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Abstract14

Most methods for statistical analysis of RNA-seq data take a matrix of abundance estimates for some type of15

genomic features as their input, and consequently the quality of any obtained results are directly dependent16

on the quality of these abundances. Here, we present the junction coverage compatibility (JCC) score, which17

provides a way to evaluate the reliability of transcript-level abundance estimates as well as the accuracy of18

transcript annotation catalogs. It works by comparing the observed number of reads spanning each annotated19

splice junction in a genomic region to the predicted number of junction-spanning reads, inferred from the20

estimated transcript abundances and the genomic coordinates of the corresponding annotated transcripts. We21

show that while most genes show good agreement between the observed and predicted junction coverages,22

there is a small set of genes that do not. Genes with poor agreement are found regardless of the method used23

to estimate transcript abundances, and the corresponding transcript abundances should be treated with care in24

any downstream analyses.25
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Introduction27

High-throughput sequencing of the transcriptome (RNA-seq) is used for a broad range of applications in biol-28

ogy and medicine. Most of these involve comparing expression levels of genetic features (e.g., genes, transcripts29

or exons) between samples, and the quality of the results from any such study will therefore be directly depen-30

dent on the correctness of the expression estimates for the particular features of interest. The ability to obtain31

accurate estimates, in turn, depends on the quality and quantity of the available data, as well as the complete-32

ness and correctness of the utilized reference annotation. In general, reliable abundance estimation is easier to33

achieve for genes than for individual transcripts or isoforms, due to the high sequence similarity among groups34

of isoforms and the non-uniform read coverage resulting from library preparation and sequencing biases [1, 2].35

However, gene-level abundance estimation is not without challenges, particularly for groups of genes that share36

a large fraction of their sequence, which leads to high numbers of multimapping reads [3–5]. Various solutions37

have been proposed, including grouping together similar genes [4], probabilistic assignment of reads to genes38

[3] and scoring the genes based on their sequence similarity and number of multi-mapping reads shared with39

other genes [5].40

Despite their higher reliability, gene-level abundances are insufficient for analyses aimed at detecting dif-41

ferences in transcript-level expression or relative isoform usage. Even for studies where the main aim is to42

detect differential expression on the gene level, incorporating transcript abundances can in some cases improve43

the inference [2, 6, 7]. As methods for transcript abundance estimation are improving, both in accuracy and44

speed, it has become increasingly common to estimate abundances of individual isoforms rather than of the45

gene as a whole, and today a plethora of transcript abundance estimation methods based on various under-46

lying algorithms are available (e.g., [8–17]). Most evaluations of the ability of these methods to accurately47

estimate transcript abundances have been performed using simulated data, where reads are generated from a48

known transcriptome [1, 2], or using artificial spike-in sequences [18]. Evaluations have also been done based49

on the agreement of abundance estimates between replicates [19] or agreement with abundances or abun-50

dance ratios derived from other types of data such as exon arrays [20], RT-PCR [21] or 3’ end sequencing [1].51

Less is known about the reliability of transcript abundance estimates in real data sets, based on potentially52

inaccurate or incomplete annotation catalogs, and how to spot unreliably quantified transcripts in a sample-53

wise manner based on the RNA-seq data alone. A motivating example is illustrated in Figure 1A, showing54

abundance estimates for the ZADH2 gene in EBV-transformed lymphocytes, as displayed in the GTEx Portal55

(https://www.gtexportal.org/home/gene/ZADH2, accessed July 19, 2018). This gene has four annotated iso-56

forms, each consisting of two exons and each featuring a unique splice junction (with a shared acceptor site).57

The top row illustrates the estimated expression of collapsed exons and junctions (with legends to the right),58

indicating a high expression of the most 5’ exon and the corresponding junction. The alternative exons and59

junctions have no or very few supporting reads. However, the isoform abundance estimates (lower panel) sug-60

gest a different picture, where two of the isoforms whose unique exons and junctions are supported by few61

reads are assigned the highest expression levels.62

In this paper, we present the junction coverage compatibility (JCC) score (Figure 1B), which allows auto-63

mated detection of genes with conflicting indications of isoform abundance. The score can be calculated for64

any genomic region (e.g., a gene locus), by comparing the observed coverage profile, obtained by aligning the65

RNA-seq reads to the genome, with the predicted coverage profile derived from estimates of transcript abun-66

dances and biases influencing the observed read coverage of a sequenced transcript. In particular, we focus on67

the number of reads spanning annotated splice junctions in the genomic region of interest. The key assumption68

behind the JCC score is that with (i) a complete and accurate catalog of reference transcripts, (ii) an accurate69

estimate of the abundance of each individual transcript, and (iii) knowledge about the biases affecting the prob-70
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Figure 1: A. Example of a gene with inconsistent signals resulting from abundance estimation based on exons,
junctions or entire isoforms. The figure was generated in the GTEx Portal (https://www.gtexportal.org/

