

Social-Choice x Anxiety 0.01 0.02 489 0.72 0.475 

Social-Choice+Outcome x Anxiety -0.01 0.02 489 -0.51 0.614 

 680 
 681 

  682 
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Table 3: Estimated model parameters for the actual participants and for the simulated virtual demonstrators 683 

(mean ± 95% c.i..).  684 

 Participants Virtual demonstrators 

βprivate 2.20 ± 0.47 9.54 ± 0.49 (real: 10) 

αprivate 0.58 ± 0.05 0.52 ± 0.02 (real: 0.50) 

βsocial 1.83 ± 0.34  

αsocial 0.60 ± 0.06  

κ 0.13 ± 0.02  

αobservation 0.46 ± 0.06  

 685 
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