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ABSTRACT20

We subjectively perceive our visual field with high fidelity, yet large peripheral distortions can go unnoticed

and peripheral objects can be difficult to identify (crowding). A recent paper proposed a model of the

mid-level ventral visual stream in which neural responses were averaged over an area of space that

increased as a function of eccentricity (scaling). Human participants could not discriminate synthesised

model images from each other (they were metamers) when scaling was about half the retinal eccentricity.

This result implicated ventral visual area V2 and approximated “Bouma’s Law” of crowding. It has

subsequently been interpreted as a link between crowding zones, receptive field scaling, and our rich

perceptual experience. However, participants in this experiment never saw the original images. We find

that participants can easily discriminate real and model-generated images at V2 scaling. Lower scale

factors than even V1 receptive fields may be required to generate metamers. Efficiently explaining why

scenes look as they do may require incorporating segmentation processes and global organisational

constraints in addition to local pooling.
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INTRODUCTION33

Vision science seeks to understand why things look as they do (Koffka 1935). Typically, our entire34

visual field looks subjectively crisp and clear. Yet our perception of the scene falling onto the peripheral35

retina is actually limited by at least three distinct sources: the optics of the eye, retinal sampling, and the36

mechanism(s) giving rise to crowding, in which our ability to identify and discriminate objects in the37

periphery is limited by the presence of nearby items (Bouma 1970; Pelli and Tillman 2008).1 Thus we38

can be insensitive to significant changes in the world despite our rich subjective experience.39

Visual crowding has been characterised as compulsory texture perception (Parkes et al. 2001; Lettvin40

1976) and compression (Balas, Nakano, and Rosenholtz 2009; Rosenholtz, Huang, and Ehinger 2012).41

This idea entails that we cannot perceive the precise structure of the visual world in the periphery. Rather,42

we are aware only of the summary statistics or ensemble properties of visual displays, such as the average43

1Many other phenomena also demonstrate striking “failures” of peripheral vision, for example change blindness (Rensink,
O’Regan, and Clark 1997; O’Regan, Rensink, and Clark 1999) and inattentional blindness (Mack and Rock 1998), though there is
some discussion as to what extent these are distinct from crowding (Rosenholtz 2016).
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size or orientation of a group of elements (Ariely 2001; Dakin and Watt 1997). One of the appeals of the44

summary statistic idea is that it can be directly motivated from the perspective of efficient coding: it is a45

form of compression. Image-computable texture summary statistics have been shown to be correlated46

with human performance in various tasks requiring the judgment of peripheral information, such as47

crowding and visual search (Rosenholtz et al. 2012; Balas, Nakano, and Rosenholtz 2009; Freeman and48

Simoncelli 2011; Rosenholtz 2016; Ehinger and Rosenholtz 2016). Recently, it has even been suggested49

that summary statistics underlie our rich phenomenal experience itself—in the absence of focussed50

attention, we perceive only a texture-like visual world (Cohen, Dennett, and Kanwisher 2016).51

Across many tasks, summary statistic representations seem to capture aspects of peripheral vision52

when their pooling corresponds to “Bouma’s Law” (Rosenholtz et al. 2012; Balas, Nakano, and Rosenholtz53

2009; Freeman and Simoncelli 2011; Wallis and Bex 2012; Ehinger and Rosenholtz 2016). Bouma’s Law54

states that objects will crowd (correspondingly, statistics will be pooled) over spatial regions corresponding55

to about half the retinal eccentricity (Bouma 1970; Pelli and Tillman 2008; though see Rosen, Chakravarthi,56

and Pelli 2014). If the visual system does indeed represent the periphery using summary statistics, then57

Bouma’s scaling implies that as retinal eccentricity increases, increasingly large regions of space are58

texturised by the visual system. If a model captured these statistics and their pooling, images could be59

created that are indistinguishable from the original despite being physically different (metamers). These60

images would be equivalent to the model and to the human visual system (Freeman and Simoncelli 2011;61

Wallis, Bethge, and Wichmann 2016; Portilla and Simoncelli 2000; Koenderink et al. 2017).62

Freeman and Simoncelli (2011) developed a model (hereafter, FS-model) in which texture-like63

summary statistics were pooled over spatial regions inspired by the receptive fields in primate visual64

cortex. The size of neural receptive fields in ventral visual stream areas increases as a function of retinal65

eccentricity, and as one moves downstream from V1 to V2 and V4 at a given eccentricity. Each visual66

area therefore has a signature scale factor, defined as the ratio of the receptive field diameter to retinal67

eccentricity (Freeman and Simoncelli 2011). Similarly, the pooling regions of the FS-model also increase68

with retinal eccentricity with a definable scale factor. New images could be synthesised that matched the69

summary statistics of original images at this scale factor. As scale factor increases, texture statistics are70

pooled over increasingly large regions of space, resulting in more distorted synthesised images relative to71

the original (that is, more information is discarded).72

The maximum scale factor for which the images remain indistinguishable (the critical scale) charac-73

terises perceptually-relevant compression in the visual system’s representation. If the scale factor of the74

model corresponded to the scaling of the visual system in the responsible visual area, and information in75

upstream areas was irretrievably lost, then the images synthesised by the model should be indistinguishable76

while discarding as much information as possible. That is, we seek the maximum compression that is77

perceptually lossless. Larger scale factors would discard more information than the relevant visual area78

and therefore the images should look different. Smaller scale factors preserve information that could be79

discarded without any perceptual effect.80

Crucially, it is the minimum critical scale over images that is important for the scaling theory. If the81

visual system computes summary statistics over fixed (image-independent) pooling regions in the same82

way as the model, then the model must be able to produce metamers for all images. While images may83

vary in their individual critical scales, the image with the smallest critical scale determines the maximum84

compression for appearance to be matched in general.85

Freeman and Simoncelli showed that the largest scale factor for which two synthesised images could86

not be told apart was 0.5, or pooling regions of about half the eccentricity. This scaling matched the87

signature of area V2, and also matched the approximate value of Bouma’s Law. Subsequently, this88

result has been interpreted as a link between receptive field scaling, crowding, and our rich phenomenal89

experience (e.g. Block 2013, Cohen, Dennett, and Kanwisher (2016), Landy (2013), Movshon and90

Simoncelli (2014), Seth (2014)). These interpretations imply that the FS-model creates metamers for91

natural scenes. However, observers in Freeman and Simoncelli’s experiment never saw the original scenes,92

but only compared synthesised images to each other. Showing that two model samples are indiscriminable93

from each other could yield trivial results. For example, two white noise samples matched to the mean94

and contrast of a natural scene would be easy to discriminate from the scene but hard to discriminate from95

each other (Wallis, Bethge, and Wichmann 2016). The FS-model may nevertheless produce metamers for96

natural scenes for scale factors of 0.5. Here we test this, and compare the results to our own model using97

CNN texture features and foveated pooling.98
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RESULTS99

We tested whether the FS-model can produce metamers using an oddity design in which the observer100

had to pick the odd image out of three successively shown images (Fig 1E). In a 3-alternative oddity101

paradigm, performance for metamerism would lie at 0.33 (dashed horizontal line, Figure 1F). We used102

two comparison conditions: either observers compared two model syntheses to each other (synth vs synth;103

as in Freeman and Simoncelli 2011) or the original image to a model synthesis (orig vs synth). As in104

the original paper (Freeman and Simoncelli 2011) we measured the performance of human observers105

for images synthesised with different scale factors (using Freeman and Simoncelli’s code, see Methods).106

To quantify the critical scale factor we fit the same nonlinear model as Freeman and Simoncelli, which107

parameterises sensitivity as a function of critical scale and gain, as a mixed-effects model with random108

effects of participant and image (see Methods).109

In previous experiments (see Supplementary Figures S8 and S9), we observed that texture-like110

distortions are more visible when they fall over image regions containing inhomogenous structure, long111

edges, or borders between different surfaces than when they fall into texture-like regions. We therefore112

explicitly compared “scene-like” images containing inhomogenous structures to “texture-like” images113

containing more homogenous or periodically-patterned content in the periphery. We hand-selected ten114

images from each class (Figure 1A and Figure 1B)2.115

When participants compared synthesised images to each other as in Freeman and Simoncelli (Figure116

1F, synth vs synth), there was little evidence that the critical scale depended on the image content (scene-117

vs texture-like). The difference in critical scale between texture-like and scene-like images was 0.09, 95%118

CI [-0.03, 0.24], p(b < 0) = 0.078. This result is consistent with Freeman and Simoncelli, who reported119

no dependency on image. It seems likely that this is because comparing synthesised images to each other120

means that the model has removed higher-order structure that might allow discrimination. All images121

appear distorted, and the task becomes one of identifying a specific distortion pattern. While the critical122

scales we find are somewhat lower than those reported by Freeman and Simoncelli (2011; Figure 1G),123

they are within the range of other reported critical scale factors (Freeman and Simoncelli 2013). One124

striking difference between our results for synth vs synth and those of Freeman and Simoncelli is that the125

performance of our participants was quite poor even for large scale factors. This may be because because126

we used more images in our experiment than Freeman and Simoncelli, so participants were less familiar127

with the distortions that could appear. We have replicated these results in an experiment using the same128

ABX task as in Freeman and Simoncelli (Figure S5).129

Comparing the original image to model syntheses yielded a different pattern of results. First, par-130

ticipants are able to discriminate the original images from their FS-model syntheses at scale factors of131

0.5 (Figure 1F). Performance lies well above chance for all participants: these images are not metamers.132

This holds for both scene-like and texture-like images. Furthermore, critical scale depends on the image133

type. Model syntheses match the texture-like images on average with scale factors of approximately 0.25134

