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9

Abstract A growing literature conceptualises human brain development from a network perspective, but it remains10

unknown how functional brain networks are refined during the preschool years. The extant literature diverges in its11

characterisation of functional network development, with little agreement between haemodynamic- and12

electrophysiology-based measures. In children aged from 4 to 12 years, as well as adults, age appropriate13

magnetoencephalography was used to estimate unbiased network topology, using minimum spanning tree (MST) constructed14

from phase synchrony between beamformer-reconstructed time-series. During childhood, network topology becomes15

increasingly segregated, while cortical regions decrease in centrality. We propose a heuristic MST model, in which a clear16

developmental trajectory for the emergence of complex brain networks is delineated. Our results resolve topological17

reorganisation of functional networks across temporal and spatial scales in youth and fill a gap in the literature regarding18

neurophysiological mechanisms of functional brain maturation during the preschool years.19

20

Introduction21

Modern network science has revealed that normal brain networks exhibit fundamental properties of three canonical network22

extremes - a random network (Erdös and Rényi, 1959), a locally connected and highly ordered (regular) network (Mulder, 1992),23

and a scale-free network with a small number of highly connected nodes (so-called "hubs", Barabasi and Albert 1999). Adult24

brain networks also display hierarchical modularity (Meunier et al., 2009; Stam, 2014;Wig, 2017), in which modules that include25

regions from the default mode, fronto-parietal, parieto-temporal, or subcortical networks support specific cognitive functions26

(Bullmore et al., 2009; Fornito et al., 2011; Power et al., 2011). A heuristic model of complex brain networks has been proposed27

(Stam and van Straaten, 2012) to characterise the properties of real brain networks in an abstract “network space” defined by28

the four network models (i.e., regular, random, scale-free, and hierarchical modular networks). This heuristic model of “network29

space” suggests that the hierarchical modular network is an “attractor” for healthy brain networks and the other three extreme30

networks are "attractors" for different stages or patterns of brain diseases (Stam and van Straaten, 2012; Stam, 2014).31

Despite the robust and reproducible description of adult brain networks, there is relatively scant data regarding the32

maturation of brain networks. Such data can be acquired non-invasively using magnetic resonance imaging (MRI) or electro-33

physiological techniques (such as magnetoencephalography/MEG and electroencephalography/EEG). Studies using MRI-based34

measurements have demonstrated that both functional and structural brain networks become more segregated during35

childhood (e.g., functional MRI: Fair et al. 2009; Gu et al. 2015; Supekar et al. 2009; structural MRI: Huang et al. 2015; and36

diffusion-weighted imaging: Baum et al. 2017). Such development allows for an ongoing balance between the integration37

of converging information from distributed brain regions, and at the same time the segregation of divergent specialised38

information streams (Fair et al., 2009; Grayson and Fair, 2017; Richmond et al., 2016; Rubinov and Sporns, 2010). However,39

most studies to date have only focused on children older than 6 years or younger than 3 years of age (Grayson and Fair, 2017),40

leaving the preschool years of childhood (between 3 and 6 years of age) understudied – a knowledge gap that has been termed41

“the missing neurobiology of cognitive development” (Poldrack, 2010).42

Furthermore, there is little agreement between MRI- and electrophysiology-based network descriptions. Correspondence43

between functional MRI and electrophysiological measures of functional brain networks (Brookes et al., 2011) implies that44
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changes in functional MRI network organisation should be, at least partially, preserved in higher temporally-resolved elec-45

trophysiological investigations (Grayson and Fair, 2017). It follows then, that electrophysiological networks are expected to46

become increasingly segregated during childhood development. However, prior EEG studies have reported conflicting results,47

which include increasing segregation (Boersma et al., 2011, 2013; Janssen et al., 2017; Toth et al., 2017), decreasing segrega-48

tion (Smit et al., 2016; Bathelt et al., 2013; Miskovic et al., 2015), or no changes with age (Schafer et al., 2014). Discrepancy49

between developmental MRI- and electrophysiology-based network findings has been difficult to reconcile, partly due to the50

different spatial scales that functional networks have been examined at (sensor-level in most EEG versus cortical-level in fMRI51

studies). Modern whole-head magnetoencephalography (MEG) allows for sophisticated spatial filtering techniques to accurately52

(varying from sub-millimetre to a few centimetres) reconstruct millisecond electrophysiological time series across the cortex53

(Hillebrand et al., 2005; Troebinger et al., 2014; Barratt et al., 2018), and thus MEG is a critical tool in the quest to resolve these54

discrepancies.55

To better understand how the topology of functional brain networks develops over the whole period of childhood, we used56

MEG to collect resting-state electrophysiological signals from children whose ages spanned 4 to 12 years, as well as from adults.57

Importantly, we utilised a paediatric MEG system with a child-sized helmet for data collection in children aged under 6 years58

(He et al., 2014; Johnson et al., 2010). We hypothesised that, based on the heuristic model of complex brain networks, the59

healthy brain develops from a more random and integrated structure towards a configuration that offers a balance between60

network integration and segregation during normative development (Stam, 2014). Specifically, we predicted that: (1) functional61

networks become more segregated, shifting from a centralised network topology to a de-centralised configuration (Boersma et62

al., 2013; Toth et al., 2017); (2) individual brain regions become more diverse in their connectedness, i.e., centrality of brain63

regions increases for hubs (e.g., regions in the default mode and the fronto-parietal areas), but decreases in non-hub regions64

(e.g., regions in the primary visual and auditory areas).65

Results66

We applied an atlas-based beamforming approach (Hillebrand et al., 2012) to reconstruct time series of neuronal activity67

recorded using a child-customised 125-channel whole-head gradiometer MEG system optimised for children aged around 568

years (5 year-olds (Y.O.), N = 10, 5.4 ± 1.1 years, 5 males). We used a 160-channel whole-head gradiometer MEG system for69

children aged around 10 years (10 year-olds (Y.O.), N = 14, 9.8 ± 1.5 years, 12 males) and adults (N = 24, 40.6 ± 17.4 years,70

Figure 1. Minimum spanning tree (MST) topology and hierarchy of three representative tree models. Top panel: (A) a line-like tree, and (C) a
star-like tree. (B) an intermediate configuration between the two extremes. Nodes are indicated by circles, and links by connecting lines. Green

nodes are leaves, which have a Degree (i.e., number of links to neighbouring nodes) of 1; red nodes are hubs that have the highest Degree and
Betweenness Centrality (i.e., the fraction of the smallest number of links between any two nodes in a network that pass through a node); the
yellow node and the red node in B, have the lowest Eccentricity (i.e., the largest number of links required for a node reaching any other node
in a network). The Diameter in B is 5 (i.e., the longest distance between any two nodes in a network). The three lower graphs are the same
trees as those overlayed on the template brains above but represented in a way that illustrates that trees with more leaves have fewer layers

(nodes with the lowest Eccentricity are placed on top). Network A requires many steps for an individual node, especially a leaf node in green,
to connect to other nodes (low integration and high segregation). The steps required for nodes to connect with each other are fewer in C but the
central hub/red node is considered ‘overloaded’ (high integration but low segregation). The network between these extremes - network B -
represents a hierarchical tree, which offers a balance between information integration and segregation.
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16 males). Functional connectivity between the 80 regions of interest (ROIs; 78 cortical ROIs and bilateral hippocampi) in71

the automated anatomical labelling (AAL; Tzourio-Mazoyer et al. 2002) atlas was estimated using the phase lag index (PLI).72

Averaged PLI was computed between a region and all 79 other regions, resulting in a single estimation of functional connectivity73

per participant. There were no significant PLI differences between the three age groups for any of the 5 frequency bands (delta:74

