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Abstract (max 218/250)
Depression is characterized by a marked decrease in social interactions and blunted sensitivity

to rewards. Surprisingly, despite the importance of social deficits in depression, non-social

aspects have been disproportionally investigated. As a consequence, the cognitive
mechanisms underlying atypical decision-making in social contexts in depression are poorly
understood. In the present study, we investigate whether deficits in reward processing interact

with the social context and how this interaction is affected by self-reported depression and

anxiety symptoms. Two cohorts of subjects (discovery and replication sample: N = 50 each)

took part in a task involving reward learning in a social context with different levels of social

information (absent, partial and complete). Behavioral analyses revealed a specific detrimental
effect of depressive symptoms — but not anxiety — on behavioral performance in the presence
of social information, i.e. when participants were informed about the choices of another player.
Model-based analyses further characterized the computational nature of this deficit as a
negative audience effect, rather than a deficit in the way others’ choices and rewards are
integrated in decision making. To conclude, our results shed light on the cognitive and
computational mechanisms underlying the interaction between social cognition, reward

learning and decision-making in depressive disorders.

Page 2 of 29


https://doi.org/10.1101/378281
http://creativecommons.org/licenses/by-nc-nd/4.0/

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

bioRxiv preprint doi: https://doi.org/10.1101/378281; this version posted July 27, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

MAIN TEXT

Introduction

One of the core clinical symptoms of depression is anhedonia, which refers to a reduced
motivation to engage in daily life activities (motivational anhedonia) and a reduced enjoyment
of usually enjoyable activities (consummatory anhedonia) (7, 2). In principle, this clinical
manifestation could be explained by reduced reward sensitivity, both in terms of incentive
motivation and in terms of reinforcement processes (3-5). A direct prediction of this hypothesis
is that depressive symptoms should be associated with reduced reward sensitivity in learning
contexts both at the behavioral and neural level. However, while some studies do find
evidence that depressive symptoms in the general population and in clinical depression are
associated with blunted reward learning and reward-related signals in the brain (6, 7), others
indicate no (8, 9) or mixed effects (5). As a consequence, there is no strong consensus about
which components of reward processing are most predictive of depressive symptoms in both
the general population and clinical depression (5).

Another striking clinical manifestation of depressed symptoms is a marked decrease in social
interactions. Depression is indeed associated with social risk factors, social impairments and
poor social functioning (70). Surprisingly, despite the importance of the socio-cognitive
impairments that are often associated with elevated depressive symptoms, non-social aspects
have received disproportionate attention. Furthermore, when social aspects are investigated
the focus is often on emotional processing and theory of mind but not on how social
information is integrated to produce efficient goal-directed behavior (77). In the present study,
our goal was to investigate whether the reward-learning deficit that is often associated with

elevated depressive symptoms interacts with the social context (72).

According to social learning theory, a sizable amount of decisions are not directly shaped by
people’s personal history of reward and punishments, but are rather acquired through social
observation (73). More specifically, this framework posits that human learning occurs mostly in
social contexts, where subjects can be influenced by social cues (i.e. others’ choices and
outcomes) (73, 14). In order to test how depressive symptoms affect the integration of social

cues during reinforcement learning, we administered a variant of a previously validated
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observational learning task on two independent samples of participants: an exploration sample
and a replication sample (74, 15). Subjects also completed psychometric questionnaires
assessing depression and anxiety (a co-morbid trait). The task included a ‘Private’ learning
condition, in which participants only had access to the outcome of their own choice, and two
social conditions: the ‘Social-Choice’ condition in which participants had access to the
demonstrator’s choice, and the ‘Social-Choice+Outcome’ condition in which participants had
access to the demonstrator’s actions and their outcome (Figure 1).

Our design allowed us to test several hypotheses concerning the relation between depressive
symptoms and learning performance in private and social contexts. First, our design allowed
us to test whether or not depressive symptoms degrade reward learning per se, as assumed
by the standard account of depression as a reward sensitivity deficit. Second, by comparing
the ‘Private’ and the ‘Social’ learning contexts, we can assess whether or not depressive
symptoms are associated to a learning deficit in ‘Social’ contexts, as predicted by evidence of
socio-cognitive impairments in depressive patients. Finally, thanks to computational analyses,
we can precisely characterize the learning deficit in the ‘Social’ context either as a primary
social learning deficit (i.e., impaired imitation) or as a secondary social learning (i.e., a negative
audience effect).
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Results

Experimental protocol and quality checks

An online experiment was particularly suited to test our hypothesis because - compared to
laboratory-based experiments - it provides a more diversified pool of subjects, in terms of
psychiatric traits and cognitive performance (76—179). Specifically, we tested 50 participants in
the general population and then ran a direct replication of the experiment on a second
independent sample of 50 participants. Levels of depressive and anxiety symptoms were
assessed and spanned a large range (Table 1) (20), with good internal consistency (Hospital
Anxiety Depression scale - depression subscale: Cronbach’s alpha 85%; anxiety subscale:
Cronbach’s alpha 84%).