(the smallest value we could generate using the FS-model). In contrast, the scene-like images are quite135

discriminable from their model syntheses at this scale. Correspondingly, texture-like images had higher136

critical scales than scene-like images on average (0.13, 95% CI [0.06, 0.22], p(b < 0) = 0.001). Thus,137

smaller pooling regions are required to make metamers for scene-like images than for texture-like images.138

As noted above, the image with the minimum critical scale determines the largest compression that can139

be applied for the scaling model to hold. For two images (Figure 2A and E) the nonlinear mixed-effects140

model estimated critical scales of approximately 0.14 (see Figure 1G, diamonds). However, examining the141

individual data for these images (Figure 2D and H) reveals that these critical scale estimates are largely142

determined by the hierarchical nature of the mixed-effects model, not the data itself. Both images remain143

highly discriminable for the lowest scale factor we could generate. This suggests that the mixed-effects144

model critical scale may be an overestimate of the true scale factor required to generate metamers. Thus,145

human observers are highly sensitive to the relatively small distortions produced by the FS-model at scale146

factors of 0.25 (compare Figure 2B and F at scale 0.25 and C and G at scale 0.46 to images A and B).147

2This selection of images is debateable. In particular some “texture-like” images contain scene-like content. Interestingly,
“scene-like” images tend to contain human-made content whereas “texture-like” images tend to contain more natural content, though
this was not consciously part of our selection criteria (thanks to Corey Ziemba for pointing this out). We selected these images from
a scene database to remain consistent with our other experiments (see Supplementary Material). The fact that we do find differences
in critical scaling supports our general argument. See Figure S3 and Supplement for further discussion.
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Figure 1. Two texture pooling models fail to match arbitrary scene appearance. We selected ten
scene-like (A) and ten texture-like (B) images and synthesised images to match them using the Freeman
& Simoncelli model (FS scale 0.46 shown) or a model using CNN texture features (CNN 32; example
scene and texture-like stimuli shown in C and D respectively). E: The oddity paradigm. Three images
were presented in sequence, with two being physically-identical and one being the oddball. Participants
indicated which image was the oddball (1, 2 or 3). On ”orig vs synth” trials participants compared real
and synthesised images, whereas on ”synth vs synth” trials participants compared two images synthesised
from the same model. F: Performance as a function of scale factor (pooling region diameter divided by
eccentricity) in the Freeman-Simoncelli model (circles) and for the CNN 32 model (triangles; arbitrary
x-axis location). Points show grand mean ±2 SE over participants; faint lines link individual participant
performance levels (FS-model) and faint triangles show individual CNN 32 performance. Solid curves
and shaded regions show the fit of a nonlinear mixed-effects model estimating the critical scale and gain.
Participants are still above chance for scene-like images in the original vs synth condition for the lowest
scale factor of the FS-model we could generate, and for the CNN 32 model, indicating that neither model
succeeds in producing metamers. G: When comparing original and synthesised images, estimated critical
scales (scale at which performance rises above chance) are lower for scene-like than for texture-like
images. Points with error bars show population mean and 95% credible intervals. Triangles show
posterior means for participants; diamonds show posterior means for images. Black squares show critical
scale estimates of the four participants from Freeman & Simoncelli reproduced from that paper
(x-position jittered to reduce overplotting); shaded regions denote the receptive field scaling of V1 and V2
estimated by Freeman & Simoncelli.
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Figure 2. The two images with smallest critical scale estimates are highly discriminable even for the
lowest scale factor we could generate. A: The original image. B: An example FS synthesis at scale factor
0.25. C: An example FS synthesis at scale factor 0.46. D: The average data for this image. Points and
error bars show grand mean and ±2 SE over participants, solid curve and shaded area show posterior
mean and 95% credible intervals from the mixed-effects model. Embedded text shows posterior mean and
95% credible interval on the critical scale estimate for this image. E–G: Same as A–D for the image with
the second-lowest critical scale. Note that in both cases the model is likely to overestimate critical scale.

DISCUSSION148

It is a popular idea that the appearance of scenes in the periphery is described by summary statistic149

textures captured at the scaling of V2 neural populations. In contrast, here we show that humans are150

very sensitive to the difference between original and model-matched images at this scale (Figure 1). A151

recent preprint (Deza, Jonnalagadda, and Eckstein 2017) finds a similar result in a set of 50 images. These152

results show that the pooling of texture-like features in the FS-model at the scaling of V2 receptive fields153

does not explain the appearance of natural images.154

If the peripheral appearance of visual scenes is explained by image-independent pooling of texture-like155

features, then the pooling regions must be small. Consider that participants in our experiment could easily156

discriminate the images in Figure 2B and F from those in Figure 2A and E respectively. Therefore, images157

synthesised at a truly metameric scaling must remain extremely close to the original: at least as small as158

V1 neurons, and likely even lower (Figure 2). This may even be consistent with scaling in precortical159

visual areas. For example, the scaling of retinal ganglion cell receptive fields at the average eccentricity of160

our stimuli (6 degrees) is approximately 0.08 for the surround (Croner and Kaplan 1995) and 0.009 for161

the centre (Dacey and Petersen 1992). It becomes questionable how much is learned about compression162

in the visual system using such an approach, beyond the aforementioned, relatively well-studied limits of163

optics and retinal sampling (e.g. Wandell 1995; Watson 2014).164

Furthermore, it can be seen via simple demonstration that we can be quite insensitive to even large165

texture-like distortions, so long as these fall on texture-like regions of the input image. The “China Lane”166

sign in Figure 3A has been distorted in B (using texture features from Gatys et al (2015)). The same type167

of distortion in a texture-like region of the image is far less visible (the brickwork in the image centre;168

FS-model result Figure 3C). It is the image content, not retinal eccentricity, that is the primary determinant169

of the visibility of at least some summary statistic distortions. Requiring information to be preserved at170

V1 or smaller scaling would therefore be rather inefficient from the standpoint of compression: small171

scale factors will preserve texture-like structure that could be compressed without affecting appearance.172

It may seem trivial that a texture statistic model better captures the appearance of textures than173

non-textures. However, if the human visual system represents the periphery as a set of textures, and174

these models are sufficient approximations of this representation, then image content should not matter—175

because scene-like retinal inputs in the periphery are transformed into textures by the visual system.176
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Figure 3. The visibility of texture-like distortions depends on image content. A: ”Geotemporal
Anomaly” by Pete Birkinshaw (2010; re-used under a CC-BY 2.0 license). B: Two texture-like
distortions have been introduced into circular regions of the scene in A (see Figure S1 for higher
resolution). The distortion in the upper-left is quite visible, even with central fixation on the bullseye,
because it breaks up the high-contrast contours of the text. The second distortion occurs on the brickwork
centered on the bullseye, and is more difficult to see (you may not have noticed it until reading this
caption). The visibility of texture-like distortions can depend more on image content than on retinal
eccentricity. C: Results synthesised from the FS-model at scale 0.46 for comparison. Pooling regions
depicted for one angular meridian as overlapping red circles; real pooling regions are smooth functions
tiling the whole image. Pooling in this fashion reduces large distortions compared to B, but our results
show that this is insufficient to match appearance.

Perhaps the texture scaling theory might hold at larger scales but the FS-model texture features177

themselves are insufficient to capture natural scene appearance. To test whether improved texture features178

(Gatys, Ecker, and Bethge 2015; Wallis et al. 2017) could help in matching appearance for scenes, we179

developed a new model (CNN-model) that was inspired by the FS-model but uses the texture features of180

a convolutional neural network (see Methods and Figures S6–9). The CNN-model shows very similar181

behaviour to the FS-model such that human performance for scene-like images is higher than for texture-182

like images (triangles in Figure 1D and Figure 2), and the CNN-model also fails to create metamers for all183

images (see also Figures S9, S12–13). Furthermore, the NeuroFovea model of Deza et al (2017), which184

like our CNN-model uses deep neural network texture features, also fails to capture scene appearance.185

Together, these results show that no known summary statistic pooling model is sufficient to match the186

appearance of arbitrary natural scenes at computationally feasible scale factors.187

What, then, is the missing ingredient that could capture appearance while compressing as much188

information as possible? Through the Gestalt tradition, it has long been known that the appearance of local189

image elements can crucially depend on the context in which they are placed. For example, Saarela et al190

(2009) and Manassi et al (2013) found that global stimulus configuration modulates crowding, and the re-191

sults of Neri (2017) suggest that early global segmentation processes influence local perceptual sensitivity.192

Potentially, global scene organisation needs to be considered if one wants to capture appearance—yet193

current models that texturise local regions do not explicitly include perceptual organisation (Herzog et al.194

2015). We speculate that segmentation and grouping processes are critical for efficiently matching scene195

appearance, and therefore the approach of uniformly computing summary statistics without including196

these processes will require preserving much of the original image structure by making pooling regions197

very small. A parsimonious model capable of compressing as much information as possible might need198

to adapt either the size and arrangement of pooling regions or the feature representations to the image199

content.200

Our results do not undermine the considerable empirical support for the periphery-as-summary-201

statistic theory as a description of visual performance. Humans can judge summary statistics of visual202

displays (Ariely 2001; Dakin and Watt 1997), summary statistics can influence judgments where other203

information is lost (Fischer and Whitney 2011; Faivre, Berthet, and Kouider 2012), and the information204

preserved by summary statistic stimuli may offer an explanation for performance in various visual tasks205
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(Rosenholtz et al. 2012; Balas, Nakano, and Rosenholtz 2009; Rosenholtz, Huang, and Ehinger 2012;206

Keshvari and Rosenholtz 2016; Chang and Rosenholtz 2016; Zhang et al. 2015; Whitney, Haberman,207

and Sweeny 2014; Long et al. 2016; though see Agaoglu and Chung 2016; Herzog et al. 2015; Francis,208