0.5–4 Hz, theta: 4–8 Hz, alpha: 8–13 Hz, beta: 13-30 Hz, and low gamma: 30–48 Hz).75

Subsequently, we reconstructed the minimum spanning tree (MST; Figure 1; Kruskal 1956;Wang et al. 2008), so that the76

topology of functional networks could be characterised and compared without biases that are inherent in conventional graph77

theoretical approaches (Stam, 2014; Tewarie et al., 2015). The MST is a sub-network that contains the strongest connections78

within a weighted network without forming cycles or loops; it provides an unbiased reconstruction of the core of a network,79

making it possible to create a unique backbone or empirical reference network (e.g., for large datasets such as the human80

brain connectome project; van Dellen et al. 2018). Moreover, MST parameters are sensitive to alterations in the topology of81

brain networks at the functional- (e.g., Boersma et al. 2013; de Bie et al. 2012; Janssen et al. 2017) and structural-level (e.g.,82

Otte et al. 2015; van Dellen et al. 2018), and importantly, can be interpreted along the lines of conventional graph theoretical83

measures (Tewarie et al., 2016).84

Topological segregation of the large-scale functional networks85

We first sought to understand whether the topology of the functional networks become more segregated during childhood86

development. To this end, we calculated 5 global MST measures for each participant: Diameter, Leaf Fraction, Tree Hierarchy,87

Degree Correlation, and Kappa. Small Diameter and high Leaf Fraction are characteristic for a highly integrated topology such88

as a star-like network (A in Figure 1), whereas large Diameter and low Leaf Fraction are representative of a more segregated89

topology or line-like network (C in Figure 1). An optimal MST topology, requiring a small Diameter without overloading central90

nodes, is quantified by Tree Hierarchy (Boersma et al., 2013; Tewarie et al., 2015). Such a network topology also tends to have91

larger Degree Correlation and Kappa, suggesting it is resilient against random damage (Barrat et al., 2008; Van Mieghem et al.,92

2010).93

The 5 global MST measures were significantly different across all 5 frequency bands when comparing children (as a whole94

group) to adults: Kappa, Leaf Fraction, and Tree Hierarchy were higher, whereas Degree Correlation and Diameter were lower,95

in the children (Figure 2). These frequency-independent effects were all highly significant (p < 0.001) when contrasting 5 Y.O.96

with the other two age groups, but less so when comparing 10 Y.O. with adults. The 10 Y.O was adult like for most global MST97

topological measures, apart from larger Leaf Fraction in the delta (p = 0.036) and beta (p = 0.041) bands, larger Kappa (p =98

0.017) and Leaf Fraction (p = 0.036) in the theta band, and smaller Diameter (p = 0.023) but larger Leaf Fraction (p = 0.038)99

and Tree Hierarchy (p = 0.007) in the alpha band. Overall, the MST topology becomes more line-like and segregated across all100

frequency bands with increasing age (Figure 3).101

Regional de-centralisation correlates with increasing topological segregation102

Having established that the network topology is more segregated in adults than in children, we next investigated the centrality103

of brain regions. We calculated 3 nodal MST measures for each of the 80 regions in every participant: Degree, Betweenness104

Centrality, and Eccentricity. Larger Degree and Betweenness Centrality, but smaller Eccentricity characterise regions (or so-called105

“hubs”) that play a central role in the network. We found that, even though there were no significant group differences for the106

Degree and Betweenness Centrality, the Eccentricity showed significant increases from children (as a whole group) to adults,107

and from 5 Y.O. to adults in particular. The group differences for the Eccentricity, illustrated in Figure 4, show pervasive changes108

in Eccentricity over the cortex (the full results are shown in Tables 1-5 in Appendix 1).109

When contrasting adults and 5 Y.O.:110

• all 80 ROIs showed larger theta band Eccentricity in adults;111

• in alpha, beta, and delta mediated MSTs, most of the nodes showing larger Eccentricity were in fronto-parietal areas,112

followed by the nodes normally assigned to the default mode and parieto-temporal areas, and in hippocampal and113

occipital areas;114

• about half of the nodes in the default mode, parieto-temporal, and the occipital areas showed larger Eccentricity in115

gamma mediated MSTs.116

When comparing adults and 10 Y.O.:117

• most of the nodes showing larger Eccentricity were in the default mode, occipital, parieto-temporal, and fronto-parietal118

areas in alpha band mediated MSTs;119
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Figure 2. Minimum spanning tree (MST) global
metrics estimated from individual phase lag index

adjacency matrices in the delta (0.5–4 Hz), theta (4–8

Hz), alpha (8–13 Hz), beta (13-30 Hz), and low gamma

(30–48 Hz) bands for three age groups (5 year-olds

(Y.O.), 10 year-olds (Y.O.), and Adults). Error bars

depict 95% confidence intervals estimated using

bootstrapping with 1000 random iterations. *

indicates statistically significant group differences (p
< 0.05, 50000 random permutations), ** for p < 0.01,
and *** for p < 0.001.
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• nodes from the default mode, parieto-temporal and occipital areas showed larger Eccentricity in the theta mediated120

MSTs;121

• nodes from the fronto-parietal, parieto-temporal, and hippocampal areas, as well as the nodes from the default mode,122

showed larger Eccentricity in the beta mediated MSTs;123

• only nodes from occipital area and the default mode area showed larger Eccentricity in the gamma mediated MSTs;124

• no Eccentricity differences were found in the delta mediated MSTs.125

Figure 3. Minimum spanning trees (MSTs) for adults (N =
24) and children (N = 24) in five frequency bands (delta:

0.5–4 Hz, theta: 4–8 Hz, alpha: 8–13 Hz, beta: 13-30 Hz,

and low gamma: 30–48 Hz), displayed on a template

brain with blue dots depicting nodes and yellow lines

depicting functional connections. The MSTs depicted are

estimated from averaged phase lag index adjacency

matrices from adults (right panel) and children (left

panel) for illustrative purposes only. The alpha-mediated

MST in adults has fewer leaves and a more line-like

topology (with central nodes in occipital regions) than

the MST in children. This observation agrees with the

statistical comparisons between age groups when the

MST metrics were based on the un-averaged adjacency

matrices in Figure 2.