Participants were paired with a virtual demonstrator and performed a probabilistic
reinforcement learning task in three contexts: a ‘Private’, in which participants performed the
task individually with no access to the demonstrator's choices and outcomes, and two social
conditions: the ‘Social-Choice’ condition in which participants had access to the demonstrator’s
choices, and the ‘Social-Choice+Outcome’ condition in which participants had access to the
demonstrator’s choices and their outcome. Overall, participants displayed robust instrumental
learning by choosing the most rewarded symbol above chance in all conditions (‘Private’> M =
0.65 + 0.03, #(99) = 11.42, p < .001; ‘Social-Choice’ : M = 0.65 + 0.03, #99) = 11.63, p < .001;
‘Social-Choice+Outcome’: M = 0.67 + 0.03, {(99) = 12.36, p < .001; + corresponds to the 95%
confidence intervals; Figure 1A).

Assessing observational learning

Contrary to previous studies (74, 15), we used an online adaptive learning algorithm
that determined the demonstrator’'s behavior (Q-learning with learning rate = 0.5 and choice
temperature = 10). As a consequence, the virtual demonstrators displayed realistic learning
curves with some variability of performance. We predicted that observational learning would
result in a correlation between the correct choice rate of the participants and that of the
demonstrator in a given learning session. To test this prediction, we used a mixed linear
regression with ‘Condition’ (‘Private’ vs ‘Social-Choice’ vs ‘Social-Choice+Outcome’) as a
within-subject factor and the demonstrator’'s performance in a given learning session as a
between-subject variable. As predicted, a higher demonstrator’s percentage of correct choices
(i.e., ‘good’ demonstrations) was associated with a higher participants’ rates of correct choices
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in both social conditions (‘Social-Choice’ vs ‘Private’: t(495) = 2.70, p = .007; ‘Social-
Choice+Outcome’ vs ‘Private’: 1(495) = 2.25, p =.025) but not in the Private condition (#(495) =
0.10, p > .250; Figure 2A).

In order to confirm that participants actually integrated the virtual demonstrator as a
social partner, we measured the influence of participants’ rating of trustworthiness of the
demonstrator’s face on social learning. An effect of perceived trustworthiness evaluations was
found, such that participants who perceived the demonstrator’s avatar as more trustworthy had
higher correct choice rates in the ‘Social-Choice’ (£(98) = 3.17, p = .002) and in the ‘Social-
Choice+Outcome’ conditions (#98) = 2.58, p = .012) but not in the ‘Private’ condition (#(98) =
1.08, p > .250; Figure 2B). This effect of the social evaluation of the demonstrator's avatar
confirms that participants processed the information in a social context.

Correlation between depressive symptoms and performance

To test the effect of depression, the mixed linear logistic regression also included depressive
symptoms as a between-subject variable. Importantly, anxiety, which is a comorbid trait of
depression (21, 22), was also included as a controlling factor (the regression also included a
range of controls listed in Table 2). The analysis revealed a significant effect of depressive
symptoms, such that the higher the depressive symptoms, the lower the rate of correct choices
in the ‘Social-Choice’ condition compared to the ‘Private’ condition ({(489) = -2.64, p = .009; no
other significant effect of depression and anxiety scores was evidenced: all ps > .250; Figure
3A). Importantly, the negative effect of depression in the ‘Social-Choice’ condition was
particularly robust, because it was found in both the discovery and the replication sample and
in the blocks with stable and reversal contingencies (within-subject) (Figure 4).

Finally, we tested whether the difference in correct choice rates between the ‘Social-
Choice’ and ‘Private’ conditions could accurately identify participants with ‘severe’ depression
symptoms (i.e. scoring > 10 on the HAD depression subscale (20)). The classification analysis
revealed that the performance difference between the ‘Social-Choice’ and the ‘Private’
condition identified the participants with ‘severe’ depressive symptoms with a good accuracy of
76 £ 1 % and both good a sensitivity, or True Positive Rate (78 £ 2%) and specificity, or True
Negative Rate (63 + 3%) of the classifier (Figure 3B).
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Computational model-based analyses

Although model-free analyses reveal a robust negative effect of depressive symptoms
on learning in the ‘Social-Choice’ condition, they do not elucidate the cognitive mechanisms
underlying this effect. Indeed, the effect of depressive symptoms could either be due to
differences in social information processing, such as the demonstrator’s choices and outcomes
(i.e. a primary social learning deficit) or to differences in the weighting of the information
generated by participants’ own choices when social information is also available (i.e. a
secondary social learning deficit or audience effect). These two hypotheses are hard to tease
apart based on raw behavioral analyses, because both predict a reduced correct choice rate in
the ‘Social’ conditions. Thus, to arbitrate between these two possibilities, we fitted a previously
validated social reinforcement learning model (74, 23). This model allows for biasing
participants’ choice depending on their demonstrator's choice in the ‘Social-Choice’ (i.e.
imitation) condition and to update the value attributed to each symbol depending on the
demonstrator’'s outcome in the ‘Social-Choice+Outcome’ condition (i.e. vicarious ftrial-and-
error). Compared to the original model and to directly assess the ‘socially induced individual
learning deficit’ hypothesis (74), we allowed participants to have different individual learning
parameters in the ‘Private’ and in the two social conditions (‘Social-Choice’ and ‘Social-
Choice+Outcome’ conditions; Figure 5A).