Manassi, and Herzog 2017). However, one additional point merits further discussion. The studies by209

Rosenholtz and colleagues primarily test summary statistic representations by showing that performance210

with summary statistic stimuli viewed foveally is correlated with peripheral performance with real stimuli.211

This means that the summary statistic preserves sufficient information to explain the performance of tasks212

in the periphery. Our results show that these summary statistics are insufficient to match scene appearance,213

at least under the pooling scheme used in the Freeman and Simoncelli model at computationally feasible214

scales. This shows the utility of scene appearance matching as a test: a parsimonious model that matches215

scene appearance would be expected to also preserve enough information to show correlations with216

peripheral task performance; the converse does not hold.217

While it may be useful to consider summary statistic pooling in accounts of visual performance, to218

say that summary statistics can account for phenomenological experience of the visual periphery (Cohen,219

Dennett, and Kanwisher 2016; see also Block 2013; Seth 2014) seems premature in light of our results220

(see also Haun et al. 2017). Cohen et al (2016) additionally posit that focussed spatial attention can in221

some cases overcome the limitations imposed by a summary statistic representation. We instead find little222

evidence that participants’ ability to discriminate real from synthesised images is improved by cueing223

spatial attention, at least in our experimental paradigm and for our CNN-model (Figure S11).224

One exciting aspect of Freeman and Simoncelli (2011) was the promise of inferring a critical brain225

region via a receptive field size prediction derived from psychophysics. Indeed, aspects of this promise226

have since received empirical support: the presence of texture-like features can discriminate V2 neurons227

from V1 neurons (Freeman et al. 2013; Ziemba et al. 2016; see also Okazawa, Tajima, and Komatsu228

2015). Discarding all higher-order structure not captured by the candidate model by comparing syntheses229

to each other, thereby isolating only features that change, may therefore be a useful way to distinguish230

sequential feedforward processing stages in neurons. On the other hand, explaining appearance is—to231

return to Koffka—a grand goal of vision science. For this the original vs synthesised comparison is key.232

Our results suggest that it is wrong to believe that “appearance”, even only peripheral appearance, can be233

tied to the scaling of receptive fields in any single brain region or to Bouma’s Law.234

METHODS235

All stimuli, data and code to reproduce the figures and statistics reported in this paper will be provided236

online (with the final version of this article). This document was prepared using the knitr package (Xie237

2013, 2015) in the R statistical environment (R Core Team 2017; Wickham and Francois 2016; Wickham238

2009, 2011; Auguie 2016; Arnold 2016) to improve its reproducibility.239

Participants240

Eight observers participated in the experiment: authors CF and TW, a research assistant unfamiliar with241

the experimental hypotheses, and five naı̈ve participants recruited from an online advertisement pool who242

were paid 10 Euro / hr for two one-hour sessions. An additional naı̈ve participant was recruited but showed243

insufficient eyetracking accuracy (see below). All participants signed a consent form prior to participating.244

Participants reported normal or corrected-to-normal visual acuity. All procedures conformed to Standard245

8 of the American Psychological Association’s “Ethical Principles of Psychologists and Code of Conduct”246

(2010).247

Stimuli248

We selected 10 “scene-like” and 10 “texture-like” source images from the MIT 1003 scene dataset249

(Judd, Durand, and Torralba 2012; Judd et al. 2009). We used images from this dataset to allow better250

comparison to related experiments (see Supplementary Material). A square was cropped from the center251

of the original image and downsampled to 512⇥512 px. The images were converted to grayscale and252

standardized to have a mean gray value of 0.5 (scaled [0,1]) and an RMS contrast (s/µ) of 0.3.253

Freeman and Simoncelli syntheses: We synthesised images using the FS-model (Freeman and254

Simoncelli 2011, code available from https://github.com/freeman-lab/metamers). Four255

unique syntheses were created for each source image at each of eight scale factors (0.25, 0.36, 0.46, 0.59,256

0.7, 0.86, 1.09, 1.45), using 50 gradient steps as in Freeman and Simoncelli. Pilot experiments with stimuli257
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generated with 100 gradient steps produced similar results. To successfully synthesise images at scale258

factors of 0.25 and 0.36 it was necessary to increase the central region of the image in which the original259

pixels were perfectly preserved (pooling regions near the fovea become too small to compute correlation260

matrices). Scales of 0.25 used a central radius of 32 px (0.8 dva in our viewing conditions) and scales 0.36261

used 16 px (0.4 dva). This change should, if anything, make syntheses even harder to discriminate from262

the original image. All other parameters of the model were as in Freeman and Simoncelli. Synthesising263

an image with scale factor 0.25 took approximately 35 hours, making a larger set of syntheses or source264

images infeasible. It was not possible to reliably generate images with scale factors lower than 0.25 using265

the code above.266

CNN model syntheses: The CNN pooling model (triangles in Figure 1) was inspired by the model267

of Freeman and Simoncelli, with two primary differences: first, we replaced the Portilla and Simoncelli268

(2000) texture features with the texture features derived from a convolutional neural network (Gatys,269

Ecker, and Bethge 2015), and second, we simplified the “foveated” pooling scheme for computational270

reasons. Specifically, for the CNN 32 model presented above, the image was divided up into 32 angular271

regions and 28 radial regions, spanning the outer border of the image and an inner radius of 64 px.272

Within each of these regions we computed the mean activation of the feature maps from a subset of the273

VGG-19 network layers (conv1 1, conv2 1, conv3 1, conv4 1, conv5 1). To better capture long-range274

correlations in image structure, we computed these radial and angular regions over three spatial scales, by275

computing three networks over input sizes 128, 256 and 512 px. Using this multiscale radial and angular276

pooling representation of an image, we synthesised new images to match the representation of the original277

image via iterative gradient descent (Gatys, Ecker, and Bethge 2015). Specifically, we minimised the278

mean-squared distance between the original and a target image, starting from Gaussian noise outside279

the central 64 px region, using the L-BFGS optimiser as implemented in scipy (Jones, Oliphant, and280

Peterson 2001) for 1000 gradient steps, which we found in pilot experiments was sufficient to produce281

small (but not zero) loss. Further details, including tests of other variants of this model, are provided in282

the Supplement.283

Equipment284

Stimuli were displayed on a VIEWPixx 3D LCD (VPIXX Technologies Inc., Saint-Bruno-de-Montarville,285

Canada; spatial resolution 1920⇥1080 pixels, temporal resolution 120 Hz, operating with the scanning286

backlight turned off in normal colour mode). Outside the stimulus image the monitor was set to mean grey.287

Participants viewed the display from 57 cm (maintained via a chinrest) in a darkened chamber. At this288

distance, pixels subtended approximately 0.025 degrees on average (approximately 40 pixels per degree289

of visual angle). The monitor was linearised (maximum luminance 260 cd/m2) using a Konica-Minolta290

LS-100 (Konica-Minolta Inc., Tokyo, Japan). Stimulus presentation and data collection was controlled291

via a desktop computer (Intel Core i5-4460 CPU, AMD Radeon R9 380 GPU) running Ubuntu Linux292

(16.04 LTS), using the Psychtoolbox Library (version 3.0.12, Brainard 1997; Kleiner, Brainard, and Pelli293

2007; Pelli 1997), the Eyelink toolbox (Cornelissen, Peters, and Palmer 2002) and our internal iShow294

library (http://dx.doi.org/10.5281/zenodo.34217) under MATLAB (The Mathworks Inc.,295

Natick MA, USA; R2015b). Participants’ gaze position was monitored by an Eyelink 1000 (SR Research)296

video-based eyetracker.297

Procedure298

On each trial participants were shown three images in succession; two images were identical, one image299

was different (the “oddball”, which could occur first, second or third with equal probability). The oddball300

could be either a synthesised or a natural image (in the orig vs synth condition; counterbalanced), whereas301

the other two images were physically the same as each other and from the opposite class as the oddball.302

In the synth vs synth condition (as used in Freeman and Simoncelli), both oddball and foil images were303

(physically different) model synths. The participant identified the temporal position of the oddball image304

via button press. Participants were told to fixate on a central point (Thaler et al. 2013) presented in the305

center of the screen. The images were centred around this spot and displayed with a radius of 512 pixels306

(i.e. images were upsampled by a factor of two for display), subtending ⇡ 12.8� at the eye. Images were307

windowed by a circular cosine, ramping the contrast to zero in the space of 52 pixels. The stimuli were308

presented for 200 ms, with an inter-stimulus interval of 1000 ms (making it unlikely participants could309

use motion cues to detect changes), followed by a 1200 ms response window. Feedback was provided310

by a 100 ms change in fixation cross brightness. Gaze position was recorded during the trial. If the311
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participant moved the eye more than 1.5 degrees away from the fixation spot, the trial immediately ended312

and no response was recorded; participants saw a feedback signal (sad face image) indicating a fixation313

break. Prior to the next trial, the state of the participant’s eye position was monitored for 50 ms; if the eye314

position was reported as more than 1.5 degrees away from the fixation spot a recalibration was triggered.315

The inter-trial interval was 400 ms.316

Scene-like and texture-like images were compared under two comparison conditions (orig vs synth317

and synth vs synth; see main text). Image types and scale factors were randomly interleaved within a block318

of trials (with a minimum of one trial from another image in between) whereas comparison condition319

was blocked. Participants first practiced the task and fixation control in the orig vs synth comparison320

condition (scales 0.7, 0.86 and 1.45); the same images used in the experiment were also used in practice321

to familiarise participants with the images. Participants performed at least 60 practice trials, and were322

required to achieve at least 50% correct responses and fewer than 20% fixation breaks before proceeding323

(as noted above, one participant failed). Following successful practice, participants performed one block324

of orig vs synth trials, which consisted of five FS-model scale factors (0.25, 0.36, 0.46, 0.59, 0.86) plus the325