home/gene/ZADH2, accessed July 19, 2018). B. Outline of the approach used to calculate the JCC scores. First,
reads are aligned to the genome using STAR, and the number of reads observed to span each annotated splice
junction is extracted. The aligned reads are also used to fit a fragment bias model using the alpine Bioconductor
package, which is then used to predict coverage profiles for all annotated transcripts. The coverage profiles
are combined with transcript abundance estimates to obtain the predicted numbers of junction-spanning reads,
which are compared to the observed numbers to calculate the JCC score for each gene. C. Schematic illustrating
the generation of artificial transcripts in the simulated data. In total, artificial transcripts are generated for 4,514
genes, which have multiple annotated 3’UTR of different length (at least 1kb length difference) starting in the
same genomic position. For each such gene, two transcripts are selected; one that is annotated with the short
3’UTR and one that is annotated with the long one. The artificial transcript is created by combining the internal
structure (all exonic regions except the annotated 3’UTR) of one of the two isoforms with the 3’UTR of the
other. In the simulation, all reads from the modified genes are generated from the artificial transcripts.
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ability of a given fragment of a given transcript to be sequenced, the coverage profile prediction obtained by71

combining these three sources of information for any genomic locus should be close to the observed one. Thus,72

large deviations between the observed and predicted coverage profiles indicate that the transcript estimates73

in the region are unreliable, and such regions should be flagged and interpreted with caution in downstream74

analysis. There can be many reasons behind a region obtaining a high (bad) JCC score, ranging from poor75

performance of the estimation method, e.g. due to sequence similarity with other parts of the transcriptome, to76

an incorrect or incomplete annotation catalog, making a correct distribution of the reads between the annotated77

transcripts in the region impossible.78

Using eight transcript abundance estimation methods and two deeply sequenced human RNA-seq data79

sets, we show that for the majority of the human genes, the junction coverages predicted from the transcript80

abundances are highly compatible with the observed junction coverages, suggesting overall accurate annotation81

and transcript abundance estimates. However, a small fraction of the annotated genes show a substantial82

difference between the predicted and observed junction coverages. For some of these genes, the reason for the83

incompatibility appears to be an incompletely annotated transcript catalog, and no distribution of the reads84

among the annotated isoforms would simultaneously give a satisfactory junction coverage compatibility and85

a good agreement with the annotated UTRs. The uneven read coverage of isoforms also leads to estimation86

problems, especially for genes with short, poorly covered exons. Using a simulated data set, we show that87

misannotation of 3’UTRs can lead to unreliable transcript estimates, which is interesting in the light of recent88

reports showing that the majority of isoform differences between tissues are due to alternative start and end89

sites and involve untranslated exons [22–24].90

Materials and Methods91

Experimental data and reference annotations92

We use two deeply sequenced human polyA+ RNA-seq libraries for our investigations. The first (Cortex)93

contains 117,292,547 paired-end 126nt Illumina reads from a human cerebral cortex sample, and the second94

(HAP1) contains 55,234,720 paired-end 151nt Illumina reads from the HAP1 cell line. Both samples were95

prepared with the Illumina TruSeq RNA stranded protocol and sequenced at the Functional Genomics Center96

in Zurich, Switzerland; Cortex with a HiSeq 2500 in October 2015 and HAP1 with a HiSeq 4000 in September97

2017. Raw FASTQ files have been uploaded to ArrayExpress (accession number E-MTAB-7089). Most of our98

analyses are performed using the GRCh38.90 reference annotation from Ensembl [25]. For comparison, we99

also use the recent CHESS 2.0 reference catalog [26], which was generated by assembling RNA-seq reads from100

almost 10,000 GTEx samples [27, 28] using StringTie [14]. Based on the original Ensembl gtf file, we generate101

two additional gtf files, containing flattened exonic regions and intronic regions (regions within a gene locus102

that are not covered by any exon), respectively, and use featureCounts [29] (from subread [30] v1.6.0) to count103

the number of reads overlapping these exonic and intronic regions for each gene.104

Simulated data105

In addition to the experimental RNA-seq data sets, we generate synthetic data with the aim to better understand106

the effect of misannotated 3’UTR sequences. From the GRCh38.90 Ensembl annotation, we find 4,514 genes with107

multiple annotated 3’UTRs starting in the same position, and with length difference exceeding 1kb. For each of108

these genes, we randomly extract one transcript annotated with the short 3’UTR and one transcript annotated109

with the long one. We then generate an artificial transcript, consisting of the 5’UTR and coding sequence of110
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one of these two transcripts and the 3’UTR of the other transcript (Figure 1C). For 41 of the 4,514 genes (0.9%),111

the artificial transcript was identical to an annotated transcript (38 were identical to the transcript providing112

the 3’UTR, 3 to other isoforms of the gene). These genes were not considered modified. We use the polyester113

Bioconductor package [31] (v1.16.0) to simulate approximately 1,000 strand-specific read pairs (read length114