Computational effects of depressive symptoms

We analyzed the model parameters fitted on participants’ actual behavior with structural
equation modeling using depression scores as the independent variable. Higher depression
scores were specifically associated with lower learning rates in the ‘Social’ conditions
(depression: z = -2.41, p = .016; other ps > .199; Figure 5B). Interestingly, high depression
scores were not solely associated with decreased learning rates in the ‘Social’ conditions, but
also with decreased learning rates in the ‘Social’ conditions compared to the ‘Private’ condition
(t(98) = -2.25, p = .027; Figure 4C), which indicates that the presence of social information
decreased the learning rate of the most depressed participants. Adopting a computational
psychiatry approach, we tested whether the difference in learning rates between the ‘Private’
and ‘Social’ conditions could identify ‘severe’ depressive symptoms (i.e. HAD depression
subscale score above 10 (20)). The difference in learning rates detected participants with
severe depressive symptoms with good accuracy (79 + 1%), good sensitivity (84 + 1%), but
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low specificity (63 + 3%). A comparison between a classifier based on the model parameters
and a classifier based on correct choice rates revealed that the model-based classifier was
more accurate at detecting participants with ‘severe’ depressive symptoms (#(198) = 3.69, p <
.001), and more sensitive (£(198) = 5.09, p < .001) but less specific (£(198) = -3.73, p < .001)

than the classifier based on correct choice rates.

Model simulations analyses

Model-based analyses indicated that depression severity specifically reduced individual
learning rate in ‘Social’ conditions (ap): a parameter that is used both in the ‘Social-Choice’
and the ‘Social-Choice+Outcome’ condition. Model-free behavioral analyses showed that the
learning deficit associated with depression severity was specific to the ‘Social-Choice’
condition. To ascertain that this computational result was compatible with our model-free
observation, we ran the same statistical analysis on simulated data (24). Crucially, data
simulated using the fitted parameters accurately recovered the decrease in performance
associated with depression scores in the ‘Social-Choice’ condition compared to the ‘Private’
condition (#(488) = -2.18, p = .030; Figure 4D) as well as the non significant effect of
depression scores in the ‘Social-Choice+Outcome’ condition compared to the ‘Private’
condition (1(488) = -1.32, p = .188) and in the ‘Private’ condition ({(96) = -0.37, p > .250). Thus,
the simulations captured the specificity of the behavioral effect of depression scores and
illustrate that our model provides an accurate description of the data.

Checking parameter recovery

As we were interested in the modulation of specific parameters by depression scores
we tested whether our task allowed us to successfully retrieve a correlation between
parameters in simulated datasets, an important quality check often referred to as ‘parameter
recovery’ (24). To do so, we ran 100 sets of simulations for each parameter, each simulating
100 participants, with the parameter of interest correlating with an arbitrary variable and the
other parameters being randomly fixed in a defined range. The simulated data were then fitted
using our social reinforcement-learning model. Overall parameter recovery was very good,
especially for the parameters of the social conditions, with significant correlations were found
in the 100% of the simulated datasets (average correlation coefficient of the parameters: r =
0.73 £ 0.01). Importantly, the recovery of the correlations was specific to the manipulated

Page 8 of 29


https://doi.org/10.1101/378281
http://creativecommons.org/licenses/by-nc-nd/4.0/

14
15
16
17
18
19

bioRxiv preprint doi: https://doi.org/10.1101/378281; this version posted July 27, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

parameter with false alarms detected in less than 10% of the cases except for learning rate
and choice temperature in the ‘Private’ condition (which was not our condition of interest)
(Figure 5C). This result indicates that it is very unlikely that a correlation of one of our
parameters with participants’ HAD depression scores is actually due to an effect of depression

scores on another parameter.
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Discussion

In the present study we assessed reinforcement learning with a behavioral paradigm involving
both private and social contexts, while concomitantly assessing depressive and anxiety
symptoms. First, we replicate previous findings showing that subjects integrate the
demonstrator’s choices and outcomes, which is consistent with the idea that social learning
processes (both in terms of imitation and vicarious trial-and-error) play a role in human
reinforcement learning (74, 15, 25-27). Second, we show that the severity of depressive
symptoms is associated with a learning impairment that is specific to the learning context
where participants are informed about the demonstrator’'s choices (social context). This
negative effect was robust to the inclusion of anxiety, and robust across experiments and
outcome contingencies. Finally, computational analyses allowed us to characterize the effect
of depressive symptoms as a secondary social learning deficit, i.e. a reduction of the learning

rate in social contexts.