CNN 32 model, repeated once for each image to give a total of 120 trials. The participant then practiced326

the synth vs synth condition for at least one block (30 trials), before continuing to a normal synth vs327

synth block (120 trials; scale factors of 0.36, 0.46, 0.7, 0.86, 1.45). Over two one-hour sessions, naı̈ve328

participants completed a total of four blocks of each comparison condition in alternating order (except for329

one participant who ran out of time to complete the final block). Authors performed more blocks (total330

11).331

Data analysis332

We discarded trials for which participants made no response (N = 66) and broke fixation (N = 239),333

leaving a total of 7555 trials for further analysis. To quantify the critical scale as a function of the scale334

factor s, we used the same 2-parameter function for discriminability d0 fitted by Freeman and Simoncelli:335

d0(s) =

(
a
⇣

1� s2
c

s2

⌘
, s > sc

0, s  sc

consisting of the critical scale sc (below which the participant cannot discriminate the stimuli) and336

a gain parameter a (asymptotic performance level in units of d0). This d0 value was transformed to337

proportion correct using a Weibull function as in Wallis et al (2016):338

p(correct) =
1
m
+(1� 1

m
)(1� exp(�(d0/l )k)

with m set to three (the number of alternatives), and scale l and shape k parameters chosen by339

minimising the squared difference between the Weibull and simulated results for oddity as in Craven340

(1992). The posterior distribution over model parameters (sc and a) was estimated in a nonlinear mixed-341

effects model with fixed effects for the experimental conditions (comparison and image type) and random342

effects for participant (crossed with comparison and image type) and image (crossed with comparison,343

nested within image type), assuming binomial variability. Estimates were obtained by a Markov Chain344

Monte Carlo (MCMC) procedure implemented in the Stan language (version 2.16.2, Stan Development345

Team 2017; Hoffman and Gelman 2014), with the model wrapper package brms (version 1.10.2, Bürkner346

2017) in the R statistical environment. The model parameters were given weakly-informative prior347

distributions, which provide information about the plausible scale of parameters but do not bias the348

direction of inference. Specifically, both critical scale and gain were estimated on the natural logarithmic349

scale; the mean log critical scale (intercept) was given a Gaussian distribution prior with mean -0.69350

(corresponding to a critical scale of approximately 0.5—i.e. centred on the result from Freeman and351

Simoncelli) and sd 1, other fixed-effect coefficients were given Gaussian priors with mean 0 and sd 0.5,352

and the group-level standard deviation parameters were given positive-truncated Cauchy priors with mean353

0 and sd 0.1. Priors for the log gain parameter were the same, except the intercept prior had mean 1 (linear354

gain estimate of 2.72 in d0 units) and sd 1. The posterior distribution represents the model’s beliefs about355

the parameters given the priors and data. This distribution is summarised above as posterior mean, 95%356

credible intervals and posterior probabilities for the fixed-effects parameters to be negative (the latter357

computed via the empirical cumulative distribution of the relevant MCMC samples).358
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1 Freeman and Simoncelli: additional experiments

1.1 Image di�culty

The primary manuscript presented data for 10 “scene-like” and 10 “texture-like” images (Figure S2). The
di�erent images within these categories showed more variance in scale factor than did the participants in the
experiment (Figure 2G in the primary manuscript, posterior means for each image as diamonds). Here we
show the images with the lowest and highest scale factors within each image type category.

In general the results (Figure S3) a�rm that our classification into “scene-like” and “texture-like” images is
not very precise. The scene-like image with the lowest critical scale factor is one in which a large contour
/ discontinuity in structure (the border between sky and buildings) passes right through the centre of the
image (and thus the fovea). This seems interpretable: participants are very sensitive to any disruption of
this prominent contour. Indeed, for this image it does not really make sense to talk about a “critical scale”,
because the data show that participants are always very sensitive to the di�erence between the original image
and the syntheses. The critical scale estimate in this case is more a product of the model than of the data,
which do not constrain the estimate. On the other hand, the scene-like image with the highest critical scale
also contains a prominent contour quite close to the fovea. It is unclear why syntheses for this image are
relatively successful at producing indiscriminable samples. Similarly, for the texture-like images, the gra�ti
image with the lowest critical scale (i.e. for which the model must retain relatively more information to
produce indiscriminable samples) is subjectively more “texture-like” than the image with the highest critical
scale (landscape image), which contains several long, sharp edges delimiting di�erent structure in the image.
Again, if our intuition on the determinant image features is correct, one might expect the opposite pattern of
results.

Overall, these results urge caution with respect to the image features that are critical for when the FS model
succeeds or fails. While we indeed show average di�erences between so-called “scene-like” and “texture-like”
images, there are individual images for which this interpretation does not hold. Nevertheless, the overall
data support the the observation that the “metamers” produced by encoding models that pool texture-like
features over fixed pooling regions depend on the image content.
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Figure S1: Higher-resolution versions of the images from Figure 1 of the main paper. A: "Geotemporal
Anomaly" by Pete Birkinshaw (2010; re-used under a CC-BY 2.0 license). B: The image from A with two
circular texture-like distortions (circles enclose distorted area).

Scene-like

Texture-like

CNN 32

CNN 32

FS scale = 0.46

FS scale = 0.46

Original

Original

Figure S2: The ten scene-like and ten texture-like images used in our main experiments, along with example
syntheses from the FS-0.46 and CNN 32 models (best viewed with zoom).
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Figure S3: Within the categories of image type, some images have lower critical scales than others (shown for
orig vs synth comparison). A: Scene-like image with the lowest critical scale estimate. Points and error bars
show grand mean and ±2 SE over participants, solid curve and shaded area show posterior mean and 95%
credible intervals from the mixed-e�ects model. Inline text shows posterior mean and 95% credible interval
on the critical scale estimate for this image. B: Scene-like image with the highest critical scale estimate. C:
Texture-like image with the lowest critical scale estimate. D: Texture-like image with the highest critical
scale estimate.

1.2 Stimulus artifact control

During the course of our testing we noticed that synthesised images generated with the code from http:
//github.com/freeman-lab/metamers contained an artifact, visible as a wedge in the lower-left quadrant
of the synthesised images in which the phases of the surrounding image structure were incorrectly matched
(Figure S4A). The angle and extent of the wedge changed with the scale factor, and corresponded to the region
where angular pooling regions wrapped from 0–2fi (Figure S4B–C). The visibility of the artifact depended
on image structure, but was definitely due to the synthesis procedure itself because it also occurred when
synthesising matches to a white noise source image (Figure S4D–E). The artifact was not peculiar to our
hardware or implementation because it is also visible in the stimuli shown in Deza et al (2017).

Participants in our experiment could have learned to use the artifact to help discriminate images, particularly
synthesised images from original images (since only synthesised images contain the artifact). This may have
boosted their sensitivity more than might be expected from the model described by Freeman and Simoncelli,
leading to the lower critical scales we observed. To control for this, we re-ran the original vs synth condition
with the same participants, with the exception that the lower-left quadrant of the image containing the
artifact was masked by a grey wedge (in both original and synthesised images) with angular subtense of 60
degrees. We used only the lowest two scale factors from the main experiment, and participants completed
this control experiment after the main experiment reported in the paper. We discarded trials for which
participants made no response (N = 9) or broke fixation (N = 57), leaving a total of 1014 trials for further
analysis. If the high sensitivity at low scale factors we observed above were due to participants using the
artifact, then their performance with the masked stimuli should fall to chance for low scale factors.

This is not what we observed: while performance with the wedge was slightly worse (perhaps because a
sizable section of the image was masked), the scene-like images remained above chance performance for the
lowest two scale factors (Figure S4F). This shows that the low critical scale factors we observed in the main
experiment are not due to the wedge artifact.
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Figure S4: Our results do not depend on an artifact in the synthesis procedure. A: During our pilot testing,
we noticed a wedge-like artifact in the synthesis procedure of Freeman and Simoncelli (highlighted in red
wedge). The artifact occurred where the angular pooling regions wrapped from 0 to 2fi (B: pooling region
contours shown with increasing greyscale to wrap point, C: overlayed on scene with artifact). D: The artifact
was not driven by image content, because it also occurred when synthesising to match white noise (shown
with enhanced contrast in E). If participants’ good performance at small scale factors was due to taking
advantage of this wedge, removing it by masking out that image region should drop performance to chance.
F: Performance at the two smallest scale factors replotted from the main experiment (left) and with a wedge
mask overlayed (right) in the orig vs synth comparison. Points show average (±2SE) over participants;
faint lines link individual participant means. Performance remains above chance for the scene-like images,
indicating that the low critical scales we observed were not due to the wedge artifact.
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1.3 ABX control

Participants in our experiment showed poor performance in the synth vs synth condition even for large scale
factors (highest accuracy for a participant at the largest scale of 1.45 was 0.8, average accuracy 0.58), leading
to relatively flat psychometric functions (Figure 2F of main manuscript). In contrast, most participants in
Freeman and Simoncelli (2011) achieved accuracies above 90% correct for the highest scale factor they test
(1.45 as in our experiment). One di�erence between our experiment and Freeman and Simoncelli (2011) is
that they used an ABX task, in which participants saw two images A and B, followed by image X, and had
to report whether image X was the same as A or B. Perhaps our oddity task is simply harder: due to greater
memory load or the cognitive demands of the comparison, participants in our experiment were unable to
perform consistently well.

