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Abstract
Quantification of gene expression in cells or tissue can inform on etiology of disease.
Complementing these approaches, we propose to estimate subject- and cell-type-specific (CTS)
gene expression from tissue using an empirical Bayes method that borrows information across
multiple measurements of the same tissue per subject. Analyzing multiple brain regions from
the Genotype-Tissue Expression project (GTEx) reveals a subset of expression quantitative
trait loci specific to neurons, others specific to astrocytes, and others active across all cell types.
In another example, CTS expression of the BrainSpan atlas, which profiles expression patterns
of the developing human brain, demonstrates potential insights into processes associated with
neurodevelopmental disorders. Our analyses reveal clear CTS co-expression networks that,
when combined with genetic findings in autism spectrum disorder (ASD), identify a cluster of
co-expressed ASD-associated genes and implicate immature neurons in ASD risk.

Introduction 1

Altered gene expression is one mechanism by which genetic variation confers risk for complex 2

disease. Thus, many studies have quantified bulk gene expression from tissue, thereby assessing 3

expression averaged over the individual cells comprising the tissue. Recently, using single-cell 4

RNA sequencing (scRNA-seq)1,2,3, studies have quantified gene expression at the level of cells 5

and cell types; such data could be especially informative for brain tissue, which harbors myriad 6

cell types whose functions are not fully resolved. Drawbacks to scRNA-seq data include its 7

noisy nature and the challenge of characterizing such cells from many subjects, which limits its 8

potential for genetic analyses. Alternatively, there are established resources, such as 9

BrainSpan4,5 and GTEx6, among others, that have collected bulk transcriptome data from 10

many subjects and multiple brain regions. Here we present a method, MIND for Multi-measure 11

INdividual Deconvolution (Fig. 1), to exploit such resources to learn about subject-level and 12

CTS gene expression. For each subject and gene, MIND’s CTS estimate represents the average 13

expression of the gene for fundamental cell types, such as neurons, astrocytes and 14

oligodendrocytes in brain. 15
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Two ideas are key for obtaining CTS gene expression from tissue. First, because a tissue 16

sample’s bulk transcriptome is a convolution of gene expression from cells belonging to various 17

cell types, deconvolution methods7,8,9,10 can estimate the fraction of each cell type within this 18

tissue. Most methods deconvolve a single tissue sample per subject and require prior 19

information, specifically sets of genes that are expressed in certain cell types (marker genes), 20

the collection of which we call the signature matrix. The second key idea is that multiple 21

transcriptomes from the same subject, but different brain regions, share common cell types. 22

MIND uses empirical Bayes techniques to exploit this commonality, together with the 23

estimated cell type fractions, to estimate CTS gene expression. Using MIND, we analyze data 24

from GTEx and BrainSpan to obtain CTS gene expression, from which we determine 25

expression quantitative trait loci (eQTLs) and co-expression networks, as well as to further our 26

understanding of the etiology of ASD. 27

Results 28

GTEx and BrainSpan data 29

GTEx6 is an ongoing project that collects both gene expression data from multiple tissue types, 30

including brain, and genotype data from blood for hundreds of post-mortem adult donors. Here 31

we focus on 1671 brain tissue samples from 254 donors and 13 brain regions in the GTEx V7 32

data6. Samples of brain tissue from different brain regions share common cell types and thus 33

can be deconvolved together. To ensure more reliable estimates, we remove subjects with less 34

than nine collected brain tissue samples, resulting in data from 105 subjects for analysis. 35

Among these subjects, 95 also have genotype data that can be used in the eQTL analysis for 36

each cell type. To derive a signature matrix for all GTEx-related analyses, we use the 37

NeuroExpresso database11, which holds gene expression data for purified-cell samples from 38

multiple mouse brains and regions. We restrict our analysis to fundamental cell types, namely 39

astrocytes, oligodendrocytes, microglia, and GABAergic and pyramidal neurons. We apply 40