125nt) from each of the 4,473 remaining artificial transcripts, and a total of 10 million read pairs distributed115

between 10,000 randomly selected transcripts, not annotated to any of the genes from which the artificial116

transcripts were generated. The simulated data set is then processed using the original Ensembl GRCh38.90117

annotation files (which do not contain the artificial transcripts).118

Transcript abundance estimation119

We use eight methods to estimate abundances of the annotated transcripts in each of the two Illumina libraries:120

• RSEM. We build an index from the combined cDNA and ncRNA reference fasta files from Ensembl,121

and estimate transcript abundances with RSEM [9] (v1.3.0), using bowtie [32] (v1.1.2) as the underlying122

aligner.123

• Salmon. We build a transcriptome index from the combined cDNA and ncRNA reference fasta files124

from Ensembl and run Salmon [16] (v0.11.0) in quasi-mapping mode, incorporating sequence, GC and125

positional bias correction. We also generate 100 bootstrap samples for estimation of the inferential variance126

for each transcript. By default, Salmon removes duplicated sequences in the reference catalog, keeping127

only one representative. In this process, 12,824 transcripts from 4,499 genes were excluded from the128

Ensembl GRCh38.90 catalog. In a majority of these cases, at least one of the identical sequences can be129

found on an alternative contig (e.g., in the MHC region). It’s worth noting that these contigs are not130

included in the primary genome assembly used for the genomic alignments, while the transcripts are131

contained in the Ensembl transcriptome fasta files. 3,450 of the affected genes did not have any other132

annotated transcript and were thus completely removed from the annotation catalog.133

• SalmonKeepDup. Here we run Salmon with the same settings as above, but retain all duplicated transcript134

sequences in the catalog (which is an option during Salmon’s indexing step). Since the retained transcripts135

are sequence-identical, the estimated abundances will be uniformly distributed within groups of identical136

transcripts.137

• kallisto. We build a transcriptome index from the combined cDNA and ncRNA reference fasta files from138

Ensembl, and run kallisto [15] (v0.44.0) with bias correction activated.139

• Hera. The Hera index is built using the reference genome (primary assembly) and the Ensembl gtf file,140

and Hera (https://github.com/bioturing/hera) (v1.1) is run with default settings.141

• HISAT2+StringTie. We build a HISAT2 [33] (v2.1.0) index from the reference genome (primary assembly)142

and extract the known splice sites using the provided hisat2_extract_splice_sites.py script. The143

reads are aligned to this index with the option --dta set and given the known splice sites. Next, we run144

StringTie [14] (v1.3.3b) without assembly of new transcripts (-e option) to get the abundance estimates145

for the annotated transcripts.146

• SalmonSTAR. For this approach we build a transcriptome index from the combined cDNA and ncRNA147

reference files from Ensembl, and align the reads using STAR [34] (v2.5.3a). We subsequently estimate148

transcript abundances using Salmon (v0.11.0) in alignment-based mode, incorporating sequence and GC149

bias correction.150
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• SalmonCDS. Here, we build the Salmon index using only the explicitly annotated coding sequences from151

Ensembl, and run Salmon (v0.11.0) in quasi-mapping mode, incorporating sequence, GC and positional152

bias correction.153

Prediction of expected junction coverage154

In order to predict the expected number of reads mapping across each junction, given estimates of the transcript155

abundances, we first fit a fragment-level bias model using the alpine Bioconductor package [35] (v1.2.0). The156

bias model is fit for each library separately, using a set of single-isoform genes with length between 600 and157

7,000 bp and between 500 and 10,000 assigned reads. The alpine bias model included random hexamer bias,158

fragment GC bias, positional bias along the transcript, and the fragment length distribution. After fitting the159

bias model, we use it to obtain a predicted coverage of each base pair in each annotated transcript using the160

fitted parameters for these four factors. For transcripts where the prediction fails (e.g., transcripts shorter than161

the estimated fragment length and transcripts with no overlapping reads), we assume a uniform coverage162

rather than excluding them from subsequent analysis steps. Next, we rescale the predicted base pair coverages163

by dividing with their total sum and multiplying with the average fragment length and the estimated transcript164

counts from each of the transcript abundance estimation methods, in order to get an estimate of the number165

of reads predicted to cover each position on the transcript. We also extract the position of annotated splice166

junctions within each transcript, and the predicted coverage at the base just before an annotated junction is167

used as the predicted number of reads from that transcript that align across the junction. Finally, we sum the168

predicted number of junction-spanning reads for each junction across all transcripts, in a strand-aware fashion169

(since the libraries are stranded) in order to get the total number of reads predicted to span any given junction.170

Observed junction coverage171

The observed junction coverage (the number of reads mapping across a given junction) is obtained using STAR172

[34] (v2.5.3a). We build an index using the reference genome (primary assembly) and the Ensembl gtf file, and173

align the reads with default settings. The number of uniquely mapping and multimapping reads spanning174

each annotated junction are extracted from the SJ.out.tab output file from the STAR alignment.175

The junction coverage compatibility score176

To quantify the level of agreement between the predicted junction coverages based on any of the transcript177

abundance estimation methods and the observed number of junction reads from STAR, we define a family of178

gene-wise junction coverage compatibility (JCC) scores, parametrized by two arguments: a weighting function179

g and a scaling indicator β (see below). For a given g and β, the JCC score for gene i is defined by180