To assess whether the use of an oddity task lead to our finding of lower critical scales and / or poorer
asymptotic performance in the synth vs synth condition, we re-ran our experiment as an ABX task. We used
the same timing parameters as in Freeman and Simoncelli. Six participants participated in the experiment,
including a research assistant (the same as in the main experiment), four naïve participants and author AE
(who only participated in the synth vs synth condition). We discarded trials for which participants made
no response (N = 61) or broke fixation (N = 442), leaving a total of 7537 trials for further analysis. The
predicted proportion correct in the ABX task was derived from dÕ using the link function given by Macmillan
and Creelman (2005, 229–33) for a di�erencing model in a roving design:

p(correct) = �
3

dÕ(s)Ô
2

4
�

3
dÕ(s)Ô

6

4
+ �

3
≠dÕ(s)Ô

2

4
�

3
≠dÕ(s)Ô

6

4

where � is the standard cumulative Normal distribution.

As in our main experiment with the oddity task, we find that participants could easily discriminate scene-like
syntheses from their original at all scales we could generate (Figure S5). Critical scale factor estimates were
similar to those in the main experiment, indicating that the ABX task did not make a large di�erence to
these results. Critical scale estimates were slightly larger, but much more uncertain, in the synth vs synth
condition. This uncertainty is largely driven by the even poorer asymptotic performance than in the main
experiment. This shows that the results we report in the primary manuscript are not particular to the oddity
task.

What explains the discrepancy between asymptotic performance in our experiment vs Freeman and Simoncelli?
One possibility is that the participants in Freeman and Simoncelli’s experiment were more familiar with
the images shown, and that good asymptotic performance in the synth vs synth condition requires strong
familiarity. Freeman and Simoncelli used four original (source) images, and generated three unique synthesised
images for each source image at each scale, compared to our 20 source images with four syntheses.

2 CNN scene appearance model

Here we describe the CNN scene appearance model presented in the paper in more detail, as well as three
additional experiemnts concerning this model.

To create a summary statistic model using CNN features, we compute the mean activation in a subset of
CNN layers over a number of radial and angular spatial regions (see Figure S6). Increasing the number
of pooling regions (reducing the spatial area over which CNN features are pooled) preserves more of the
structure of the original image. New images can be synthesised by minimising the di�erence between the
model features for a given input image and a white noise image via an iterative gradient descent procedure
(see below). This allows us to synthesise images that are physically di�erent to the original but approximately
the same according to the model. We did this for each of four pooling region sizes, named model 4, 8, 16 and
32 respectively after the number of angular pooling regions. These features were matched over three spatial
scales, which we found improved the model’s ability to capture long-range correlations.
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Figure S5: Results from the main paper replicated under an ABX task. A: Performance in the ABX task
as a function of scale factor. Points show grand mean ±2 SE over participants; faint lines link individual
participant performance levels. Solid curves and shaded regions show the fit of a nonlinear mixed-e�ects
model estimating the critical scale and gain. B: When comparing original and synthesised images, estimated
critical scales (scale at which performance rises above chance) are lower for scene-like than for texture-like
images. Points with error bars show population mean and 95% credible intervals. Triangles show posterior
means for participants; diamonds show posterior means for images. Black squares show critical scale estimates
of the four participants from Freeman & Simoncelli reproduced from that paper (x-position jittered to
reduce overplotting); shaded regions denote the receptive field scaling of V1 and V2 estimated by Freeman &
Simoncelli.

In Experiment 1, we tested the discriminability of syntheses generated from the four pooling models in a
set of 400 images that were novel to the participants. Experiment 2 examines the e�ect of image familiarity
by repeatedly presenting a small number of source images. Experiment 3 tested the e�ect of cueing spatial
attention on performance.

2.1 CNN methods

2.1.1 Radial and angular pooling

In the texture synthesis approach of Gatys et al (2015), spatial information is removed from the raw CNN
activations by computing summary statistics (the Gram matrices of correlations between feature maps) over
the whole image. In the ‘foveated’ pooling model we present here, we compute and match the mean of the
feature maps (i.e. not the full Gram matrices) over local image regions by dividing the image into a number
of radial and angular pooling regions (Figure S6). The radius defining the border between each radial pooling
region is based on a given number of angular regions N◊ (which divide the circle evenly) and given by

ri = r0

A
1 ≠

sin( fi
N◊

) · 2
–

Bi

,

where ri is the radius of each region i, r0 is the outermost radius (set to be half the image size), and – is the
ratio between the radial and angular di�erence. Radial regions were created for all i for which ri Ø 64~px,
corresponding to the preserved central region of the image (see below). We set – = 4 because at this ratio
N◊ ¥ Ne (where Ne is the number of radial regions) for most N◊. The value of N◊ corresponds to the model
name used in the paper (e.g. ‘CNN 4’ uses N◊ = 4).

We now apply these pooling regions to the activations of the VGG-19 deep CNN (Simonyan and Zisserman
2015). For a subset of VGG-19 layers (conv1_1, conv2_1, conv3_1, conv4_1, conv5_1) we compute the
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Figure S6: Methods for the CNN scene appearance model. A: The average activations in a subset of CNN
feature maps were computed over non-overlapping radial and angular pooling regions that increase in area
away from the image centre (not to scale), for three spatial scales. Increasing the number of pooling regions
(CNN 4 and CNN 8 shown in this example) increases the fidelity of matching to the original image, restricting
the range over which distortions can occur. Higher-layer CNN receptive fields overlap the pooling regions,
ensuring smooth transitions between regions. The central 3¶ of the image (grey fill) is fixed to be the original.
B: The image radius subtended 12.5¶. C: An original image from the MIT1003 dataset. D: Synthesised
image matched to the image from C by the CNN 8 pooling model. E: Synthesised image matched to the
image from E by the CNN 32 pooling model. Fixating the central bullseye, it should be apparent that the
CNN 32 model preserves more information than the CNN 8 model, but that the periphery is nevertheless
significantly distorted relative to the original.
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mean activation for each feature map j in each layer l within each (radial or angular) pooling region p as

wl
pj = 1

Nl

ÿ

kœp

(F l
kj),

where is Nl the size of the feature map of layer l in pixels and k is the (vectorised) spatial position in
feature map F l

j . The set of all wl
pj provides parameters that specify the foveated image at a given scale.

Note that while the radial and angular pooling region responses are computed separately, because they are
added together to the loss function during optimisation (see below) they e�ectively overlap (as depicted in
Figure S6). In addition, while the borders of the pooling regions are hard-edged (i.e. pooling regions are
non-overlapping), the receptive fields of CNN units (area of pixels in the image that can activate a given
unit in a feature map) can span multiple pooling regions. This means that the model parameters of a given
pooling region will depend on image structure lying outside the pooling region (particularly for feature maps
in the higher network layers). This encourages smooth transitions between pooling regions in the synthesised
images.

2.1.2 Multiscale model

In the VGG-19 network, receptive fields of the units are squares of a certain size, and this size is independent
of the input size of the image. That is, given a hypothetical receptive field centred in the image of size 128~px
square, the unit will be sensitive to one quarter of the image for input size 512~px but half the image for
input size 256. Therefore, the same unit in the network can receive image structure at a di�erent scale by
varying the input image size, and in the synthesis process the low (high) frequency content can be reproduced
with greater fidelity by using a small (large) input size.

We leverage this relationship to better capture long-range correlations in image structure (caused by e.g. edges
that extend across large parts of the image) by computing and matching the model statistics over three
spatial scales. This is not a controversial idea: for example, the model of Freeman and Simoncelli (2011) also
computes features in a multiscale framework. How many scales is su�cient?

We evaluated the degree to which the number and combination of scales a�ected appearance in a psychophysical
experiment on authors TW and CF. We matched 100 unique images using seven di�erent models: four
single-scale models corresponding to input sizes of 64, 128, 256 and 512 pixels, and three multiscale models
in which features were matched at multiple scales ([256, 512], [128, 256, 512] and [64, 128, 256, 512]). The
foveated pooling regions corresponded to the CNN 32 model. Output images were upsampled to the final
display resolution as appropriate. We discarded trials for which participants made no response (N = 2) or
broke fixation (N = 5), leaving a total of 1393 trials for further analysis.

Figure S7 shows that participants are sensitive to the di�erence between model syntheses and original images
when features are matched at only a single scale. However, using two or three scales appears to be su�cient
to match appearance on average. As a compromise between fidelity and computational tractability, we
therefore used three scales for all other experiments on the CNN appearance model. The final model used
three networks consisting of the same radial and angular regions described above, computed over sizes 128,
256 and 512~px square. The final model representation W therefore consists of the pooled feature map
activations over three scales: W = {wl

pj,128, wl
pj,256, wl

pj,512}.

2.1.3 Gradient descent

As in Gatys et al (2015), synthesised images are generated using iterative gradient descent, in which the
mean-squared distance between the averaged feature maps of the original image and the synthesis is minimized.
If T and W are the model representations for the synthesis and the original image respectively, then the loss
for each layer is given by

L(x̨t, x̨g) =
ÿ

l,s

1
Mls · (N◊ + Ne)

ÿ

p,j

(W l
pjs ≠ T l

pjs)2,
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Figure S7: Performance for discriminating model syntheses and original scenes for single- and multi-scale
models (all with pooling regions corresponding to CNN 32) for participants CF and TW. Points show
participant means (error bars show ±2 SEM), dashed line shows chance performance. The multiscale model
with three scales produces close-to-chance performance.

where x̨t and x̨g are the vectorised pixels of the original and new image respectively, Ml,s is the number of
feature maps for layer l in scale s. A circular area in the middle of the image (radius 64~px) is preserved to
be the original image. Tiling pooling regions even for the centre of the image created reasonable syntheses
but is prohibitively costly in generation time. To preserve the pixels in the circular area, the initialisation
image of the gradient descent is identical to the original image. Outside the central area the gradient descent
is initialised with Gaussian noise. The gradient descent used the L-BFGS optimiser (scipy implementation,
Jones, Oliphant, and Peterson 2001) for 1000 iterations.