We found that depressive symptoms had a specific effect on imitation in the ‘Social-Choice’
condition. Crucially, the effect was robust to the inclusion of anxiety, which did not modulate
performance in our task. That anxiety has no effect may come as a surprise given that
previous studies have found that anxiety is associated with deficits in social and non-social
reinforcement learning (28). One possible explanation is that this anxiety is more strongly
linked to classical fear conditioning, rather than reward-based instrumental learning (29).
Depressive symptoms might thus undermine social reinforcement learning in instrumental and
reward-maximization contexts, while anxiety might affect the same processes when outcomes
are independent from the participants’ choices (i.e. Pavlovian learning) and when outcomes

have a negative valence (aversive contexts).

Model-free analyses per se do not allow us to pinpoint the psychological mechanisms
underlying the negative effect of depressive scores on correct choice rates in the ‘Social-
Choice’ context. The absence of interaction between the demonstrator's performance and
depressive symptoms suggests that depressive symptoms did not lead participants to
disproportionally follow ‘bad examples’ or to be insensitive to ‘good examples’. However,
interpretations based on negative results are, at best, unsafe. To formally characterize the
psychological mechanisms of the detrimental effects of depressive symptoms we thus turned
to model-based analyses.
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We fitted subjects’ choice with a slightly modified version of a previously validated social
reinforcement-learning model (74). As in standard algorithms, the model assumes that
subjects learn option values via the calculation of a reward prediction error, which are
moderated by a learning rate (®p) and that choices are generated via a soft-maximization
process, whose stochasticity is governed by a temperature (Bg) (30). In addition to this ‘private’
learning module, the model also displays sensitivity to social information: in the ‘Social-Choice’
condition the demonstrator’s choice biases the subsequent subject’s choice (the magnitude of
this effect is governed by an imitation rate k) and in the ‘Social-Choice+Outcome’ condition the
demonstrator’s outcome is integrated into the subject’s value function with a vicarious learning
rate (o). Finally, we also allowed for different private learning rates and temperatures in the
‘Social’ contexts (xs and Bs). This precise model parameterization allowed us to disentangle
two different hypotheses concerning the drop in performance associated with depressive
symptoms in the ‘Social-Choice’ condition. A correlation between depression scores and
imitation rates and/or vicarious learning rates would imply what we define a ‘primary’ social
learning impairment (i.e. an impairment of the social learning processes per se). On the
contrary, a correlation between the ‘Social’ context-specific learning rate and/or temperature
would imply a ‘secondary’ social learning impairment (i.e. an impairment of the private learning
processes in presence of social information). We found that depressive scores negatively
correlated with the private learning rate in the social context (s), thus indicating that the effect
is consistent with a secondary impairment and is specific to the learning (as opposed to the
decision) process. In other words, our computational results suggest that one possible way in
which depressive symptoms affect learning in social contexts is conceptually similar to a
negative audience effect (37, 32), where the presence of social signals (the demonstrator’s

choices) induces a reduction of subjects’ instrumental performance.

From a methodological point of view, our study exemplifies how computational approaches can
provide new insights on the way in which cognitive processes vary with clinical symptoms.
Indeed, computational modeling demonstrated that the effect of depressive symptoms was
selective of the way individual information was processed (33, 34). It is worth noting that these
conclusions were only allowed after a careful testing of the ability of our task to precisely
identify which model parameter would be influenced by depressive symptoms (24). The exact
cognitive and psychological mechanisms that mediate the negative effect of social signals in
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instrumental performance remain to be characterized. One possibility given that depression is
associated with lower cognitive functioning in general (35) is that the mere presence of others
exacerbates these difficulties by capturing already scarcer attentional resources. Alternatively,
negative perception of self and negative comparison to others are core symptoms of
depression (36). Therefore, it is possible that the most depressed participants perceived their
demonstrator’'s behavior as more reliable, thus underweighting the information they acquired
through their own experience.

Our results provide new evidence that depression-related reward learning deficits are highly
context-dependent (3-5), and suggest that the differences in learning rates associated with
depressive symptoms may only arise in social contexts (5, 9). Crucially, our results suggest
that supposedly neutral aspects of the experimental setup (such as whether or not the task is
done in the presence or absence of an experimenter), may affect the results and explain
inconsistent findings (42). In line with recent propositions, our results also suggest that a
deeper investigation of socio-cognitive impairments in depression may provide important new
insights (70, 11). Finally, we suggest that developing tools assessing reward learning outside
and inside social contexts (characterized either by the presence of another player or by the
social nature of the outcomes (43)) may prove useful to improve diagnosis and personalize
treatments of depressive syndromes in the long term.