MIND to log-transformed expression data, first calculating cell type fractions for each brain 41

region and then estimating subject-level and CTS gene expression (Fig. 1). 42

BrainSpan quantified gene expression from multiple brain regions and subjects from 8 43

post-conceptional weeks to 40 years of age. These data are ideal for analysis of spatio-temporal 44

patterns of transcription of human brain4. Here we make use of the exon microarray data with 45

normalized expression values, which include 492 tissue samples from 26 brain regions and 35 46

subjects. Similar to the GTEx data, we restrict analysis to the 33 subjects with more than nine 47

brain tissue samples. Because BrainSpan represents a developmental series and most of its 48

samples are fetal in origin, we tailor the signature matrix accordingly. We leverage scRNA-seq 49

data from human adult and fetal cortical samples1, specifically 466 cells that were clustered 50

into astrocytes, oligodendrocytes, OPC (oligodendrocyte progenitor cells), microglia, 51

endothelial cells, and immature and mature neurons. 52

Validating model assumptions 53

MIND models cell type fraction as subject- and region-specific. It is natural to assume CTS 54

expression is subject-specific, which allows for differences among subjects due to age, phenotype, 55

genotype and other measured variables and thereby permits downstream analyses not formerly 56

possible (Fig. 1f). MIND also assumes CTS expression is similar across brain regions of the 57
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same subject, thereby avoiding overfitting the data. For this assumption to hold, cells from the 58

same cell type, but from different brain regions, should show similar patterns of gene expression; 59

whereas cells of different cell types from the same region should show distinct expression 60

profiles. This is the observed pattern in the NeuroExpresso database of purified brain cells from 61

multiple brain regions (Fig. 2a). Fitting a mixed-effects model for each gene and decomposing 62

the variance into that explained by cell types versus brain regions, as well as studies and error, 63

cell types account for a larger amount of the variance than region, (25% versus 12%), while the 64

largest variance comes from study (39%). Next, examination of the correlation of gene 65

expression over regions for the GTEx data shows that bulk gene expression is highly correlated 66

over all regions, with cerebellum and spinal cord showing slightly lower correlation (Fig. 2b). 67

Reversing the role of region and subject in MIND, to estimate CTS expression for every region, 68

shows that the imputed expression is quite similar across regions as illustrated by marker genes 69

(Fig. 2c), with the strongest deviation observed for cerebellum. Fitting a mixed-effects model 70

for each gene and decomposing the variance into that explained by cell types and brain regions, 71

the variance explained by cell types (25%) is substantially larger than that for regions (5%). 72

These results lead to the expectation that gene co-expression patterns for brain should be 73

correlated with cell type fractions. Indeed, leading principal components of GTEx bulk 74

transcriptome data are strongly correlated with cell type fractions (Supplementary Fig. 1). 75

It is reasonable to ask if MIND requires repeated measures of gene expression in the same or 76

similar tissue. Using the deconvolved GTEx data, we calculate the standard deviation and 77

mean of the imputed CTS expression per subject and assess their relationship with the number 78

of measures. For subjects with fewer measures, the deconvolved CTS expression has less 79

variability and lower mean, on average (Fig. 2d and Supplementary Fig. 2), implying that 80

the model typically imputes similar expression for each cell type when the number of 81

measurements is small and it lacks strong information to the contrary. Thus, while the model is 82

identifiable when there is a single measure, the results are not very informative. The number of 83

measurements provides an indicator of the reliability of the deconvolved expression. Because 84

marker genes tend to show the greatest expression in the cell type they mark, the accuracy of 85

CTS expression can be evaluated using known marker genes. Of the 189 marker genes found in 86

GTEx brain tissue, 71% show greatest expression in the cell type they mark when the number 87

of measures per subject is high and it falls off rapidly when the number of measures per subject 88

approaches one (Fig. 2d; Supplementary Fig. 3). 89

Validating model estimates 90

We evaluate the performance of MIND for various scenarios, including pure simulation, 91

simulation based on real CTS expression and analysis of the GTEx brain tissue data. 92