2.2 Experiment 1: Discriminability of CNN model syntheses for 400 unique
images

This experiment measured whether any of the variants of the CNN scene appearance model could synthesise
images that humans could not discriminate from their natural source images, and if so, identify the simplest
variant of this model producing metamers. We chose a set of 400 images and had participants discriminate
original and model-generated images in a temporal oddity paradigm.

2.2.1 Methods

The methods for this and the following psychophysical experiments were the same as in the main paper
unless otherwise noted.

2.2.1.1 Participants
Thirteen participants participated in this experiment. Of these, ten participants were recruited via online
advertisements and paid 15 Euro for a 1.5 hour testing session; the other three participants were authors
AE, TW and CF. One session comprised one experiment using unique images (35 mins) followed by and
one of repeated images (see below; 25 mins). All participants signed a consent form prior to participating.
Participants reported normal or corrected-to-normal visual acuity. All procedures conformed to Standard 8 of
the American Psychological Association’s “Ethical Principles of Psychologists and Code of Conduct” (2010).
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2.2.1.2 Stimuli
We used 400 images (two additional images for authors, see below) from the MIT 1003 database (Judd,
Durand, and Torralba 2012; Judd et al. 2009). One of the participants (TW) was familiar with the images in
this database due to previous experiments. New images were synthesised using the multiscaled (512 px, 256
px, 128 px) foveated model described above, for four pooling region complexities (4, 8, 16 and 32). An image
was synthesised for each of the 400 original images from each model (giving a total stimulus set including
originals of 2000).

2.2.1.3 Procedure
Participants viewed the display from 60 cm; at this distance, pixels subtended approximately 0.024 degrees
on average (approximately 41 pixels per degree of visual angle) – note that this is slightly further away than
the experiment reported in the primary paper (changed to match the angular subtense used by Freeman and
Simoncelli). Images therefore subtended ¥ 12.5¶ at the eye. As in the main paper, the stimuli were presented
for 200 ms, with an inter-stimulus interval of 1000 ms, followed by a 1200 ms response window. Feedback was
provided by a 100 ms change in fixation cross brightness. Gaze position was recorded during the trial. If the
participant moved the eye more than 1.5 degrees away from the fixation spot, feedback signifying a fixation
break appeared for 200~ms after the response feedback. Prior to the next trial, the state of the participant’s
eye position was monitored for 50 ms; if the eye position was reported as more than 1.5 degrees away from
the fixation spot a recalibration was triggered. The inter-trial interval was 400 ms.

Each unique image was assigned to one of the four models for each participant (counterbalanced). That is, a
given image might be paired with a CNN 4 synthesis for one participant and a CNN 8 synthesis for another.
Showing each unique image only once ensures that the participants cannot become familiar with the images.
For authors, images were divided into only CNN 8, CNN 16 and CNN 32 (making 134 images for each model
and 402 trials in total for these participants). To ensure that the task was not too hard for naïve participants
we added the easier CNN 4 model (making 100 images for each model version and 400 trials in total). The
experiment was divided into six blocks consisting of 67 trials (65 trials for the last block). After each block a
break screen was presented telling the participant their mean performance on the previous trials. During the
breaks the participants were free to leave the testing room to take a break and to rest their eyes. At the
beginning of each block the eyetracker was recalibrated. Naïve participants were trained to do the task, first
using a slower practice of 6 trials and second a correct-speed practice of 30 trials (using five images not part
of the stimulus set for the main experiment).

2.2.1.4 Data analysis
We discarded trials for which participants made no response (N = 81) or broke fixation (N = 440), leaving a
total of 4685 trials for further analysis.

Performance at each level of CNN model complexity was quantified using a logistic mixed-e�ects model.
Correct responses were assumed to arise from a fixed e�ect factor of CNN model (with four levels) plus the
random e�ects of participant and image. The model (in lme4-style notation) was
correct ~ model + (model | subj) + (model | im_code)

with family = Bernoulli(“logit”), and using contr.sdif coding for the CNN model factor (Venables
and Ripley 2002).

The posterior distribution over model parameters was estimated using weakly-informative priors, which
provide scale information about the setting of the model but do not bias e�ect estimates above or below zero.
Specifically, fixed e�ect coe�cients were given Cauchy priors with mean zero and SD 1, random e�ect standard
deviations were given bounded Cauchy priors with mean 0.2 (indicating that we expect some variance between
the random e�ect levels) and SD 1, with a lower-bound of 0 (variances cannot be negative), and correlation
matrices were given LKJ(2) priors, reflecting a weak bias against strong correlations (Stan Development
Team 2015). The model posterior was estimated using MCMC implemented in the Stan language (version
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Figure S8: The CNN model comes close to matching appearance on average. Oddity performance as a
function of the CNN image model. Points show mean over participants (error bars ±2 SEM), coloured lines
link the mean performance of each participant for each pooling model. For most participants, performance
falls to approximately chance (dashed horizontal line) for the CNN 32 model. Black line and shaded regions
show the mean and 95% credible intervals on the population mean derived from a mixed-e�ects model.

2.16.2, Stan Development Team 2017; Ho�man and Gelman 2014), with the model wrapper package brms
(version 1.10.2, Bürkner 2017) in the R statistical environment. We computed four chains of 15,000 steps, of
which the first 5000 steps were used to tune the sampler; to save disk space we only saved every 5th sample.

2.2.2 Results and discussion

The CNN 32 model came close to matching appearance on average for a set of 400 images. Discrimination
performance for ten naïve participants and three authors is shown in Figure S8 (lines link individual
participant means, based on at least 64 trials, median 94). All participants achieve above-chance performance
for the simplest model (CNN 4), indicating that they understood and could perform the task. Performance
deteriorates as models match the structure of the original image more precisely.

To quantify the data, we estimated the posterior distribution of a logistic mixed-e�ects model with a
population-level (fixed-e�ect) factor of CNN model, whose e�ect was nested within participants and image
(i.e. random e�ects of participant and image). Regression coe�cients coded the di�erence between successive
CNN models, expressed using sequential di�erence coding from the MASS package (Venables and Ripley
2002), and are presented below as the values of the linear predictor (corresponding to log odds in a logistic
model). Mean performance had a greater than 0.99 posterior probability of being lower for CNN 8 than
CNN 4 (-0.48, 95% CI [-0.74, -0.23], p(— < 0) > 0.999), and for CNN 16 being lower than CNN 8 (-0.44, 95%
CI [-0.68, -0.18], p(— < 0) = 0.999); whereas the di�erence between the 16 and 32 models was somewhat
smaller (-0.17, 95% CI [-0.37, 0.03], p(— < 0) = 0.951). Most participants performed close to chance for the
CNN 32 model (excluding authors, the population mean estimate had a 0.88 probability of being greater
than chance; including authors this value was 0.96). Therefore, the model is capable of synthesising images
that are indiscriminable from a large set of arbitrary scenes in our experimental conditions, on average, for
naïve participants. However, one participant (author AE) performs noticably better than the others, even for
the CNN 32 model. AE had substantial experience with the type of distortions produced by the model but
had never seen this set of original images before. Therefore, the images produced by the model are not true
metamers, because they do not encapsulate the limits of visible structure for all humans.
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2.3 Experiment 2: Image familiarity and learning tested by repeated presenta-
tion

It is plausible that familiarity with the images played a role in the results above. That is, the finding that
images become di�cult on average to discriminate with the CNN 32 model may depend in part on participants
having never seen the images before. To investigate the role that familiarity with the source images might
play, the same participants as in the experiment above performed a second experiment in which five of the
original images from the first experiment were presented 60 times, using 15 unique syntheses per image
generated with the CNN 32 model (Figure S9A).

2.3.1 Methods

2.3.1.1 Participants
The same thirteen participants participated as in Experiment 1.

2.3.1.2 Stimuli
We selected five images from the set of 400 and generated 15 new syntheses for each of these images from the
CNN 32 model (yielding a stimulus set of 80 images).

2.3.1.3 Procedure
Each pairing of unique image (5) and synthesis (15) was shown in one block of 75 trials (pseudo-random order
with the restriction that trials from the same source image could never follow one another). Participants
performed four such blocks, yielding 300 trials in total (60 repetitions of each original image).

2.3.1.4 Data analysis
We discarded trials for which participants made no response (N = 63) or broke fixation (N = 294), leaving a
total of 3543 trials for further analysis. Model fitting was as for Experiment 1 above, except that the final
posterior was based on four chains of 16,000 steps, of which the first 8000 steps were used to tune the sampler;
to save disk space we only saved every 4th sample.

The intercept-only model (assuming only random e�ects variation but no learning) was specified as
correct ~ 1 + (1 | subj) + (1 | im_name)

and the learning model was specified as
correct ~ session + (session | subj) + (session | im_name)

We compare models using an information criterion (LOOIC, Vehtari et al (2016); see also (Gelman, Hwang,
and Vehtari 2014; McElreath 2016)) that estimates of out-of-sample prediction error on the deviance scale.

2.3.2 Results and discussion

While some images (e.g. House) could be discriminated quite well by most participants (Figure S9B), others
(e.g. Gra�ti) were almost indiscriminable from the model image for all participants (posterior probability
that the population mean was above chance performance was 0.61 for Gra�ti, 0.93 for Market, and greater
than 0.99 for all other images). This image dependence shows that even the CNN 32 model is insu�cient to
produce metamers for arbitrary scenes.