An obvious limitation of our study, is that we did not control for participants’ actual diagnosis
and treatment, which may be problematic since medication interacts with decision-making in
depression (44). Therefore, our results would benefit from being replicated in carefully
controlled population, while controlling for medication status and medical history. This
replication would allow us to further measure the diagnostic value of our behavioral task and
associated computational model-based analyses. Indeed, in the present study, we only tested
its ability to detect high depressive scores as identified by a self-rated scale (20) . It would be
particularly interesting to test whether our behavioral and computational measures improve

existing self-assessments that detect clinically diagnosed cases of depression.

Our results have implications beyond their clinical relevance. Consistent with the ‘social
learning theory’ participants imitated demonstrators’ choices (‘Social-Choice’ condition) and
learned from their outcomes (‘Social-Choice+Outcome’ condition) (73, 74). At the behavioral
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level, these two psychological processes were manifest in the fact participants’ performance
was modulated by the demonstrators’ performance. In particular, we found that participants
observing a demonstrator performing ‘well’ performed better in the social compared to the
private learning context. Importantly the opposite was also true: participants observing low
performing demonstrators displayed lower performance in the social compared to the private
context. This latter result is in apparent contrast with the normative view that imitation should
be biased toward successful individuals in order to be evolutionary adaptive (45-47). This is
also in contrast with recent empirical evidence using a very similar paradigm and showing that
imitation rate is modulated by the actual performance of the demonstrator, so that
demonstrators making random (i.e., non reward-maximizing) decisions are less imitated (75).
Two differences between the previous design and ours may explain this discrepancy. First, the
previous study involved mild electric shocks (primary reinforcer), while our study involved
abstract points to be converted into money (secondary reinforcer). More importantly perhaps,
the previous design involved a between-subjects design with two groups of participants paired
either with a consistently good or with a consistently bad participant, while in our experiments
the performance of the demonstrator was allowed to fluctuate in a within-subject manner
around an optimal behavior. Therefore, it could also be argued that our experiment is not well-
suited for measuring demonstrators’ performance effects on participants’ imitation behavior as
such effects require a relatively long and stable reputation building process (48, 49).

The question remains whether or not in our task social learning (imitation and vicarious trial-
and-error) engaged domain-specific social cognitive module or domain-general information
processing modules. In the absence of additional data (such as neuroimaging) we cannot
provide a definitive answer. However, evidence from post-learning face ratings provides some
clues (50). We found a positive correlation between performance in the social contexts and the
demonstrator’'s judgment of trustworthiness. Even if we cannot infer a causal link and its
direction from the post-learning face evaluation, these results suggest that a specific socio-
cognitive module (face evaluation) correlated with instrumental performance, thus
demonstrating the engagement of social information-specific processing and our reinforcement

learning task.
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Materials and Methods
Participants

Two independent cohorts of 100 American participants, similar in terms of reported age (mean
reported age across the two cohorts: 33.39 + 2.03) and of reported male/female ratio (mean
reported male/female ratio across the two cohorts: 35%; see Table) were recruited via Amazon
Mechanical Turk to participate in this online study. Each participant received a fixed 4% amount
for completing the 40-minute task to which a bonus earned during the experiment was then
added (average bonus: 0.49%). Participant received a description of the study and signed an
informed consent before starting the experiment. The study was approved by the ethical
committee. The first cohort corresponded to a ‘discovery experiment’ where we explored the
relation between instrumental performance and clinical scores; the second cohort
corresponded to a ‘replication experiment’ where we tested the robustness and replicability of
the effect identified in the first experiment.

Experimental design

Participants performed the probabilistic instrumental learning task described in the Results
section (Figure 1A). The task was programmed on Qualtrics and was composed of six
learning blocks of 20 trials each. In each block, participants had to choose between two cues.
Cues were characters of the agathodaimon font and were always presented in pair and only in
one block per subject. The cue-to-condition attribution was randomized across subjects.
Participants made their choice by pressing the E or P keys to choose the leftmost or rightmost
symbol. Participants were given no explicit information on reward probabilities, which they had
to learn through trial and error. In addition, they were encouraged to accumulate as many
points as possible, with their final amount of points being translated into bonus money at the
end of the experiment (conversion rate: 40 points equals 1$ bonus). In each pair, cues were
associated with reciprocal reward probabilities (20/80% or 30/70%). For instance, in a 30/70%
pair, the most rewarded cue provided a positive outcome (+1 point) 70% of the times and a
negative outcome (-1 point) 30% of the time, while the less rewarded cue provided a negative
outcome 70% of the time and a positive outcome 30% of the time.