When contrasting adults to children (as a whole group), and 5 Y.O. to126

the other two age groups, the group differences in Eccentricity exhibited127

a similar pattern, namely that a larger Eccentricity was found mostly128

in nodes from the fronto-parietal area, followed by those from default129

mode, parieto-temporal, occipital and hippocampal areas in delta-to-130

gamma mediated MSTs.131

Discussion132

Capitalising on several novel approaches, we demonstrate in this cross-133

sectional MEG study that the topology of functional brain networks134

becomes segregated during childhood development. Increasing topo-135

logical segregation is associated with increasing regional Eccentricity136

across the cortex, indicating that most brain regions become functionally137

specialised and less central in the network. Specifically, the reorgani-138

sation of network topology has the same profile across all frequency139

bands and is not routed via a few hub regions. Importantly, all topolog-140

ical network differences are highly significant between the preschool141

children/5 Y.O. and older age groups (i.e., older children/10 Y.O. and142

adults), suggesting that the preschool years present a unique and im-143

portant period of network maturation. These converging results on144

topological network changes inform a heuristic MST model from which145

normal development during childhood can be characterised.146

The delineation of large-scale functional brain networks in adults147

has confirmed a number of hypotheses regarding the degradation of148

network function in aging and disease (Stam, 2014). However, the small149

number of developmental studies that have examined electrophysiologi-150

cal networks have produced heterogeneous results. Furthermore, these151

results do not align well with MRI-based haemodynamic imaging data.152

Critically, we resolved these discrepancies by utilising several technical153

and methodological advances: (1) age-appropriate MEG systems that154

are insensitive to age-related physiological and anatomical changes in bi-155

ological tissues (e.g., bone thickness and density of the skull; Smith et al.156

2012); (2) source-level functional connectivity estimation to facilitate in-157

terpretation of our results in an anatomical context, and to effectively158

mitigate spurious connectivity/network results inherent in sensor-level159

analyses (Antiqueira et al., 2010; Lai et al., 2017); (3) leakage insensitive160

connectivity estimation using PLI, which effectively ignores spurious161

connectivity due to field spread (Dominguez et al., 2007) and volume162

conduction/signal leakage (Lai et al., 2017; Schoffelen and Gross, 2009;163

Stam et al., 2007); (4) lastly, MST for unbiased network comparisons164

between different age groups (Tewarie et al., 2015; Van Mieghem et al.,165

2010).166

Leveraging data across multiple frequency bands in anatomical167

space, we demonstrate that the topology of electrophysiological net-168

works becomes increasingly segregated during childhood, in line with169

MRI-based findings (Baum et al., 2017; Fair et al., 2009; Gu et al., 2015;170
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Figure 4. Significant differences in the minimum spanning tree (MST) Eccentricity displayed as a color-coded map on the parcellated template
brain, viewed from, in clockwise order, the left, top, right, right midline, and left midline. From left to right, pairwise differences (t-value, p <

0.05, FDR-corrected for 3 nodal MST measures x 80 ROIs) between adults and children, 10 Y.O. and 5 Y.O., adults and 5 Y.O., as well as adults

and 10 Y.O., are shown for all five frequency bands (delta: 0.5–4 Hz, theta: 4–8 Hz, alpha: 8–13 Hz, beta: 13-30 Hz, and low gamma: 30–48 Hz).
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Huang et al., 2015). The smaller Diameter and larger Leaf Fraction in children compared to adults indicates that the topology171

of the functional brain networks becomes segregated via a transition from a star-like (centralised) configuration toward a more172

line-like (de-centralised) configuration during development. Such network topological change has been found in infants right173

after birth (Toth et al., 2017) and continues up to 18 years of age (Boersma et al., 2011). In addition, the observed larger Kappa174

in children compared to adults suggests a movement away from a scale-free network. This finding seems to be at odds with175

findings from most adult studies, which indicate that the mature brain network is approximately “scale-free” (Sporns, 2013).176

However, Kappa is not strictly tied to “scale-freeness”, but rather is a measure for the homogeneity of the degree distribution177

in the MST (especially in the case of small networks; Jinhui et al. 2009). Moreover, scale-freeness is a relative measure, and178

depends on the reference model that the experimental model is compared to (Stam and van Straaten, 2012). Thus, the adult179

brain may still be scale-free, although less so than brain networks in children. In accordance with the decreased scale-freeness180

of adult networks, the increase in Eccentricity found in a distributed set of brain regions across all frequency bands suggests181

that during development most brain regions, including hubs become less central, in order to prevent hub overloading, as well as182

to reduce vulnerability to targeted attacks (Stam et al., 2009). Together, decreasing nodal centrality possibly reflects a protective183

mechanism during normative brain development, since disturbances and insults to hub regions can produce lifelong changes in184

neurological and mental functioning (Crossley et al., 2014; DeSalvo et al., 2014; Stam et al., 2009; Tewarie et al., 2014; Yu et al.,185

2017). Lastly, the smaller Tree Hierarchy found in adults is less straightforward to understand here, as a decrease in network186

hierarchy is often observed in clinical groups (Stam and van Straaten, 2012). Tree Hierarchy is a composite MST measure that187

takes into account several aspects of the MST, namely the maximum Betweenness Centrality and the number of leafs (Stam,188

2014). Given that Betweenness Centrality and Degree did not differ between children and adults, the observed decrease in Tree189

Hierarchy, in our data, is likely to be driven by a decrease in Leaf Fraction. A more straightforward quantification of network190

hierarchy, other than Tree Hierarhcy, in complex network neuroscience is warranted though. Nevertheless, the present data191

point to a balance between network integration and segregation (i.e., a network topology that becomes increasingly segregated)192

with locally specialised regions, during childhood development.193

Most network differences in the current study are frequency-independent, suggesting that similar network constraints194

manifest themselves across different physiological architectures (Barry et al., 2004; Bathelt et al., 2013;Murias et al., 2007).195

All global MST changes in our study share the same profile across the five frequency bands between age groups. Although the196

specific distributed regions that showed centrality differences varied across frequency bands, there were also some frequency197

invariant differences: the largest number of regions that exhibited between group Eccentricity differences was found in theta198

and alpha mediated MSTs; regions in the fronto-parietal and default mode areas displayed the largest differences across all199

frequency bands. This seems to contradict some frequency-specific network findings reported in lower frequency bands in200

previous developmental EEG studies (Boersma et al., 2011;Miskovic et al., 2015; Srinivasan, 1999). These inconsistencies may201

be ascribed to differences between cohorts (e.g., age-profiles) and methodological differences (e.g., the use of weighted versus202

unweighted graphs, use of different thresholds, and/or the normalisation of networks/graphs via random surrogates; van Wijk203

et al. 2010). Nevertheless, MST analysis used in our study effectively addresses methodological limitations such as biased204

estimates of network topology and biased network comparisons (Tewarie et al., 2015).205

Furthermore, there is now a growing understanding that conventional graph theoretical metrics (such as the clustering206

coefficient and shortest path length) do not fully account for fundamental properties of brain networks, and the small-world207

model is often used inappropriately in the field of neuroscience (Papo et al., 2016). Therefore, we propose here a heuristic MST208

model space to better capture the trajectory of changes in functional brain networks underlying normative brain development209

(Figure 5). Within this MST model space, current findings suggest a clear developmental trajectory of brain networks along210

the right axis, suggesting a balance between integration and segregation in topology. An adequate delineation of different211

trajectories of topological changes in abnormal development, which may be a more useful biomarker than the absolute values212

(Wolff and Piven, 2014), can also be provided by this network space. For instance, MST networks were found to be more star-like213

in ADHD children compared to age-matched typical children (Janssen et al., 2017) - a pattern that fits with a shift towards the214

lower-right corner of the network space. Such a trend indicates a delay in brain maturation for ADHD children. In contrast,215

MST networks become more line-like in children with dyslexia compared to typically developing children (Fraga Gonzalez et al.,216

2016) - a transition to the lower-left corner of the network space. This pattern indicates an alternative developmental trajectory217

along the horizontal axis for brain networks in dyslexia, veering from the typical developmental trajectory along the right axis.218

Our model space suggests that the normal adult brain that emerges during development is a special composite that combines219

optimal network integration and segregation, degree diversity, and hierarchy. Moreover, distinct pathological trajectories in220

adults, if projecting the normal adult brain onto the horizontal axis, could also be represented in this model space: a more221

de-centralised line-like MST was found in patients with early relapsing remitting multiple sclerosis (Tewarie et al., 2014) and222

Alzheimer’s disease (Yu et al., 2016), suggesting that networks in these diseases move towards the lower-left corner (more223
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segregated); a more centralised star-like MST was observed in fronto-temporal dementia (Yu et al., 2016), indicating an opposite224

trend towards the lower-right corner (more integrated).225

Figure 5. A heuristic minimum spanning tree (MST) model for the emergence of complex brain
networks. This MST model space is based on the heuristic model of complex brain networks

proposed by Stam and Van Straaten 2012. The model space consists of two extreme MSTs

(representing network integration/segregation), an optimal MST for the normal adult brain, and

three inter-connecting axes. Functional brain networks are proposed to develop from a star-like

MST toward the optimal MST along the up-right axis, i.e., a balance between network integration

and segregation. The solid line represents a developmental trajectory supported by this study,

dashed lines represent trajectories that require future rigorous empirical support.