Furthermore, there was little evidence that participants learned over the course of sessions (Figure S9C).
The population-level linear slope of session number was 0.03, 95% CI [-0.1, 0.15], p(— < 0) = 0.326, and the
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Figure S9: A: Five original images (top) were repeated 60 times (interleaved over 4 blocks), and observers
discriminated them from CNN 32 model syntheses (bottom). B: Proportion of correct responses for each
image from A. Some images are easier than others, even for the CNN 32 model. C: Performance as a function
of each 75-trial session reveals little evidence that performance improves with repeated exposure. Points show
grand mean (error bars show bootstrapped 95% confidence intervals), lines link the mean performance of each
observer for each pooling model (based on at least 5 trials; median 14). Black line and shaded region shows
the posterior mean and 95% credible intervals of a logistic mixed-e�ects model predicting the population
mean performance for each image.
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LOOIC comparison between the intercept-only model and the model containing a learning term indicated
equivocal evidence if random-e�ects variance was included (LOOIC di�erence 3.3 in favour of the learning
model, SE = 6.1) but strongly favoured the intercept model if only fixed-e�ects were considered (LOOIC
di�erence -23.3 in favour of the intercept model, SE = 1.7). The two images with the most evidence for
learning were Children (median slope 0.04, 95% CI [-0.08, 0.17], p(— < 0) = 0.247) and Sailboat (0.04, 95%
CI [-0.08, 0.17], p(— < 0) = 0.269). Two authors showed some evidence of learning: AE (0.17, 95% CI [-0.03,
0.37], p(— < 0) = 0.047), and CF (0.22, 95% CI [0.03, 0.44], p(— < 0) = 0.008). Overall, these results show
that repeated image exposures with response feedback did not noticably improve performance.

2.4 Experiment 3: Spatial cueing of attention

The experiment presented in the primary paper showed that the discriminability of model syntheses depended
on the source images, with scene-like images being easier to discriminate from model syntheses than texture-
like images for a given image model. This finding was replicated in an ABX paradigm (above) and the
general finding of source-image-dependence was corroborated by the data with repeated images (Figure
S8). One possible reason for this image-dependence could be that participants found it easier to know
where to attend in some images than in others, creating an image-dependence not due to the summary
statistics per se. Relatedly, Cohen and co-authors (2016) suggest that the limits imposed by an ensemble
statistic representation can be mitigated by the deployment of spatial attention to areas of interest. Can the
discriminability of images generated by our model be influenced by focused spatial attention?

To probe this possibility we cued participants to a spatial region of the scene before the trial commenced. We
computed the mean squared error (MSE) between the original and synthesised images within 12 partially-
overlapping wedge-like regions subtending 60¶. We computed MSE in both the pixel space (representing
the physical di�erence between the two images) and in the feature space of the fifth convolutional layer
(conv5_1) of the VGG-19 network, with the hypothesis that this might represent more perceptually relevant
information, and thus be a more informative cue.

We pre-registered the following hypotheses for this experiment (available at http://dx.doi.org/10.17605/OSF.
IO/MBGSQ; click on “View Registration Form”). For the overall e�ect of cueing (the primary outcome of
interest), we hypothesised that

• performance in the Valid:Conv5 condition would be higher than the Uncued condition and
• performance in the Invalid condition would be lower than the Uncued condition

These findings would be consistent with the account that spatial attention can be used to overcome ensemble
statistics in the periphery, providing that it is directed to an informative location. This outcome also assumes
that our positive cues (Conv5 and Pixels) identify informative locations.

Alternative possibilities are

• if focussed spatial attention cannot influence the “resolution” of the periphery in this task, then
performance in the Valid:Conv5 and Invalid conditions will be equal to the Uncued condition.

• if observers use a global signal (“gist”) to perform the task, performance in the Uncued condition would
be higher than the Valid:Conv5 and Invalid conditions. That is, directing spatial attention interferes
with a gist cue.

Our secondary hypothesis concerns the di�erence between Valid:Conv5 and Valid:Pixel cues. A previous
analysis at the image level (see below) found that conv5 predicted image di�cultly slightly better than the
pixel space. We therefore predicted that Valid spatial cues based on Conv5 features (Valid:Conv5) should be
more e�ective cues, evoking higher performance, than Valid:Pixel cues.

2.4.1 Methods

2.4.1.1 Participants
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Figure S10: Parameter precision as a function of number of participants. A: Width of the 95% credible
interval on three model parameters as a function of the number of participants tested. Points show model fit
runs (the model was not re-estimated after every participant due to computation time required). We aimed
to achieve a width of 0.3 (dashed horizontal line) on the linear predictor scale, or stop after 30 participants.
The Uncued - Invalid parameter failed to reach the desired precision after 30 participants. Lines show fits of
a quadratic polynomial as a visual guide.

We pre-registered (http://dx.doi.org/10.17605/OSF.IO/MBGSQ) the following data collection plan with a
stopping rule that depended on the precision (Kruschke 2015). Specifically, we collected data from a minimum
of 10 and a maximum of 30 participants, planning to stop in the intermediate range if the 95% credible
intervals for the two parameters of interest (population fixed-e�ect di�erence between Valid and Uncued, and
population fixed-e�ect di�erence between Invalid and Uncued) spanned a width of 0.3 or less on the linear
predictor scale.

This value was determined as 75% of the width of our “Region of Practical Equivalence” to zero e�ect
(ROPE), pre-registered as [-0.2, 0.2] on the linear predictor scale (this corresponds to odds ratios of [0.82,
1.22]). We deemed any di�erence smaller than this value as being too small to be practically important.
As an example, if the performance in one condition is 0.5, then an increase of 0.2 in the linear predictor
corresponds to a performance of 0.55. The target for precision was then determined as 75% of the ROPE
width, in order to give a reasonable chance for the estimate to lie within the ROPE (Kruschke 2015).

We tested these conditions by fitting the data model (see below) after every participant after the 10th,
stopping if the above conditions were met. However, as shown in Figure S10, this precision was not met with
our maximum of 30 participants, and so we ceased data collection at 30, deeming further data collection
beyond our resources for the experiment. Thus our data should be interpreted with the caveat that the
desired precision was not reached (though we got close).

An additional five participants were recruited but showed insu�cient eyetracking accuracy or training
performance (criteria pre-registered). Of the 30, three were lab members unfamiliar with the purpose of the
study, the other 27 were recruited online; all were paid 15 Euro for the 1.5 hour testing session. Of these,
three participants did not complete the full session due to late arrival, and eyetracking calibration failed in
the second last trial block for an additional participant.

2.4.1.2 Stimuli
This experiment used the same 400 source images and CNN 8 model syntheses as Experiment 1.

2.4.1.3 Procedure
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The procedure for this experiment was as in Experiment 1 with the following exceptions. The same 400
original images were used as in Experiment 1, all with syntheses from the CNN 8 model. A trial began with
the presentation of a bright wedge (60 degree angle, Weber contrast 0.25) or circle (radius 2 dva) for 400~ms,
indicating a spatial cue (85% of trials) or Uncued trial (15%) respectively (Figure S11A). A blank screen
with fixation spot was presented for 800 ms before the oddity paradigm proceeded as above. On spatial
cue trials, participants were cued to the wedge region containing either the largest pixel MSE between the
original and synthesised images (35% of all trials), the largest conv5 MSE (35%), or the smallest pixel MSE
(an invalid cue, shown on 15% of all trials). Thus, 70% of all trials were valid cues, encouraging participants
to make use of the cues rather than learning to ignore them. Participants were also instructed to attend to
the cued region on trials where a wedge was shown. For Uncued trials they were instructed to attend globally
over the image. Cueing conditions were interleaved and randomly assigned to each unique image for each
participant. The experiment was divided into eight blocks of 50 trials. Before the experiment we introduced
participants to the task and fixation control with repeated practice sessions of 30 trials (using 30 images not
used in the main experiment and with the CNN 4 model syntheses). Participants saw at least 60 and up to
150 practice trials, until they were able to get at least 50% correct and with 20% or fewer trials containing
broken fixations or blinks.

2.4.1.4 Data analysis
We discarded trials for which participants made no response (N = 141) or broke fixation (N = 1398), leaving
a total of 10261 trials for further analysis.

This analysis plan was pre-registered and is available at http://dx.doi.org/10.17605/OSF.IO/MBGSQ (click
on “view registration form”). We seek to estimate three performance di�erences:

1. The di�erence between Invalid and Uncued
2. The di�erence between Valid:Conv5 and Uncued
3. The di�erence between Valid:Conv5 and Valid:Pixels

The model formula (in lme4-style formula notation) is
correct ~ cue + (cue | subj) + (cue | im_code)

with family = Bernoulli(“logit”). The “cue” factor uses custom contrast coding (design matrix) to test
the hypotheses of interest. Specifically, the design matrix for the model above was specified as

—0 —1 —2 —3

Invalid 1 -1 0 0
Uncued 1 1 -1 0
Valid:Conv5 1 0 1 1
Valid:Pixels 1 0 0 -1

Therefore, —1 codes Uncued - Invalid, —2 codes Valid:Conv5 - Uncued, —3 codes Valid:Conv5 - Valid:Pixels
and —0 codes the Intercept (average performance). Note that the generalised inverse of this matrix was passed
to brms (Venables and Ripley 2002).

Each of these population fixed-e�ects is o�set by the random e�ects of participant (subj) and image (im_code).
We also assume that the o�sets for each fixed e�ect can be correlated (denoted by the single pipe character |).
The model thus estimates:

1. Four fixed-e�ect coe�cients. The coe�cients coding Valid:Conv5 – Uncued and Uncued – Invalid
constitute the key outcome measures of the study. The final coe�cient is the analysis of secondary
interest.