Participants were told they had been paired with another player at the beginning of the
experiment with whom they played in turn in each trial. As in previous studies (Suzuki et al.
Neuron 2012), the behavior of the demonstrators was determined by a reinforcement learning
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algorithm (Q-learning) with a reasonable set of free parameters (« = 0.5, 8 = 10; see below for

a description for the Q-learning and its parameters). To avoid social perceptual biases, the
other player was represented by a neutral avatar, chosen to be generally perceived as neither
dominant or submissive nor trustworthy or untrustworthy (57). Participants had to choose their
own avatars in a set of other 16 identities (8 female, 8 male) at the beginning of the task.
Participants performed this task in three different contexts with different amounts of social
information: a ‘Private’ condition in which they did not have access to the demonstrator’s
behavior, a ‘Social-Choice’ condition in which participants could see the demonstrator's
behavior but not their outcomes and a ‘Social-Choice+Observation’ in which participants could
observe the demonstrator’s decisions and outcomes. Importantly, participants performed each
condition (‘Private’, ‘Social-Choice’ and ‘Social-Choice+Outcome’) twice. In the ‘Stable’ type of
contingency, outcome probabilities were set at 30/70% and did not change during the block. In
the ‘Reversal’ type of contingency, outcome probabilities were set at 20/80%.and was inverted
across cue after 10 trials (in average). Finally, at the end of the experiment, participants rated
their demonstrator's avatar on three personality traits (trustworthiness, dominance and
competence) and completed the Hospital Anxiety and Depression Scale (20) as well as the
Peters et al. Delusions Inventory, that was included in the exploratory analysis of the
‘discovery’ experiment and then discarded in absence of any significant effect and its inclusion
did not affect the effect of depression.

Statistical analyses

Percentage of correct choices

Percentage of correct choices were extracted for each block and used as a dependent
variable. A mixed linear regression with both random intercept and random slopes was
conducted on correct choice rates taking participants’ ID as a random factor, condition
(‘Private’, ‘Social-Choice vs ‘Social-Choice+Outcome’) as within-subject variables and
depression and anxiety scores as well as demonstrator's performance and trustworthiness

judgment as between-subject variables (Table 2).

Diagnostic value

Out of sample tests were used to assess the diagnostic value of our task, i.e., its ability to
distinguish participants scoring below the ‘severe symptoms’ threshold in depression scale
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from those above this threshold. 50 participants were randomly extracted from the entire
sample and used to optimize a classifier of ‘severe’ depressive symptoms (HAD depression
subscale score above 10 (20)) using either the difference in correct choice rates between the
‘Social-Choice’ and the ‘Private’ conditions (model-free measure) or the difference in learning

rates between the Private and social information conditions (a, minus «, model-based

measure; see below). The classifier and the associated optimal cut-off was tested on the 50
remaining participants. This operation was repeated 100 times in order to estimate the average
accuracy, sensitivity and sensibility of the classifiers.

Computational analyses
Computational model

To fit the behavioral data, we used a social reinforcement learning model previously presented
by Burke et al. (74). Individual learning and decision-making where modeled with classical
softmax (eq.1) and delta-rule (eq.2) functions, respectively governed by learning rate and
choice randomness (or temperature) parameters:

(1) Pu(spap) = 1/(1 + e(des)f)

(2)  Qe+a(sear) = Qc(sy,ar) + ap * RPE,

Where RPE:;is the reward prediction error calculated as follows (eq.3):

(3) RPE, = R, — Q.(s;, a;)

The only change we made was the inclusion of different learning rates and inverse
temperature parameters in the ‘Private’ (ap , fp) and social information (as , fs) conditions.
During the ‘Social-Choice’ condition, the model assumes that the Demonstrator's choice
induces an ‘action’ prediction error (APE; (eq.4)), which measures how surprising the
Demonstrator’s choice is, given the subject’s current estimate of the option values:

(4) APE, = 1— Q. (s¢ ar)
The APE; is then used to bias the subject’s choice probability (eq.5) in the subsequent trial and

the effect is scaled by a parameter k € {0-1}:

(9) Pii1(se,ar) = Pi(sg, ap) + k * APE,
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Finally, in the ‘Social-Choice+Outcome’ trials, the model assumes that the Demonstrator’s
outcome induces an ‘observational’ reward prediction error (eq.5), which is scaled by

observational learning rate «, € {0-1} (eq.6):

(5) OPE, = R(partner), — Q.(ss a;)
(6) Qev1(se,ar) = Qp(sp,ar) + ap * OPE,

To sum up, our computational modeling allowed us to address both primary social learning
deficits (i.e. learning deficits captured by the parameters k and «,, which are specific to social
information) and secondary social learning deficits (i.e. learning deficits captured by the
parameters s and ag, which are specific to individual learning in contexts where social

information is available).