There are a few caveats worth226

mentioning in relation to the227

future application of this work.228

From a theoretical point of view,229

it is conceded that there are230

currently no simple mathemati-231

cal models that fully characterise232

healthy brain networks, such as233

its hierarchical modularity, in or-234

der to fill the gap between the ex-235

isting small-world and scale-free236

network models. Tree Hierarchy237

is a composite measure of net-238

work hierarchy, and thus is inher-239

ently correlated with other mea-240

sures such as leaf number and241

maximum betweenness centrality242

(see methods for details). There-243

fore, discovery of new mathe-244

matical models will likely support245

a deeper understanding of net-246

work constraints on the develop-247

ing brain (Stam and van Straaten,248

2012). From a methodological249

point of view, although in the250

present study we took care of sig-251

nal leakage in source space us-252

ing the leakage-invariant PLI met-253

ric, and loops were discarded in254

the MST construction, the data255

may still have suffered to some256

extent from so-called secondary257

leakage (Palva and Palva, 2012;258

Wang et al., 2018). Therefore, future studies would also benefit from advanced methods such as implementing Lowdin259

Orthogonalisation (Lowdin, 1950) in MEG connectivity/network analyses to reduce those “ghost” connections (Colclough et al.,260

2015). Furthermore, for the warping procedure in children, we initially tested with age-specific paediatric templates as it261

was suspected that, in comparison to the adult template, the paediatric ones would produce a better approximation to the262

child’s brain anatomy due to better alignment in terms of skull thickness and brain morphology. However, adult and child263

templates produced very similar results in a previous study (Cheyne et al., 2014). Moreover, the AAL atlas was not available264

for these paediatric templates, hence using the anatomical labelling from the AAL (adult) atlas (Tzourio-Mazoyer et al., 2002)265

in paediatric surrogate structural MRI would still only provide an approximate labelling. Therefore, the surrogate procedure266

(using the adult template), as well as the subsequent analyses, were kept the same for all participants. Nevertheless, the use267

of age-specific template brain images and atlases together with surface-based registration in further studies would help to268

minimise registration errors due to the heterogeneity of brain anatomy in young children (Fonov et al., 2011). In addition,269

canonically-defined frequency bands may overlook some physiological mechanisms underlying the development of oscillatory270

neural networks. Estimating network properties from age-appropriate frequency bands is critical in future work (Boersma et al.,271

2013), for example by parameterization of neuronal power spectral densities on the basis of putative oscillatory components272

(Haller et al., 2018). Lastly, the developmental trajectory found in this cross-sectional study should be replicated in a large273

longitudinal sample.274

In conclusion, a combination of an atlas-based beamformer in age-appropriateMEG data, leakage-insensitive PLI connectivity275

estimation, and unbiased MST network measures revealed that functional brain networks become more segregated during276
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childhood. Increases in MST Diameter and decreases in Leaf Fraction indicate that functional networks develop into a more277

line-like (de-centralised) topology; increases in Degree Correlation and Eccentricity suggest that brain regions stay less central278

and become more locally specialised; decreases in Kappa and Tree Hierarchy emphasise that the network segregation during279

development balances the benefits of integration between distant brain regions against the risks of overload on central regions.280

Importantly, these topological network changes are most evident in the preschool years of childhood (i.e., the younger age281

group between 4-6 years in our data) and exhibit the same pattern for all ferquency bands (i.e., delta to low gamma). Our282

data resolves a long-standing debate in the field with respect to the normative brain development across spatial and temporal283

scales of investigation using MRI-based and electrophysiological measures. Finally, we propose a heuristic MST model for the284

emergence of complex brain networks, in which different patterns of network abnormality could be discerned depending upon285

their trajectories through this “network space”. Therefore, our study also represents the first attempt in providing a unifying286

network model for the development of functional brain networks in youth. We anticipate new data from both normative287

and abnormal developmental studies to be incorporated into this network space to enable us not only to understand new288

mechanisms for early brain development and resolve ambiguities in the field, but most importantly to translate brain network289

studies into solutions for clinical diagnosis and treatments.290

Methods and Materials291

Participants292

Included participants were control participants who took part in a larger project on stuttering. The dataset consisted of MEG293

recordings collected from 28 children and 24 adults during 3-5 minutes of eyes-open resting-state. Due to excessive head294

movement, incidental system noise or signs of drowsiness, data from 4 children were excluded. The present analyses were295

therefore completed on a total of 48 participants: 24 children aged from 4 to 12 years, and 24 adults (� = 40.6, � = 17.4, 16296

males). Children were further divided into two groups: a younger group with mean age centred at 5 years (5 Y.O., N = 10, � =297

5.4, � = 1.1, 5 males) and an older group at 10 years (10 Y.O., N = 14, � = 9.8, � = 1.5, 12 males).298

The experimental procedures were approved by the Human Participants Ethics Committee at Macquarie University. Written299

consent was obtained from the adult participants and from the parents/guardians of the children prior to the experiment. All300

participants were remunerated for their participation.301

Experimental Procedures302

Upon arriving at the laboratory, participants were familiarised with the magnetically shielded room where they would be tested303

in a supine position. Prior to MEG measurements, five head position indicators (HPIs) were attached to a tightly fitting elastic304

cap. The 3D locations of the HPIs, fiducial landmarks (nasion, and left and right pre-auricular points) and the shape of each305

participant’s head were measured with a pen digitiser (Polhemus Fastrak, Colchester, VT, USA).306

Children in the 5 Y.O. group were tested using the child-customized 125-channel whole-head gradiometer MEG system307

(Model PQ1064R-N2m, KIT, Kanazawa, Japan), and all other participants were tested using the 160-channel whole-head308

gradiometer MEG system (Model PQ1160RN2, KIT, Kanazawa, Japan). The gradiometers of both systems have a 50 mm baseline309

and 15.5 mm diameter coils, and are positioned in a glass fibre reinforced plastic cryostat for measurement of the normal310

component of the magnetic field from the human brain (Kado et al., 1999). In both systems, neighbouring channels are 38 mm311

apart and 20 mm from the outer dewar surface. The 125-channel dewar was designed to fit a maximum head circumference of312

53.4 cm, accommodating more than 90% of heads of 5-year olds (Johnson et al., 2010). Both systems were situated within the313

same magnetically shielded room, and therefore have comparable environmental noise level.314

During MEG data acquisition, participants were asked to remain relaxed, awake and with their eyes fixed on a white cross at315

the centre of a black 36 cm (width) x 24 cm (length) rectangular image with 4 x 4 degrees of visual angle. The visual presentation316

was done by video projectors situated outside the magnetically shielded room (child MEG projector: Sharp Notevision Model317

PG10S, Osaka, Japan; Adult MEG projector: InFocus Model IN5108, Portland, USA). Drowsiness was monitored online through318

a video-camera so that any affected data would be removed from further analysis. For child participants, an experienced319

researcher sat with them during the whole session to make sure they were comfortable.320