2. Eight random-e�ects standard-deviations (four for each fixed-e�ect, times two for the two random
e�ects).
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Figure S11: Cueing spatial attention has little e�ect on performance. A: Covert spatial attention was cued
to the area of the largest di�erence between the images (70% of trials; half from conv5 feature MSE; half
from pixel MSE) via a wedge stimulus presented before the trial. On 15% of trials the wedge cued an invalid
location (smallest pixel MSE), and on 15% of trials no cue was provided (circle stimulus). B: Performance
as a function of cueing condition for 30 participants. Points show grand mean (error bars show ±2 SE),
lines link the mean performance of each observer for each pooling model (based on at least 30 trials; median
65). Blue lines and shaded area show the population mean estimate and 95% credible intervals from the
mixed-e�ects model. Triangle in the Uncued condition replots the average performance from CNN 8 in Figure
S8 for comparison.

3. Twelve correlations (six for each pairwise relationship between the fixed-e�ects, times two for the two
random e�ects).

These parameters were given weakly-informative prior distributions as for Experiment 1 (above): fixed-e�ects
had Cauchy(0, 1) priors, random e�ect SDs had bounded Cauchy(0.2, 1) priors, and correlation matrices had
LKJ(2) priors.

To judge the study outcome we pre-defined a region of practical equivalence (ROPE) around zero e�ect (0) of
[-0.2, 0.2] on the linear predictor scale. This corresponds to odds ratios of [0.82, 1.22]. Our decision rules
were then:

• If the 95% credible interval of the parameter value falls outside the ROPE, we consider there to be a
credible di�erence between the conditions.

• If the 95% credible interval of the parameter value falls fully within the ROPE, we consider there to be
no practical di�erence between the conditions. This does not mean that there is no e�ect, but only
that it is unlikely to be large.

• If the 95% credible interval overlaps the ROPE, the data are ambiguous as to the conclusion for our
hypothesis. This does not mean that the data give no insight into the direction and magnitude of any
e�ect, but only that they are ambiguous with respect to our decision criteria.

For more discussion of this approach to hypothesis testing, see (Kruschke 2015).

2.4.2 Results and discussion

The results of this experiment are shown in Figure S11B. While mean performance across conditions was in
the expected direction for all e�ects, no large di�erences were observed. Specifically, the population-level
coe�cient estimate on the linear predictor scale for the di�erence between the Valid:Conv5 cueing condition
and the uncued condition was 0.09, 95% CI [-0.05, 0.22], p(— < 0) = 0.1. Given our decision rules above,
the coe�cient does not fall wholely within the ROPE and therefore this result is somewhat inconclusive; in
general the di�erence is rather small and so large “true” e�ects of spatial cueing are quite unlikely. Similarly,
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Figure S12: Performance depends strongly on the image within the CNN 8 model (data from Experiment 3).
Solid black line links model estimates of each image’s di�culty (the posterior mean of the image-specific
model intercept, plotted on the performance scale). Shaded region shows 95% credible intervals. Dashed
horizontal line shows chance performance; solid blue horizontal line shows mean performance.

we find no large di�erence between uncued performance and the invalid cues (0.09, 95% CI [-0.07, 0.25],
p(— < 0) = 0.141). Based on our pre-registered cuto� for a meaningful e�ect size we conclude that cueing
spatial attention in this paradigm results in e�ectively no performance change.

We further hypothesised that the conv5 cue would be more informative (resulting in a larger performance
improvement) than the pixel MSE cue. Note that for 269 of 400 images the conv5 and pixel MSE cued the
same or neighbouring wedges, meaning that the power of this experiment to detect di�erences between these
conditions is limited. Consistent with this and contrary to our hypothesis, we find no practical di�erence
between the Valid:Conv5 and Valid:Pixels conditions, 0.04, 95% CI [-0.07, 0.14], p(— < 0) = 0.253. Note that
for this comparison, the 95% credible intervals for the parameter fall entirely within the ROPE, leading us to
conclude that there is no practical di�erence between these conditions in our experiment.

In an additional (exploratory) analysis we assessed whether this experiment also produced evidence for
source-image-dependence, consistent with the main experiment (scene-like vs texture-like) and Experiment 2
above. To do so, we plot the image-specific intercepts estimated by the model above. We examine this rather
than the raw data because cueing conditions were randomly assigned to each image for each subject, meaning
that the mean performance of the images will depend on this randomisation (though, given our results, the
e�ects are likely to be small). The image-specific intercept from the model estimates the di�culty of each
image, holding cueing condition constant. While the posterior means for some images were close to chance, and
the 95% credible intervals associated with about 100 images overlapped chance performance, approximately
30 images were easily discriminable from their model syntheses, lying above the mean performance for all
images with the CNN 8 model (Figure S12). These results again corroborate the evidence above, that the
fidelity of appearance matching by the CNN scene appearance model depends substantially on the source
image.

To conclude, our results here suggest that if cueing spatial attention improves the “resolution” of the periphery,
then the e�ect is very small. Cohen and colleages (2016) have suggested that an ensemble representation
serves to create phenomenal experience of a rich visual world, and that spatial attention can be used to gain
more information about the environment beyond simple summary statistics. The results here are contrary to
this idea, at least for the specific task and setting we measure here.

Note however that other experimental paradigms may in general be more suitable for assessing the influence
of spatial attention than a temporal oddity paradigm. For example, in temporal oddity participants may
choose to reallocate spatial attention after the first interval is presented (e.g. on invalid trials pointing at
regions of sky). In this respect a single-interval yes-no design (indicating original / synthesis) might be
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preferable. However, analysis of such data with standard signal detection theory would need to assume that
the participants’ decision criteria remain constant over trials, whereas it seems likely that decision criteria
would depend strongly on the image. To remain consistent with our earlier experiments we nevertheless
employed a three-alternative temporal oddity task here; future work could assess whether our finding of
minimal influence of spatial cueing depends on this choice.

2.5 Predicting the di�culty of individual images

As shown above, some images are easier than others. We assessed whether an image-based metric considering
the di�erence between original and synthesised images could predict di�culty at the image level. Specifically,
we asked whether the mean squared-error (MSE) between the original and synthesised images in two feature
spaces (conv5 and pixels) could predict the relative di�culty of the source images. Note that we performed
this analysis first on the results of Experiment 1 (Figure S8), and that these results were used to inform the
hypothesis regarding the usefulness of conv5 vs pixel cues presented in Experiment 3, above. We subsequently
performed the same analysis on the data from Experiment 3. We present both analyses concurrently here for
ease of reading, but the reader should be aware of the chronological order.

2.5.1 Methods

We computed the mean squared error between the original and synthesised images in two feature spaces.
First, the MSE in the pixel space was used to represent the physical di�erence at all spatial scales. Second,
the di�erence in feature activations in the conv5 layer of the VGG network was used as an abstracted feature
space which may correspond to aspects of human perception (e.g. Kubilius, Bracci, and Op de Beeck 2016).
Both are also correlated with the final value of the loss function from our synthesis procedure. As a baseline
we fit a mixed-e�ects logistic regression containing fixed-e�ects for the levels of the CNN model and a random
e�ect of observer on all fixed e�ect terms. As a “saturated” model (a weak upper bound) we added a
random e�ect for image to the baseline model (that is, each image is uniquely predicted given the available
data). Using the scale defined by the baseline and saturated models, we then compared models in which the
image-level predictor (pixel or conv5 MSE, standardised to have zero mean and unit variance within each
CNN model level) was added as an additional linear covariate to the baseline model. That is, each image was
associated with a scalar value of pixel / conv5 MSE with each synthesis. Additional image-level predictors
were compared but are not reported here because they performed similarly or worse than the conv5 or pixel
MSE.

As above, we compared the models using the LOOIC information criterion that estimates out-of-sample
prediction error on the deviance scale. Qualitatively similar results were found using ten-fold crossvalidation
for models fit with penalised maximum-likelihood in lme4.

2.5.2 Results

For the dataset from Experiment 1, the LOOIC favoured the model containing conv5 MSE over the pixel
MSE (LOOIC di�erence 18.2, SE = 8.3) and the pixel MSE over the baseline model (LOOIC di�erence 25.3,
SE = 10.9)—see Figure S13A. The regression weight of the standardised pixel MSE feature fit to all the
data was 0.04 (95% credible interval = 0.15–0.07), and the weight of the standardised conv5 feature was 0.04
(0.2–0.11; presented as odds ratios in Figure S13C). Therefore, a one standard deviation increase in the conv5
feature produced a slightly larger increase in the linear predictor (and thus the expected probability) than
the pixel MSE, in agreement with the model comparison.

Applying this analysis to the data from Experiment 3 lead to similar results (Figure S13B, d). The LOOIC
favoured the model containing conv5 MSE over the pixel MSE (LOOIC di�erence 49.9, SE = 13.3) and the
pixel MSE over the baseline model (LOOIC di�erence 62.4, SE = 16.2). Note that the worse performance of
the image metric models relative to the saturated model (compared to Figure S13A) is because the larger
data mass in this experiment provides a better constraint for the random e�ects estimates of image. The
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Figure S13: Predicting image di�culty using image-based metrics. A: Expected prediction improvement
over a baseline model for models fit to the data from Experiment 1 (Figure S8), as estimated by the LOOIC
(Vehtari et al., 2016). Values in deviance units (-2 * log likelihood; higher is better). Error bars show ±2 1
SE. Percentages are expected prediction improvement relative to the saturated model. B: Same as A but for
the data from Experiment 3 (Figure S11). C: Odds of a success for a one SD increase in the image predictor
for data from Experiment 1. Points show mean and 95% credible intervals on odds ratio (exponentiated
logistic regression weight). D: As for C for Experiment 3.

regression weight of the standardised pixel MSE feature fit to all the data was 0.03 (95% credible interval =
0.14–0.08), and the weight of the standardised conv5 feature was 0.03 (0.21–0.15).

These results show that the di�culty of a given image can be to some extent predicted from the pixel
di�erences or conv5 di�erences, suggesting these might prove useful full-reference metrics, at least with respect
to the distortions produced by our CNN model.
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