JCCi =

∑j∈Ji
g(ωj)

∣∣∣∣∣
(

∑k∈Ji
g(ωk)Rk

∑k∈Ji
g(ωk)Ck

)β

Cj − Rj

∣∣∣∣∣
∑j∈Ji

g(ωj)Rj

where Ji denotes the set of junctions annotated to gene i (some junctions are annotated to transcripts from181

multiple genes, in which case they are included for all of them), Rj is the observed number of uniquely mapping182

reads spanning junction j (obtained from STAR) and Cj is the predicted number of reads spanning junction j183

based on the bias model from alpine and the transcript abundances from a given method. Multimapping reads184

(from STAR) cause problems in the score calculation since it is not clear how to assign them to junctions, and185
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thus the contribution of a junction is weighted by g(ωj), where g : [0, 1] 7→ [0, ∞) is a non-negative function186

and ωj is the fraction of reads spanning junction j that are uniquely mapping.187

Overall differences in the number of reads assigned to gene i by transcript abundance estimation compared188

to junction counts can induce large differences between Cj and Rj even if their relative coverage patterns are189

similar. The same is true if there is a large fraction of multimapping reads, which are being accounted for in190

the predicted transcript abundances but not in the observed junction coverages. To account for this, we include191

an optional scaling of the predicted coverages to have the same (weighted) sum as the observed coverages. This192

is represented by the β parameter - if this is 0, no scaling is done, and if it is 1, the values are scaled. In this193

study, we set β = 1, and let194

g(ω) =

 1 if ω ≥ 0.75

0 otherwise

i.e., a step function that implies that we only allow junctions with more than 75% uniquely aligning reads to195

contribute to the JCC score calculations.196

With β = 1, the JCC score for a gene takes values between 0 and 2. A low score means that the predicted197

junction coverages, given the abundance estimates for the transcripts in gene i, are compatible with the observed198

number of reads mapping across the junctions, while a high score indicates that for at least one junction, the199

predicted number of junction-spanning reads does not match with the observed number.200

Code availability201

All code used to perform the analyses is available from https://github.com/csoneson/annotation_problem_202

txabundance.203

Results204

Predicted transcript coverage patterns agree well between samples205

The prediction of the transcript coverage profiles by alpine is a crucial step in the calculation of the JCC206

score. It is done separately for each of the two Illumina libraries, in order to account for any sample-specific207

biases. Of the 200,310 annotated transcripts in the Ensembl gtf file, the prediction of the coverage pattern208

by alpine returned an expected error for 29,342 (14.6%) in the HAP1 sample and 13,906 (6.9%) in the Cortex209

sample, almost exclusively due to transcripts being shorter than the respective fragment lengths. The prediction210

returned NULL for 23,028 (11.5%) transcripts in the HAP1 sample and 11,941 (6.0%) in the Cortex sample that211

did not have any overlapping reads. For these transcripts we impose a uniform coverage, rather than excluding212

them from subsequent calculations.213

Overall, we observe a high correlation between the predicted coverage profiles in the two libraries (Supple-214

mentary Figure 1), indicating that they share many of the biases, despite coming from different cell types and215

being prepared and sequenced almost two years apart on different sequencing machines. The coverage predic-216

tion is the single most time-consuming step of the JCC score calculation, and the high correlation even between217

such different libraries suggests that in a specific study, the prediction may not need to be done separately for218

each individual sample, which can reduce the run time considerably. Run time can also be reduced by limiting219

the coverage prediction and subsequent analysis to transcripts from a subset of the genes that are of particular220

interest in a given situation.221

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2018. ; https://doi.org/10.1101/378539doi: bioRxiv preprint 

https://github.com/csoneson/annotation_problem_txabundance
https://github.com/csoneson/annotation_problem_txabundance
https://github.com/csoneson/annotation_problem_txabundance
https://doi.org/10.1101/378539
http://creativecommons.org/licenses/by/4.0/


Figure 2: A. Correlation between observed and predicted number of reads spanning each junction for the HAP1
sample. The left column (“Predicted coverage”) shows the actual number of reads predicted by alpine, while
the predicted values in the right column (“Scaled predicted coverage”) are scaled to sum to the same number as
the observed number of uniquely mapping junction reads within each gene. Scaling improves the correlation
between observed and predicted junction coverages for all included methods. Axes are square-root transformed
for better visualization. Red points indicate junctions where less than 75% of the spanning reads are uniquely
mapping. B. Overall distribution of the gene-wise JCC scores for each method in the HAP1 sample, as well as
the association between the JCC score and the total number of reads for the gene and the number of uniquely
mapped junction reads in the gene.
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Most predicted junction coverages are consistent with the observed coverages222