MEG Data Pre-processing321

MEG data were acquired at a sampling frequency of 1000 Hz and with an online bandpass of 0.03-200 Hz. Head positions were322

measured at the beginning and end of the acquisition session; a movement tolerance of 5 mm and 10 mm was used in adults323

and children, respectively.324

The Yokogawa/KIT MEG data were firstly converted to a CTF data format using BrainWave toolbox developed at the Hospital325

for Sick Children in Canada (http://cheynelab.utoronto.ca, version 3.3beta, see Cheyne et al., 2014 for details). Then, the326
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CTF compatible MEG data were imported into and processed using DataEditor in the CTF MEG5 software (VSM MedTech327

Systems Inc., Coquitlam BC, Canada; Version 5.0.2). The continuous raw MEG data were firstly filtered from 0.5 to 100 Hz using328

bi-directional IIR Butterworth filters with DC removal and segmented into epochs of 4096 samples (= 4.096 seconds). Epochs329

that contained physiological (e.g., muscle noise) or environmental artefacts were rejected by visual inspection. The cleaned330

datasets consisted on average of 23.8 (� = 3.02) epochs for the children and 40 epochs (� = 0.02) for the adults.331

Head Modelling and Surrogate MRIs332

For the head model construction, obtaining individual structural MRI scans of children - especially of those aged below 6333

years - was impractical. A “surrogate” MRI approach was therefore used here to warp the adult Montreal Neurological Institute334

(MNI) template T1 structural brain image to each participant’s digitized head shape with an iterative closest point algorithm335

implemented in BrainWave (see Cheyne et al. 2014 for details). MEG data was co-registered with the warped “surrogate” MRI336

using the digitised fiducial points. The outline of the scalp from this co-registered “surrogate” MRI was extracted using the337

MRIViewer in the CTF MEG5 software (VSM MedTech Systems Inc., Coquitlam BC, Canada; Version 5.0.2) and then used to338

fit a multisphere volume conductor model (Huang et al., 1999), which was subsequently used for the beamformer analysis339

described below.340

Beamforming341

An atlas-based beamforming approach (Hillebrand et al., 2012) was adopted to project sensor level MEG data to source space.342

The co-registered surrogate MRIs were normalised to the standard MNI (T1) template, using the SEG toolbox (Weiskopf et al.,343

2011) in SPM8. The automated anatomical labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002) was used to label the voxels in a344

participant’s normalised co-registered surrogate MRI, following which the centroid for each AAL regions of interest (80 ROIs; 78345

cortical and bilateral hippocampal) was inversely transformed to native space (Hillebrand et al., 2016).346

For each centroid, beamformer weights were computed using Synthetic Aperture Magnetometry (SAM, Robinson 1999. This347

beamformer selectively weights the contribution from each MEG sensor to a voxel’s activity based on the broad-band (0.5-48348

Hz) data covariance matrix, which was computed from (1) all selected time-series, (2) the forward solution (lead field) for a349

dipolar source with optimum orientation at that location, and (3) a unity noise covariance that was scaled by the smallest350

singular value in a decomposition of the data covariance matrix. The broad-band MEG data were subsequently projected351

through the normalised beamformer weights Cheyne et al. (2007).352

From the resulting time-series, the first 15 artifact-free epochs, containing 4096 samples (= 4.096 seconds), were selected for353

further analyses of functional connectivity and network topology. These selected epochs were then band-pass filtered, using an354

offline discrete Fast Fourier Transform filter without phase distortion, as implemented in the BrainWave toolbox developed at355

VU University Medical Centre (C.J. Stam; http://home.kpn.nl/stam7883/brainwave.html, version 0.9.152.4.1), into five canonical356

MEG frequency bands (delta: 0.5–4 Hz, theta: 4–8 Hz, alpha: 8–13 Hz, beta: 13-30 Hz, and low gamma: 30–48 Hz). Subsequently,357

the instantaneous phase for each time-series was determined by taking the argument of the analytic signal as computed using358

the Hilbert transform (Marple, 1999).359

Connectivity Analysis360

Pair-wise frequency band-specific functional connectivity between the 80 ROIs was estimated using the phase lag index (PLI)361

for each of the 15 artifact-free epochs (= 4.096 seconds). PLI reflects the consistency by which one signal is phase leading or362

lagging with respect to another signal (Stam et al., 2007), which can be expressed as:363

PLI = |

|

⟨sign[sinΔ'(tk)]⟩|| (1)

where Δ' refers to the instantaneous phase difference between two time-series, tk are discrete time steps calculated over364

all K = 1…N , sign refers to the signum function, <> and ∣∣ denote the mean and absolute value, respectively. Specifically,365

PLI quantifies phase synchronisation as a measure of the asymmetry in the distribution of instantaneous phase differences366

between two time-series (in our case the beamformer reconstructed time-series for two ROIs). The value of PLI ranges from367

zero (random phase differences/no functional connectivity or only zero-lag/mod �) and one (perfect non-zero-lag synchrony).368

Because the effects of volume conduction/field spread/signal leakage give zero-lag (mod �) phase differences, PLI is insensitive369

to these effects at the cost of being blind to true zero-lag interactions. For each frequency band and each epoch, the 80 x 80370

connectivity matrix of pairwise PLI values was computed. ROI-PLI was computed as the average PLI between a node and all371

other nodes, and whole-brain PLI was calculated as the average across all nodal PLI values.372
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Minimum Spanning Tree Analysis373

For each epoch and participant separately, the minimum spanning tree (MST) sub-graph was constructed using the PLI374

connectivity matrix. The MST is constructed by connecting all n nodes in such a way that the cost (the sum of all link weights) is375

minimised without forming cycles. For the computation of the MST, 1/PLI is used as the link weights since we are interested in376

the strongest connections in the network. MSTs were constructed in BrainWave by applying Kruskal’s algorithm (Kruskal, 1956),377

which starts with an unconnected network, adds the link with lowest weight, then adds the link with next lowest weight (if this378

does not create a loop), until all nodes are connected, thereby forming a tree consisting of m = n − 1 links.379

Two extreme tree topologies exist: (1) a line-like tree (A in Figure 1) where all nodes are connected to two other nodes380

with the exception of the two so-called "leaf-nodes" at either end that have only one link, and (2) a star-like tree (C in Figure 1)381

where all leaves are connected to one central node. There are many different tree types between these two extremes (e.g., B in382

Figure 1). The tree topology can be characterised with various measures (Boersma et al., 2013).383

Global MST network measures are informative about the functional integration and segregation of the entire network. Five384

different global MST measures were used here: (1) the “Leaf Fraction” is computed as the number of leaf nodes, divided by385

the total number of nodes; (2) the “Diameter” is the longest shortest path between any two nodes, where the shortest path is386

defined as the path with smallest number of links between two nodes; (3) the “Tree Hierarchy” was introduced (Boersma et al.,387

2013) to describe a balance between a small diameter without overloading central nodes in the tree (Figure 1). It is defined as388

TH = l
2mBCmax

, where l is the leaf number and BCmax represents the maximal betweenness centrality in the tree. In a line-like389

tree, l = 2 and with m approaching infinity, TH approaches 0; and in a star-like tree, l ≈ m, so TH approaches 0.5; for l between390

these two extremes, TH can have higher values (with an upper bound of 1); (4) the “Degree Correlation” is an index of whether391

the degree of a node is correlated with the degree of its neighbouring nodes (Van Mieghem et al., 2010); (5) “Kappa” (also392

called degree divergence; Barrat et al. 2008) measures the broadness of the degree distribution, and is high in graphs with a393

scale-free degree distribution, and low in graphs with a degree distribution that approaches the normal distribution. Kappa394

also relates to network robustness: high kappa reflects high resilience against random damage in networks.395