We optimized the model parameters by minimizing the Laplace approximation to the model

evidence (log of the posterior probability: LPP) (eq.7):

(7)  LPP =log (P(data|6;, ,)) + Xi-;log (P(6:))

Where D represents the data, 6, , the model, and 6, represents one of the n parameters of
the computational model. The LPP represents a trade-off between the model’s accuracy and
complexity: it increases with the likelihood of the model given the data (a measure of fit) and
decreases with the number of parameters. By including priors over the parameters, this
method avoids degenerate parameter estimation. In our analysis, the priors were defined as a
gamma function (gampdf(1.2,5)) for the temperature parameters (range: 0<B<Infinite) and as a
beta function (betapdf(1.1,1.1)) for the learning and imitation rates (ranges: 0<a<1, 0<k<1) as
described in (52)

Importantly, LPP analysis suggested that the social reinforcement learning fit the data better
than a simple Q-learning model without social influence, even accounting for its extra-
complexity (social reinforcement learning model: posterior probability: 90 + 3 %; exceedance
probability: 100%). As a control analysis, in order to ensure that our model comparison
criterion was not over-fitting prone, we fit the behavior of the virtual demonstrators that we
generated with a Q-learning model. This model recovery analysis (24) correctly indicated that
the simple Q-learning model explained the demonstrators’ data better (social reinforcement
learning model: posterior probability: 100 £ 0 %; exceedance probability: 100%).
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Because the model parameters were correlated with each other (maximal correlation: r = 0.53),
we used structural equation modeling to analyze the influence of depression scores on the
model parameters. This technique allowed to test the influence of depression scores on each
parameter while simultaneously accounting for the inter-correlations of the dependent

variables (the model free parameters) and of the independent variable (the depression score).

Model simulation analyses

Finally, we assessed the ability of the model to recover the observed behavioral effect of
depressive symptoms using model simulations (24). For each participant, we simulated
behavioral data for each condition based on their best fitting parameters. Importantly, a
simulated demonstrator was also generated, such that the simulated data were completely
independent of the contingencies actually experienced by the participants. This procedure was
repeated 100 times, to avoid any effect of participant’'s and demonstrator’s history of choice
and outcomes. Analysis of the recovered percentage of correct choices was ran on the
averaged rates of correct choices across the 100 simulations using a linear mixed regression
taking the exact same predictors as the mixed general linear model used for analyzing

participants’ percentage of correct choices.
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Figures and Tables

Typical ‘Private’ trial

participant’s choice Qutcome
Getting ready Options are presented (“Ieﬂ" in this example) (positive in this example)
You
Next round
—
+1
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Typical ‘Social-Choice’ observation trial
The player’s choice The player’s outcome
The other player gets ready  Options are presented (“left” in this example) (unknown to the participant)
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Next round
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. ¥ A [F] &
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Typical ‘Social-Choice+Outcome’ observation trial

The player’s choice The player’s outcome
The other player gets ready Options are presented (“right” in this example) (positive in this case)
Player N Player N Player N Player N
Next round
Pamepam
presses “right”
First screen Second screen Third screen Fourth screen

Figure 1: behavioral task.

In each condition, participants played in turn with a simulated demonstrator. In each private trial, after each
choice, participants received a reward or a punishment. In the Private condition, participants did not see the
choice or the outcome of the demonstrator. In the Choice observation condition, the choice of their demonstrator
was displayed at each trial. In the Social-Choice+Outcome condition, both the choice and the outcome of the
demonstrator were displayed. Note that the Social-Choice and the Social-Choice+Outcome also involved private
trials.
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Figure 2: assessing social reinforcement learning

(A) Effect of demonstrator’s behavior. The demonstrator’s performance and the participant’s depression score
influenced the correct choice rate in the ‘Choice’ and in the ‘Social-Choice+Outcome’ conditions, such that
observing a virtual player with a low correct choice rate (‘Bad’ demonstration ; light green) induced a lower correct
choice compared to observing a virtual player with a high correct choice rate (‘Good’ demonstration; dark green)
(‘Social-Choice’: #198)= 3.17, p = .002; ‘Social-Choice+Outcome’ : {(198)= 2.47, p = .014). (B) Effect of
perceived trustworthiness. Participants who rated the demonstrator’s avatar as trustworthy had a higher correct
choice rate in the ‘Social-Choice’ and ‘Social-Choice+QOutcome’ conditions compared those who rated the avatar
as untrustworthy (‘Social-Choice’: #76)= 3.22, p =.002, ‘Social-Choice+Outcome’: 1(76)= -2.87, p =.005)
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Figure 3: effect of depression on reinforcement learning in social contexts.