Using the approach described in the Methods section, we obtain the number of uniquely mapping reads ob-223

served to span each annotated junction as well as the number predicted to span each junction given each set of224

transcript abundance estimates. Comparing the predicted junction coverages Cj to the observed ones Rj across225

all annotated junctions shows a generally high correlation for all abundance estimation methods (Figure 2A,226

left column), suggesting that in most genomic loci, the annotated transcript structure is compatible with the227

observed read alignments, and that the approach we use to predict junction coverages based on transcript228

abundances is valid. Scaling the predicted junction coverages within each gene, corresponding to setting β = 1229

in the subsequent JCC calculation and thereby focusing more on the relative junction coverages within a gene230

rather than the overall abundance of the gene, increases the correlation for all methods (Figure 2A, right col-231

umn). The largest discrepancies between observed and predicted junction coverages are seen for SalmonCDS,232

indicating that on a global scale, only considering annotated coding sequences discards relevant information233

about transcript abundances. We also note that there is a set of junctions with a low fraction of uniquely map-234

ping reads (Figure 2A, marked in red) for which the predicted number of spanning reads is considerably higher235

than the observed number of uniquely mapping junction reads. Since these discrepancies do not represent a236

failure of the annotation system or transcript abundance estimation method, but rather an inability to place237

reads in a unique genomic position, we downweight the influence of these junctions on the JCC score via the238

g(ω) function, as described in the Methods section.239

Most genes show high compatibility between observed and predicted junction coverages240

After investigating the concordance between observed and predicted coverages for individual junctions, we next241

calculate the JCC score for each annotated gene. With the exception of SalmonCDS (which is using a reference242

annotation in which many transcripts and genes are missing since they don’t have an explicitly annotated243

coding sequence), we are able to calculate a valid JCC score for around 16,500 genes in the HAP1 library, and244

just over 20,000 genes in the Cortex library (Supplementary Figure 2). Among the genes for which the score can245

not be calculated, most are not expressed (predicted total abundance of all isoforms equal to 0), while a smaller246

fraction either are expressed but lack junctions, or contain junctions but have no or too few uniquely mapping247

junction-spanning reads to calculate the score.248

Investigating the overall distribution of valid JCC scores shows that for most genes, the score is low (below249

0.5), confirming the previous observation that for most of the genes, the junction coverage pattern induced by250

the estimated transcript abundances agrees well with the observed junction coverages (Figure 2B, left column).251

Similar distributions are seen for all included methods. Most of the very high scores are obtained for genes252

with low abundance and few uniquely mapped reads spanning any of the junctions (Figure 2B). The high253

score for these genes may be driven largely by shot noise, and may improve with even higher sequencing254

depth. Moreover, lowly expressed genes are typically excluded in practical analyses of RNA-seq data such as255

differential expression analyses. Thus, to illustrate the behaviour of the JCC score, in the following analyses we256

focus on genes with at least 25 reads mapping uniquely across any of its junctions.257

Examples of genes with high JCC score258

In order to exemplify the types of deviating patterns resulting in high JCC scores, we consider some of the259

genes that are assigned high scores (JCC ≥ 0.6) with all the transcript abundance methods (except SalmonCDS,260

since it is based on a different set of reference transcripts and does not represent a typical or recommended way261

of performing transcript abundance estimation). Furthermore, we limit the investigation to genes with at least262
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Figure 3: A. Observed coverage profile and annotated gene model for the ZADH2 gene in the HAP1 library.
Different annotated transcripts are shown in different color. B. Relative TPM estimates for the annotated
transcripts from each of the eight transcript abundance estimation methods. C. Observed number of uniquely
mapping junction-spanning reads (x) and scaled predicted junction coverages (y) based on transcript abundance
estimates from each of the eight methods. Each circle corresponds to an annotated junction and is colored
according to the set of transcripts that it is annotated to. The JCC scores for this gene based on the respectively
abundances are indicated in the panel headers.

25 uniquely mapped junction-spanning reads, at least 75% of the junction-spanning reads mapping uniquely263

and an intron/exon read count ratio below 0.1. These strict filtering criteria are satisfied by 146 genes in the264

Cortex library and 56 genes in the HAP1 library. 17 of the genes passed the filters in both libraries. One of265

these genes is ZADH2 (Figure 3, other examples in Supplementary Figures 3-4). ZADH2 has four annotated266

transcripts, each consisting of two exons and one junction, and no junction is shared between transcripts. Most267

transcript abundance estimation methods distribute the estimated abundance between two or three of these268

isoforms. However, only one of the four annotated junctions has any observed spanning reads, which suggests269

that only the corresponding transcript (ENST00000322342) is indeed present. This leads to a large discrepancy270

between the observed and predicted junction coverages (for all abundance estimation methods), and hence a271

large JCC score. For this gene, a possible explanation for the discrepancy is that the coverage of the 5’ end of the272

transcripts is weak, but for a reason not captured by the alpine bias model, implying that the 3’ end, which is273
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longer and shows a higher coverage, will dominate the abundance estimation. Uneven coverage in this region274

can therefore bias the abundance estimation towards one or the other transcript. As illustrated in Figure 1A, a275

similar behaviour can be seen also in the GTEx data (accessed via the GTEx Portal).276