Nodal MST network measures capture the importance of a node within the network. Three different nodal measures for396

centrality (“hubness”) were used: (1) the “Degree” is the number of connections of a node to its neighbouring nodes; (2) the397

“Betweenness Centrality” is the fraction of the shortest paths that pass through a node; (3) the “Eccentricity” of a node is the398

longest shortest path between a node and any other node, and is low if the node is central in the graph (Bullmore and Sporns,399

2012).400

Statistical Analysis401

Statistical analyses were performed using permutation testing as implemented in the Resampling Statistical Toolkit for Matlab402

2016a. We used 50,000 permutations of group membership to empirically approximate the distribution for the null hypothesis403

(i.e., no difference between groups) for each contrast. For each permutation, the F/t values were derived for a contrast of404

interest, and any F/t values for the original data that exceeded the significance threshold for the F/t distribution were deemed405

reliable. Furthermore, p values were corrected for multiple comparisons at the threshold of 0.05 using the false discovery rate406

(FDR, Benjamini and Hochberg 1995).407

For each frequency band and each participant separately, whole-brain PLI were averaged over the 15 epochs per participant.408

The ROI-PLI values, global and nodal MST measures were averaged over 15 epochs, yielding 80 ROI-PLI, 5 global MST, and 3 x409

80 (= nodal MST measures x ROIs) values per participant for each frequency band, respectively.410

Permutation tests were initially performed, for each frequency band separately, between adults and children (as a whole411

group), for the whole-brain PLI and the global MST measures (FDR corrected for the number of global measures (5)); if the412

whole-brain PLI or the global MST measures were significantly different in a specific frequency band, then the ROI-PLI and the413

nodal MST measures were compared (FDR corrected for three nodal measures x 80 ROIs). Second level permutation tests were414

performed in pairwise groups (10 Y.O. versus 5 Y.O., adults versus 5 Y.O., adults versus 10 Y.O.) for the whole-brain PLI or the415

global MST measures if adults and children (as a whole group) showed significant differences for these measures in any specific416

frequency band, and for the ROI-PLI or the nodal MST measures if these measures were significantly different in any specific417

frequency band between adults and children (as a whole group).418
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Appendix 1601

Appendix 1 Table 1. Regions of interest (ROIs) that manifest significant Eccentricity differences between groups in the delta band.602603

Pairwise Permutation Comparisons (FDR-corrected)

ROIs Children (N

= 24) vs

Adults (N =

24)

5 Y.O. (N =

10) vs 10

Y.O. (N = 14)

5 Y.O. (N =

10) vs

Adults (N =

24)

10 Y.O.

(N=14) vs

Adults

(N=24)

Left Hemisphere

Gryus Rectus ↑

Olfactory Cortex ↑

Superior frontal gyrus,

orbital part

↑ ↑

Frontal gyrus, medial

orbital part

Middle frontal gyrus, orbital

part

↑ ↑

Inferior frontal gyrus,

orbital part

↑ ↑

Superior frontal gyrus ↑

Middle frontal gyrus ↑

Inferior frontal gyrus,

opercular part

↑

Inferior frontal gyrus,

triangular part

↑ ↑

Superior frontal gyrus,

medial

↑

Supplementary motor area ↑

Paracentral lobule

Precentral gyrus ↑ ↑

Rolandic operculum ↑

Postcentral gyrus

Superior parietal gyrus ↑ ↑

Inferior parietal, but

supramarginal and angular

gyri

↑

Supramarginal gyrus

Angular gyrus ↑

Precuneus ↑ ↑

Superior occipital gyrus ↑

Middle occipital gyrus ↑

Inferior occipital gyrus ↑ ↑

Calcarine fissure and

surrounding cortex

Cuneus ↑

Lingual gyrus

Fusiform gyrus ↑ ↑

Heschl gyrus ↑ ↑

Superior temporal gyrus

Middle temporal gyrus
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Inferior temporal gyrus

Temporal pole: superior

temporal gyrus

↑

Temporal pole: middle

temporal gyrus

↑ ↑ ↑

Parahippocampal gyrus

Anterior cingulate and

paracingulate gyri

Median cingulate and

paracingulate gyri

↑ ↑

Posterior cingulate gyrus ↑ ↑

Insula ↑

Hippocampus

Right Hemisphere

Gryus Rectus ↑ ↑

Olfactory Cortex ↑ ↑

Superior frontal gyrus,

orbital part

Frontal gyrus, medial

orbital part

↑

Middle frontal gyrus, orbital

part

↑

Inferior frontal gyrus,

orbital part

↑ ↑

Superior frontal gyrus ↑ ↑

Middle frontal gyrus ↑ ↑ ↑

Inferior frontal gyrus,

opercular part

Inferior frontal gyrus,

triangular part

↑

Superior frontal gyrus,

medial

↑

Supplementary motor area ↑ ↑

Paracentral lobule

Precentral gyrus ↑

Rolandic operculum ↑

Postcentral gyrus

Superior parietal gyrus ↑ ↑

Inferior parietal, but

supramarginal and angular

gyri

↑

Supramarginal gyrus

Angular gyrus ↑

Precuneus ↑ ↑

Superior occipital gyrus ↑ ↑

Middle occipital gyrus

Inferior occipital gyrus ↑ ↑

Calcarine fissure and

surrounding cortex

↑

Cuneus

Lingual gyrus ↑

Fusiform gyrus ↑
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Heschl gyrus ↑ ↑

Superior temporal gyrus

Middle temporal gyrus

Inferior temporal gyrus ↑ ↑

Temporal pole: superior

temporal gyrus

↑

Temporal pole: middle

temporal gyrus

Parahippocampal gyrus ↑ ↑

Anterior cingulate and

paracingulate gyri

↑

Median cingulate and

paracingulate gyri

↑ ↑

Posterior cingulate gyrus ↑ ↑

Insula ↑

Hippocampus
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604

Appendix 1 Table 2. Regions of interest (ROIs) that manifest significant Eccentricity differences between groups in the theta band.605606

Pairwise Permutation Comparisons (FDR-corrected)

ROIs Children (N

= 24) vs

Adults (N =

24)

5 Y.O. (N =

10) vs 10

Y.O. (N = 14)

5 Y.O. (N =

10) vs

Adults (N =

24)

10 Y.O.

(N=14) vs

Adults

(N=24)

Left Hemisphere

Gryus Rectus ↑ ↑ ↑

Olfactory Cortex ↑ ↑

Superior frontal gyrus,

orbital part

↑ ↑ ↑

Frontal gyrus, medial

orbital part

↑ ↑ ↑

Middle frontal gyrus, orbital

part

↑ ↑ ↑

Inferior frontal gyrus,

orbital part

↑ ↑ ↑

Superior frontal gyrus ↑ ↑ ↑

Middle frontal gyrus ↑ ↑

Inferior frontal gyrus,

opercular part

↑ ↑

Inferior frontal gyrus,

triangular part

↑ ↑ ↑

Superior frontal gyrus,

medial

↑ ↑

Supplementary motor area ↑ ↑ ↑

Paracentral lobule ↑ ↑ ↑

Precentral gyrus ↑ ↑ ↑

Rolandic operculum ↑ ↑ ↑

Postcentral gyrus ↑ ↑ ↑

Superior parietal gyrus ↑ ↑ ↑

Inferior parietal, but

supramarginal and angular

gyri

Supramarginal gyrus ↑ ↑ ↑

Angular gyrus ↑ ↑

Precuneus ↑ ↑

Superior occipital gyrus ↑ ↑ ↑

Middle occipital gyrus ↑ ↑ ↑ ↑

Inferior occipital gyrus ↑ ↑

Calcarine fissure and

surrounding cortex

↑ ↑ ↑

Cuneus ↑ ↑

Lingual gyrus ↑ ↑

Fusiform gyrus ↑ ↑ ↑ ↑

Heschl gyrus ↑ ↑ ↑

Superior temporal gyrus ↑ ↑

Middle temporal gyrus ↑ ↑ ↑
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Inferior temporal gyrus ↑ ↑