(A) Effect of depression. The participant’s depression score influenced the correct choice rate in the ‘Social-
Choice’ condition, such that participants with higher score had a lower correct choice rate in the ‘Social-Choice’
condition (median split: (98) = -2.69, p = .008). (B) Model-free classification. The correct choice rate difference
between the Private and the ‘Social-Choice’ conditions was significantly different between participants with
‘Absent’ and ‘Severe’ depressive symptoms (#83) = 3.61, p < .001). (C) Model-based classification. The
difference between the learning rate of the ‘Private’ and the social information contexts was significantly different
between participants with ‘Absent’ and ‘Severe’ depressive symptoms (#(83) = -3.20, p =.002). Absent and Severe
depressive symptoms correspond to scores<8 and scores>10 on the HAD depression subscale, respectively.
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Figure 4: robustness of the result. The scatter plots represent the correlation between correct response rates
in the ‘Social-Choice’ condition and depression scores separately for each experiment (right; exploration sample: r
=-.29, i(48) = -2.15, p = .036; replication sample: r = -.37, #48) = -2.75, p = .008) and reward contingency (right;
exploration sample: r = -.27, #98) = -2.83, p = .006; replication sample: r = -.27, {(48) = -2.81, p = .006; r and p:

Pearson’s coefficient statistical significance.
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Figure 5: social reinforcement learning model and computational results.

(A) Computational model. A social reinforcement learning model was fitted on participants’ behavior. In the
‘Private’ condition (‘Private context’), the model corresponded to a classical Q-learning (or Rescorla-Wagner)
model. In Social context’ (‘Social-Choice’ and ‘Social-Choice+Outcome’ conditions), the model assumes that
social information is integrated into the learning and decision process. Following Burke et al. (74), choice
probability was updated based on the demonstrator’s action (imitation) in the ‘Social-Choice’ condition and the
option value was updated when the demonstrator’s outcome was presented (counterfactual learning) in the
‘Social-Choice+Outcome’ condition. The proposed model also allows for different private parameters (learning
rate, as, and choice randomness, fs) being in the Social context. (B) Parameter recovery. To assess the
sensitivity and the specificity of our model fitting procedure, we conducted a parameter recovery analysis. The
matrix represents the percentage of significant correlations detected between different combinations of
parameters. The diagonal cases correspond to the correlations that are accurately recovered; the other cases
correspond to correlations that are spuriously recovered. (C) Effect of depression on the model parameters.
Depression was specifically associated with a decrease in the private learning rate in the Social context as), even
controlling for the correlation between the different model parameters (structural equation modeling).
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Tables

Table 1: descriptive statistics for age, gender, depression and anxiety scores. For each sample, the mean of each

aCC-BY-NC-ND 4.0 International license.

demographic variable is presented with its 95% confidence interval.

Age Sex ratio Depression Anxiety
(% women)

First sample 33.02+1.25 28% 5.46 +1.26 6.40 £1.16
(N =50) [22 - 62] [0-19] [0—-15]
Second sample | 33.76 +3.28 42% 4.96 +1.27 6.30 +1.28
(N =50) [19 - 61] [0-16] [0 —20]
Statistical t(98) = 0.36 X-squared = 1.58, t(98) = 0.56 p > .250 t(98) = 0.12 p > .250
difference p > 250 df = 1, p-value = .208
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Table 2: statistical effect (mixed linear model) of social task conditions (‘Social-Choice’ and ‘Social-
Choice+Qutcome’), performance of the virtual demonstrator, perceived trustworthiness (‘Trustworthiness’),

psychiatric scores (‘Depression’ and ‘Anxiety’), and their interaction when comparing to the ‘Private’ condition.

Effect Coefficient | SEM DF | T-value P-value
Social-Choice -0.18 0.06 489 | -2.58 0.010*
Social-Choice+Outcome -0.13 0.07 489 | -1.92 0.055°
Demonstrator performance 0.01 0.06 489 | 0.15 0.883
Trustworthiness 0.03 0.03 96 | 1.04 0.302
Depression 0.01 0.02 96 | 0.47 0.638
Anxiety -0.01 0.02 96 | -0.46 0.643
Social-Choice X Demonstrator

performance 0.21 0.08 489 | 2.54 0.011*
Social-Choice+Outcome x Demonstrator

performance 0.20 0.09 489 | 2.18 0.030*
Social-Choice x Trustworthiness 0.05 0.03 489 | 1.48 0.140
Social-Choice+Outcome X

Trustworthiness 0.04 0.03 489 | 1.22 0.222
Social-Choice x Depression -0.05 0.02 489 | -2.64 0.009**
Social-Choice+Outcome x Depression -0.00 0.02 489 | -0.00 0.999
Social-Choice x Anxiety 0.01 0.02 489 | 0.72 0.475
Social-Choice+Outcome x Anxiety -0.01 0.02 489 | -0.51 0.614
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Table 3: Estimated model parameters for the actual participants and for the simulated virtual demonstrators

(mean +95% c.i..).

Participants Virtual demonstrators
Bprivate 2.20 £ 0.47 9.54 +0.49 (real: 10)
Oprivate 0.58 +0.05 0.52 £ 0.02 (real: 0.50)
Bsocal 1.83 +0.34
Qsocial 0.60 +0.06
K 0.13 £0.02
Qobservation 0.46 £ 0.06
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