Similar observations can be made for many of the other selected example genes (Supplementary Figures277

3-4). For many of the high-scoring genes, no distribution of the reads between the annotated transcripts would278

lead to compatible coverage of both the internal structure (junctions) and the UTRs. For other genes with high279

scores, we observe a read coverage that is largely incompatible with the annotated exons (e.g., Supplementary280

Figure 5). In particular, these genes have large numbers of intronic reads, which can not be accounted for by281

annotated transcripts. This suggests that high scores can often be attributed to incorrectness or incompleteness282

of the annotation catalog with respect to the observed reads, rather than poor performance of the abundance283

estimation methods. Regardless of the cause, however, the resulting abundances are unreliable and should be284

interpreted with caution in downstream analyses.285

JCC scores are not strongly associated with inferential variability286

Several isoform abundance estimation methods allow assessment of the variability of the resulting expression287

levels via some form of (re)sampling [9, 10, 15, 16, 36, 37]. In order to compare the uncertainties picked up288

by the JCC score to those represented in these inferential variances, we perform 100 bootstrap runs using289

Salmon, and estimate the coefficient of variation of the bootstrapped counts both on the transcript level and290

after aggregating the transcript counts on the gene level. For the evaluation, we consider only genes with at291

least 25 uniquely mapping junction-spanning reads, and each individual transcript is assigned the JCC score292

of the corresponding gene. Overall, the association between the inferential coefficient of variation and the JCC293

score is weak in both libraries, on both the transcript and gene level (Supplementary Figure 6). Thus, the294

two scores measure different types of uncertainties; while the bootstrap variability may capture assignment295

uncertainty caused by shared sequence features among transcripts, it will not in general pick up inconsistencies296

due to misannotation, which are targeted by the JCC score.297

JCC scores are overall similar between methods298

Since the JCC score is obtained by combining a set of estimated transcript coverage profiles with transcript299

abundance estimates, using different transcript abundance methods for the latter leads to different sets of scores.300

We calculate JCC scores using transcript abundance estimates from eight different methods, and the results301

shown above illustrate that all of them suffer from problems induced by misannotated or missing transcripts,302

leading to predicted junction coverages that are incompatible with the observed ones. To further investigate303

the similarities between the methods, we calculate correlation coefficients between the scores obtained by each304

method pair, using only genes with at least 25 uniquely mapping junction-spanning reads (Supplementary305

Figures 7-9). As expected, the correlation is overall very high, and the most deviating scores are obtained306

with SalmonCDS, which uses a different set of reference sequences than the other methods, and StringTie. On307

average, both SalmonCDS and StringTie give higher scores than the remaining methods (Supplementary Figure308

9B).309

The choice of reference annotation affects the JCC score distribution310

All analyses so far have been performed using the Ensembl GRCh38.90 annotation. To investigate the im-311

pact of the choice of reference annotation on the JCC scores, we estimate bias models and predict transcript312

coverage profiles also for all transcripts in the CHESS 2.0 catalog [26]. We estimate corresponding transcript313

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2018. ; https://doi.org/10.1101/378539doi: bioRxiv preprint 

https://doi.org/10.1101/378539
http://creativecommons.org/licenses/by/4.0/


Figure 4: Comparison between scores obtained with the Ensembl GRCh38.90 annotation and the CHESS 2.0
annotation, for the HAP1 sample. A. Correlation between scores obtained with the CHESS annotation (x) and
the Ensembl annotation (y), for all the shared genes (genes with an assigned Ensembl ID in the CHESS catalog),
with at least 25 uniquely mapping junction-spanning reads and at least 75% of the junction-spanning reads
mapping uniquely with both annotations. B. Distribution of JCC scores for all genes with at least 25 uniquely
mapping junction-spanning reads and at least 75% of the junction-spanning reads mapping uniquely, in the
respective annotation catalogs. C. The number of genes shared between the two annotation catalogs for which
the CHESS annotation results in a higher, lower or equal score compared the Ensembl annotation. Blue bars
represent genes for which scores based on the CHESS annotation are higher (worse) than those based on the
Ensembl annotation, and green bars represent the opposite situation.

abundances with Salmon and kallisto, and count junction-spanning reads for each annotated junction with314

STAR. The CHESS catalog is obtained by assembling reads from almost 10,000 GTEx samples, and contains a315

larger number of transcripts (annotated to a smaller number of genes) than the Ensembl catalog (Supplemen-316

tary Table 1). The CHESS genes are all annotated with a unique CHESS identifier, but a mapping to Entrez IDs317

is provided wherever possible. For comparison with our other results, we convert the Entrez IDs to Ensembl318

IDs using the org.Hs.eg.db Bioconductor package v3.6.0 (in this way, unique Ensembl IDs are obtained for for319