Temporal pole: superior

temporal gyrus

↑ ↑ ↑

Temporal pole: middle

temporal gyrus

↑ ↑

Parahippocampal gyrus ↑ ↑ ↑

Anterior cingulate and

paracingulate gyri

↑ ↑ ↑

Median cingulate and

paracingulate gyri

↑

Posterior cingulate gyrus ↑ ↑ ↑

Insula ↑ ↑

Hippocampus ↑ ↑ ↑

Right Hemisphere

Gryus Rectus ↑ ↑

Olfactory Cortex ↑ ↑

Superior frontal gyrus,

orbital part

↑ ↑ ↑

Frontal gyrus, medial

orbital part

↑ ↑

Middle frontal gyrus, orbital

part

↑ ↑ ↑

Inferior frontal gyrus,

orbital part

↑ ↑ ↑

Superior frontal gyrus ↑

Middle frontal gyrus ↑ ↑

Inferior frontal gyrus,

opercular part

↑ ↑ ↑

Inferior frontal gyrus,

triangular part

↑ ↑ ↑

Superior frontal gyrus,

medial

↑ ↑ ↑ ↑

Supplementary motor area ↑ ↑ ↑ ↑

Paracentral lobule ↑ ↑ ↑ ↑

Precentral gyrus ↑ ↑ ↑

Rolandic operculum ↑ ↑

Postcentral gyrus ↑ ↑ ↑

Superior parietal gyrus ↑ ↑

Inferior parietal, but

supramarginal and angular

gyri

↑ ↑ ↑

Supramarginal gyrus ↑ ↑ ↑

Angular gyrus ↑ ↑ ↑

Precuneus ↑ ↑

Superior occipital gyrus ↑ ↑

Middle occipital gyrus ↑ ↑

Inferior occipital gyrus ↑ ↑ ↑

Calcarine fissure and

surrounding cortex

↑ ↑

Cuneus ↑ ↑

Lingual gyrus ↑ ↑ ↑

Fusiform gyrus ↑ ↑
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Heschl gyrus ↑ ↑ ↑

Superior temporal gyrus ↑ ↑

Middle temporal gyrus ↑ ↑

Inferior temporal gyrus ↑ ↑ ↑

Temporal pole: superior

temporal gyrus

↑ ↑ ↑

Temporal pole: middle

temporal gyrus

↑ ↑ ↑

Parahippocampal gyrus ↑ ↑

Anterior cingulate and

paracingulate gyri

↑ ↑ ↑

Median cingulate and

paracingulate gyri

↑ ↑ ↑

Posterior cingulate gyrus ↑ ↑ ↑

Insula ↑ ↑ ↑

Hippocampus ↑ ↑ ↑
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Appendix 1 Table 3. Regions of interest (ROIs) that manifest significant Eccentricity differences between groups in the alpha band.608609

Pairwise Permutation Comparisons (FDR-corrected)

ROIs Children (N

= 24) vs

Adults (N =

24)

5 Y.O. (N =

10) vs 10

Y.O. (N = 14)

5 Y.O. (N =

10) vs

Adults (N =

24)

10 Y.O.

(N=14) vs

Adults

(N=24)

Left Hemisphere

Gryus Rectus ↑

Olfactory Cortex ↑

Superior frontal gyrus,

orbital part

Frontal gyrus, medial

orbital part

↑ ↑

Middle frontal gyrus, orbital

part

↑ ↑

Inferior frontal gyrus,

orbital part

↑ ↑ ↑

Superior frontal gyrus ↑

Middle frontal gyrus ↑ ↑

Inferior frontal gyrus,

opercular part

↑ ↑

Inferior frontal gyrus,

triangular part

↑ ↑ ↑

Superior frontal gyrus,

medial

↑ ↑

Supplementary motor area ↑ ↑

Paracentral lobule ↑ ↑ ↑

Precentral gyrus ↑ ↑

Rolandic operculum ↑ ↑ ↑

Postcentral gyrus ↑ ↑

Superior parietal gyrus ↑ ↑

Inferior parietal, but

supramarginal and angular

gyri

↑ ↑

Supramarginal gyrus ↑ ↑

Angular gyrus ↑ ↑

Precuneus ↑ ↑

Superior occipital gyrus ↑ ↑ ↑

Middle occipital gyrus ↑ ↑ ↑

Inferior occipital gyrus ↑ ↑

Calcarine fissure and

surrounding cortex

↑ ↑ ↑

Cuneus ↑ ↑

Lingual gyrus ↑ ↑ ↑

Fusiform gyrus ↑ ↑ ↑

Heschl gyrus ↑ ↑

Superior temporal gyrus ↑ ↑

Middle temporal gyrus ↑ ↑ ↑
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Inferior temporal gyrus ↑ ↑ ↑

Temporal pole: superior

temporal gyrus

↑ ↑ ↑

Temporal pole: middle

temporal gyrus

↑ ↑

Parahippocampal gyrus ↑ ↑

Anterior cingulate and

paracingulate gyri

↑

Median cingulate and

paracingulate gyri

↑ ↑ ↑

Posterior cingulate gyrus ↑ ↑ ↑

Insula ↑ ↑

Hippocampus

Right Hemisphere

Gryus Rectus ↑ ↑

Olfactory Cortex ↑ ↑

Superior frontal gyrus,

orbital part

↑ ↑ ↑

Frontal gyrus, medial

orbital part

↑

Middle frontal gyrus, orbital

part

↑ ↑

Inferior frontal gyrus,

orbital part

↑ ↑

Superior frontal gyrus ↑ ↑

Middle frontal gyrus ↑ ↑ ↑

Inferior frontal gyrus,

opercular part

↑ ↑

Inferior frontal gyrus,

triangular part

↑ ↑ ↑

Superior frontal gyrus,

medial

↑ ↑ ↑

Supplementary motor area ↑ ↑ ↑

Paracentral lobule ↑ ↑ ↑

Precentral gyrus ↑ ↑

Rolandic operculum

Postcentral gyrus ↑ ↑

Superior parietal gyrus ↑ ↑ ↑

Inferior parietal, but

supramarginal and angular

gyri

↑ ↑

Supramarginal gyrus

Angular gyrus ↑

Precuneus ↑ ↑ ↑

Superior occipital gyrus ↑

Middle occipital gyrus ↑

Inferior occipital gyrus ↑ ↑

Calcarine fissure and

surrounding cortex

↑ ↑

Cuneus ↑ ↑

Lingual gyrus ↑ ↑

Fusiform gyrus ↑
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Heschl gyrus ↑ ↑

Superior temporal gyrus

Middle temporal gyrus

Inferior temporal gyrus ↑

Temporal pole: superior

temporal gyrus

↑ ↑

Temporal pole: middle

temporal gyrus

↑ ↑ ↑

Parahippocampal gyrus ↑ ↑ ↑

Anterior cingulate and

paracingulate gyri

↑ ↑

Median cingulate and

paracingulate gyri

↑ ↑ ↑

Posterior cingulate gyrus ↑ ↑ ↑

Insula ↑ ↑

Hippocampus ↑ ↑
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Appendix 1 Table 4. Regions of interest (ROIs) that manifest significant Eccentricity differences between groups in the beta band.611612

Pairwise Permutation Comparisons (FDR-corrected)

ROIs Children (N

= 24) vs

Adults (N =

24)

5 Y.O. (N =

10) vs 10

Y.O. (N = 14)

5 Y.O. (N =

10) vs

Adults (N =

24)

10 Y.O.

(N=14) vs

Adults

(N=24)

Left Hemisphere

Gryus Rectus

Olfactory Cortex ↑ ↑

Superior frontal gyrus,

orbital part

↑ ↑

Frontal gyrus, medial

orbital part

Middle frontal gyrus, orbital

part

↑ ↑

Inferior frontal gyrus,

orbital part

↑ ↑

Superior frontal gyrus ↑ ↑

Middle frontal gyrus

Inferior frontal gyrus,

opercular part

↑ ↑

Inferior frontal gyrus,

triangular part

↑ ↑

Superior frontal gyrus,

medial

↑ ↑ ↑ ↑

Supplementary motor area ↑ ↑ ↑

Paracentral lobule

Precentral gyrus ↑ ↑

Rolandic operculum

Postcentral gyrus ↑

Superior parietal gyrus

Inferior parietal, but

supramarginal and angular

gyri

↑ ↑

Supramarginal gyrus ↑

Angular gyrus

Precuneus ↑ ↑

Superior occipital gyrus ↑ ↑

Middle occipital gyrus

Inferior occipital gyrus ↑

Calcarine fissure and

surrounding cortex

Cuneus ↑

Lingual gyrus

Fusiform gyrus ↑ ↑

Heschl gyrus

Superior temporal gyrus

Middle temporal gyrus ↑ ↑
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Inferior temporal gyrus ↑ ↑

Temporal pole: superior

temporal gyrus

↑ ↑ ↑

Temporal pole: middle

temporal gyrus

↑ ↑ ↑

Parahippocampal gyrus ↑ ↑ ↑

Anterior cingulate and

paracingulate gyri

↑ ↑

Median cingulate and

paracingulate gyri

Posterior cingulate gyrus ↑ ↑ ↑

Insula ↑

Hippocampus ↑

Right Hemisphere

Gryus Rectus ↑ ↑ ↑

Olfactory Cortex

Superior frontal gyrus,

orbital part

↑ ↑

Frontal gyrus, medial

orbital part

↑ ↑

Middle frontal gyrus, orbital

part

↑ ↑ ↑ ↑

Inferior frontal gyrus,

orbital part

↑ ↑

Superior frontal gyrus

Middle frontal gyrus ↑ ↑

Inferior frontal gyrus,

opercular part

↑ ↑

Inferior frontal gyrus,

triangular part

↑ ↑

Superior frontal gyrus,

medial

↑ ↑ ↑

Supplementary motor area ↑

Paracentral lobule

Precentral gyrus ↑ ↑

Rolandic operculum ↑ ↑ ↑

Postcentral gyrus ↑ ↑

Superior parietal gyrus

Inferior parietal, but

supramarginal and angular

gyri

Supramarginal gyrus ↑

Angular gyrus ↑ ↑

Precuneus ↑ ↑

Superior occipital gyrus

Middle occipital gyrus ↑ ↑

Inferior occipital gyrus

Calcarine fissure and

surrounding cortex

↑

Cuneus

Lingual gyrus

Fusiform gyrus ↑ ↑
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Heschl gyrus ↑ ↑ ↑

Superior temporal gyrus ↑

Middle temporal gyrus ↑ ↑

Inferior temporal gyrus ↑

Temporal pole: superior

temporal gyrus

↑ ↑

Temporal pole: middle

temporal gyrus

↑ ↑

Parahippocampal gyrus ↑ ↑

Anterior cingulate and

paracingulate gyri

↑ ↑

Median cingulate and

paracingulate gyri

Posterior cingulate gyrus ↑ ↑

Insula ↑ ↑ ↑

Hippocampus ↑ ↑
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Appendix 1 Table 5. Regions of interest (ROIs) that manifest significant Eccentricity differences between groups in the low gamma
band.

614

615616

Pairwise Permutation Comparisons (FDR-corrected)

ROIs Children (N

= 24) vs

Adults (N =

24)

5 Y.O. (N =

10) vs 10

Y.O. (N = 14)

5 Y.O. (N =

10) vs

Adults (N =

24)

10 Y.O.

(N=14) vs

Adults

(N=24)

Left Hemisphere

Gryus Rectus

Olfactory Cortex

Superior frontal gyrus,

orbital part

↑

Frontal gyrus, medial

orbital part

Middle frontal gyrus, orbital

part

↑ ↑

Inferior frontal gyrus,

orbital part

↑ ↑ ↑

Superior frontal gyrus

Middle frontal gyrus ↑ ↑

Inferior frontal gyrus,

opercular part

↑ ↑

Inferior frontal gyrus,

triangular part

Superior frontal gyrus,

medial

Supplementary motor area

Paracentral lobule ↑

Precentral gyrus ↑ ↑

Rolandic operculum

Postcentral gyrus

Superior parietal gyrus

Inferior parietal, but

supramarginal and angular

gyri

Supramarginal gyrus ↑ ↑

Angular gyrus ↑ ↑

Precuneus ↑ ↑

Superior occipital gyrus ↑ ↑

Middle occipital gyrus ↑ ↑ ↑

Inferior occipital gyrus ↑

Calcarine fissure and

surrounding cortex

↑

Cuneus ↑ ↑ ↑

Lingual gyrus

Fusiform gyrus

Heschl gyrus ↑

Superior temporal gyrus ↑ ↑ ↑

Middle temporal gyrus
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Inferior temporal gyrus

Temporal pole: superior

temporal gyrus

↑ ↑

Temporal pole: middle

temporal gyrus

Parahippocampal gyrus

Anterior cingulate and

paracingulate gyri

Median cingulate and

paracingulate gyri

↑ ↑

Posterior cingulate gyrus ↑ ↑

Insula ↑

Hippocampus

Right Hemisphere

Gryus Rectus ↑ ↑

Olfactory Cortex

Superior frontal gyrus,

orbital part

↑

Frontal gyrus, medial

orbital part

↑ ↑

Middle frontal gyrus, orbital

part

↑ ↑ ↑

Inferior frontal gyrus,

orbital part

↑ ↑

Superior frontal gyrus

Middle frontal gyrus

Inferior frontal gyrus,

opercular part

Inferior frontal gyrus,

triangular part

Superior frontal gyrus,

medial

↑ ↑ ↑

Supplementary motor area

Paracentral lobule ↑ ↑

Precentral gyrus ↑ ↑

Rolandic operculum ↑

Postcentral gyrus

Superior parietal gyrus

Inferior parietal, but

supramarginal and angular

gyri

Supramarginal gyrus ↑ ↑

Angular gyrus ↑

Precuneus

Superior occipital gyrus

Middle occipital gyrus ↑ ↑

Inferior occipital gyrus

Calcarine fissure and

surrounding cortex

↑ ↑

Cuneus ↑ ↑

Lingual gyrus

Fusiform gyrus ↑
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Heschl gyrus

Superior temporal gyrus

Middle temporal gyrus ↑

Inferior temporal gyrus ↑

Temporal pole: superior

temporal gyrus

↑

Temporal pole: middle

temporal gyrus

↑ ↑ ↑

Parahippocampal gyrus

Anterior cingulate and

paracingulate gyri

↑

Median cingulate and

paracingulate gyri

Posterior cingulate gyrus ↑ ↑ ↑

Insula ↑ ↑

Hippocampus ↑ ↑
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