22,262/42,881=51.9% of the genes). Considering only genes that are shared between the two annotation cata-320

logs, it is clear that there is a substantial difference between the scores assigned to an individual gene using the321
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two annotations (Figure 4A), although the overall distribution of scores is largely similar (Figure 4B). Neither322

annotation catalog is consistently leading to lower scores than the other (Figure 4C), but there are genes with323

substantially lower scores with each of the two annotations compared to the other.324

In addition, we investigate the effect of quantifying transcript abundances using a dataset-specific catalog325

of transcripts, obtained by running StringTie (without the -e argument) on each of the two Illumina libraries.326

The resulting gtf file contains many new transcripts, and many annotated transcripts from the Ensembl cat-327

alog are removed (Supplementary Table 1). We apply a subset of the abundance estimation methods to the328

respective StringTie annotations, and compare JCC scores across all genes present in both the StringTie and329

Ensembl catalogs. Also in this case, no annotation consistently lead to lower scores than the other, but there330

is a larger fraction of genes that show lower scores with the sample-specific StringTie-assembled annotation331

(Supplementary Figure 10).332

Misannotated 3’UTRs strongly affect the abundance estimates333

To investigate the effect of misannotated or missing 3’UTRs on the transcript abundance estimates, and conse-334

quently the JCC score, in more detail, we used synthetic data. For each of 4,514 annotated genes, we generated335

an artificial transcript consisting of the coding sequence of one isoform and the 3’UTR of another isoform from336

the same gene. The two contributing isoforms were selected in such a way that one was annotated with a short337

3’UTR, and the other with a long 3’UTR (with a length difference of at least 1kb) starting in the same genomic338

location. As expected, for genes where the isoform with the long 3’UTR was selected to contribute the 3’UTR to339

the artificial transcript, a large fraction of the final artificial transcript consists of the 3’UTR, while the fraction340

is much smaller if the 3’UTR was chosen from the isoform with the short 3’UTR (Supplementary Figure 11).341

For the modified genes, reads are simulated only from the artificial transcript. We also simulate reads342

from a random selection of unmodified transcripts. As expected, the JCC scores for the genes with modified343

transcripts are generally higher than those for the genes without any modified transcripts, where the reads are344

simulated from the correct annotation catalog. The distribution of scores for the latter set of genes can be seen345

as a “baseline distribution” of scores that we can expect for reasons unrelated to annotation and sequencing346

artifacts (e.g., sequence similarity causing problems for abundance estimation methods). Furthermore, the JCC347

score is generally higher for genes where a larger fraction of the artificial transcript is made up of the 3’UTR348

(Supplementary Figure 12). Focusing only on the genes with modified transcripts, we calculate the similarity349

between the artificial transcript and all annotated transcripts from the same gene. The similarity is defined350

by the Jaccard index of the nucleotide positions covered by the two compared transcripts. We stratify the351

genes based on whether the most similar transcript to the artificial transcript is the one that contributed the352

internal structure, the one that contributed the 3’UTR, or another one of the annotated transcripts. For most353

abundance estimation methods, the annotated transcript that is most similar to the artificial transcript (from354

which the reads were generated) is also assigned the highest expression estimate (Figure 5). The exceptions355

are SalmonCDS and StringTie, which both generally assign the highest abundance to the transcript that is most356

similar to the artificial transcript in terms of the internal structure, rather than based on overall similarity.357

Discussion and Conclusions358

We have described the junction coverage compatibility (JCC) score and shown how it can be used to identify359

genes or genomic regions where junction coverage patterns predicted from estimated transcript abundances are360

incompatible with those observed after alignment of the RNA-seq reads directly to the genome. By using the361

RNA-seq data to obtain two estimates of the number of reads mapping across each splice junction, we can create362
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Figure 5: Relative transcript abundances for modified genes, with each of the eight transcript abundance es-
timation methods. Genes are stratified (vertically) based on whether the transcript that is most similar (by
Jaccard index of covered nucleotides) to the artificial transcript is the one contributing the 3’UTR, the one con-
tributing the internal structure, or another isoform of the gene (see Figure 1C). For each gene we calculate the
relative abundance of the transcript contributing the 3’UTR, the one contributing the internal structure, and all
other isoforms of the gene combined (indicated with color). Finally, genes are stratified (horizontally) based
on whether the artificial transcript contains the long or short variant of the 3’UTR. Generally, most methods
assign the highest abundance to the transcript that is most similar to the artificial transcript from which the
reads were generated, with the exception of SalmonCDS and StringTie, which assign higher abundances to the
transcripts that are most similar to the artificial transcript in terms of the internal structure. The numbers above
the boxplots indicate the number of genes in each category.

an internal validation system, thereby circumventing the need for an external data set or additional replicates363

for evaluation of transcript abundance estimation accuracy. A high score, indicating poor compatibility between364

the junction coverages estimated from the transcript abundance estimates and the observed junction coverages,365

can be caused, e.g., by inaccurate transcript abundance estimates (e.g., for transcripts that share large parts of366

their sequence with other transcripts), or by an incomplete or incorrect transcriptome annotation. Regardless367

of the underlying cause, such genes should be flagged in downstream analyses and the estimated transcript368

abundances interpreted with caution. We note that the results were overall similar for all the eight transcript369

abundance estimation tools used in the study, representing alignment-free methods as well as methods relying370

on either genome or transcriptome alignments.371

The chosen reference annotation can have a large effect on the resulting JCC scores, as seen here by compar-372

ing the scores obtained using the Ensembl annotation to those based on the CHESS 2.0 annotation. In addition,373

using StringTie to assemble missing transcripts led to improved scores for a large number of genes, and a worse374
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score for a smaller number of genes. As recommended1, we used the primary genome assembly from Ensembl375

for aligning the reads to the genome. However, the transcriptome fasta files from Ensembl, which were used376

as the basis for abundance estimation by Salmon, SalmonKeepDup, kallisto, RSEM and SalmonSTAR, contain377

transcripts from alternative contigs that are not included in the primary genome assembly. Many of these tran-378

scripts are identical or very similar to transcripts annotated to the primary chromosomes. While this represents379

the typical use of these alignment files for alignment and transcript abundance estimation, it may lead to prob-380

lems for the correct assignment of the reads to transcripts, and as a consequence, for the calculation of the JCC381

scores. Keeping only one representative of duplicate transcript sequences (the default behaviour of Salmon)382

can lead to both better abundance estimates and improved agreement between predicted and observed junction383

coverages, under the assumption that the correct transcript location is retained. Of course, determining the true384

location of origin of a given transcript can be highly non-trivial, but would be an interesting direction for future385

research.386

One limitation of the presented family of JCC scores is that they can not be calculated for genes that do387

not have annotated junctions, or that do not have reads spanning junctions. A solution to this could be to388

compare the predicted and observed coverage profiles of the entire genomic locus rather than just the junctions.389

However, multimapping reads will still pose a problem for the comparison, and positions with a large fraction390

of multimapping overlapping reads should be downweighted in the score. In general, the approach we propose391

is not limited to junction coverages, and could be extended to, e.g., disjoint exon bins. The requirement is that392

we can observe the coverage pattern of the features of interest from the genome alignment, and predict it from393

the alpine bias models and the estimated transcript abundances. In addition, while we use the weighting394

function g(ω) to downweight the influence of junctions with a large fraction of multi-mapping reads, it can be395

used more generally to assign weights to junctions based on any characteristics affecting our confidence in the396

observed read coverages.397

Our evaluations are based on the assumption that we are interested in obtaining and using transcript abun-398

dance estimates. Other quantification approaches, for example, those focusing on disjoint exon bins [38] or399

transcript equivalence classes [39] have been suggested, and the resulting counts may in themselves be less400

sensitive to uncertainties in the reference transcript catalog. However, a post-processing step is required in401

order to interpret the results in terms of known transcripts, and during this step, misannotated transcripts can402

still lead to erroneous conclusions.403

Using simulated data, we observed that compared to the other abundance estimation methods, StringTie404

appeared to focus more on matching the internal structure than the 3’UTR when assigning abundances to tran-405

scripts. This implies that in situations where the 3’UTR annotation is unclear, StringTie can help assigning the406

reads to the transcript that is most similar with respect to the more unambiguous part of the transcript struc-407

ture. However, it could potentially also make it more difficult to identify differences in transcript composition408

between tissues, since these have been shown to be predominantly differences in transcription start and end409

sites [24].410

Our results show that for the vast majority of the human genes, the junction coverage patterns implied by the411

estimated transcript abundances in our data sets agree well with the observed ones, indicating that the reference412

annotation as well as the transcript abundance estimates for these genes are likely to be reliable. However, for413

each transcript abundance estimation method a small number of genes obtained a high JCC score, suggesting414

unreliably quantified isoforms. These genes should be treated with care in any downstream analyses, or be415

investigated further for an improved transcriptome annotation.416

1e.g., https://github.com/alexdobin/STAR/blob/2.5.3a/doc/STARmanual.pdf

15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2018. ; https://doi.org/10.1101/378539doi: bioRxiv preprint 

https://doi.org/10.1101/378539
http://creativecommons.org/licenses/by/4.0/


Funding417

The authors would like to acknowledge support from a Pilot Project grant from the URPP Evolution in Ac-418

tion of the University of Zurich (to C.S.), the National Science Foundation (BIO-1564917 and CCF-1750472, to419

R.P.), the National Human Genome Research Institute (R01HG009125, to M.I.L), the National Cancer Institute420

(P01CA142538, to M.I.L), and the National Institute of Environmental Health Sciences (P30 ES010126, to M.I.L).421

Acknowledgements422

The authors would like to thank the members of the Robinson, von Mering and Baudis groups at the University423

of Zurich for helpful discussions.424

References425

1. Kanitz, A. et al. Comparative assessment of methods for the computational inference of transcript isoform426

abundance from RNA-seq data. Genome Biol. 16, 150 (2015).427

2. Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates428

improve gene-level inferences. F1000Res. 4, 1521 (doi: 10.12688/f1000research.7563.1) (2015).429
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