Importantly, GTEx3 produced scRNA-seq data from the prefrontal cortex (3 subjects) and 93

hippocampus (4 subjects). For these same samples, bulk transcriptomes were also 94

characterized6. From the scRNA-seq data, we can calculate CTS expression by averaging over 95

cells of each cell type for each subject. Then, existence of both bulk and scRNA-seq data 96

enables a direct comparison of MIND’s performance and reveals highly concordant estimates 97

for most cell types and donors (Fig. 3a). If MIND’s estimates are accurate, bulk gene 98

expression should be a convolution of its estimated CTS gene expression and the estimated cell 99

type fraction for the tissue sample. Using MIND’s estimates to predict region level expression 100

for each subject shows excellent correspondence between predicted versus measured bulk gene 101

expression (Fig. 3b). 102
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Next, we conduct a simulation study by generating bulk gene expression data based on 103

parameters estimated from GTEx. Specifically, with the estimated CTS expression and 104

fraction, we simulate bulk data by mixing cell expression as in Eq. 2 and sequentially add more 105

random noise to the mixture of cell expression by increasing the error variance relative to the 106

variance of the measured CTS expression. We use MIND and an approach based on 107

least-squares to analyze the simulated bulk data, treating cell type fractions as known. Note 108

that least-squares treats multiple measures as independent samples. To assess performance, we 109

calculate the correlation between the deconvolved and measured gene expression for each cell 110

type. MIND provides consistently high correlation for all cell types and is robust to increasing 111

noise (Fig. 3c). This conclusion still holds when we simulate bulk data with region-specific 112

CTS expression (Supplementary Fig. 4a). Moreover, the performance of MIND improves 113

with the number of measures (regions) (Fig. 3d). When there are three or more measures, the 114

correlation between the estimated and true CTS expression for four cell types can reach 0.8, 115

assuming the error variance equals the variance of the measured CTS expression, and this 116

reliability is also confirmed by our earlier results regarding marker gene expression (Fig. 2d). 117

Moreover, MIND yields approximately unbiased estimates of all parameters (Supplementary 118

Table 1) when the number of measures is large. Overall, the least-squares approach does not 119

perform as well as MIND (Supplementary Fig. 4), highlighting the advantages of 120

considering correlations between measures and assuming random CTS expression in MIND, an 121

assumption that is particularly valuable when the number of measures is small, which is usually 122

the case in practice. 123

Analysis of the GTEx brain tissue 124

In our early analyses of cell type fractions of the GTEx tissue, the estimated fractions for 125

microglia were always close to zero and thus we dropped microglia from our analyses. To build 126

the signature matrix and then estimate cell type fractions, we used CIBERSORT9 (see 127

Methods and Supplementary Table 2 for approach and discussion.) Results for cell type 128

fractions (Fig. 4a) were consistent with previous findings and what is known about the brain: 129

(i) related brain regions have similar cell type composition, for example, the three basal ganglia 130

structures, two cerebellum samples, and three cortical samples; (ii) the abundance of pyramidal 131

neurons in cortex, hippocampus, and amygdala also matches with previous findings12; and (iii) 132

spinal cord (cervical c-1) is estimated to consist of 91% oligodendrocytes, which agrees with the 133

prominence of white matter tracts present at c-1 and glial cells in white matter. 134

Remark: While our estimates of the abundance of pyramidal neurons, for example, match 135

previous findings, such estimates can be inconsistent with those from neuroanatomical and 136

other direct studies of cell representation13,14. To better understand the estimated cell type 137

fractions, we studied the relationship between cell size and gene expression in GTEx data using 138

techniques in Jia et al.15 and results from Zeisel et al.2. We find that the estimated cell size is 139

highly positively correlated with level of gene expression (Supplementary Fig. 5), and 140

neurons tend to have a larger cell size than non-neurons, which agrees with previous findings16. 141

Thus, while most deconvolution studies present their results in terms of estimated fractions of 142

cell types, we believe these methods, including MIND, estimate the fraction of RNA molecules 143

from each cell type instead. 144

We next examine the estimated CTS expression values, by subject, to determine if the 145

estimates conform to expected patterns. It is reasonable to predict that RNA showing 146

specificity for certain brain regions would also show specificity to a cell type prominent in that 147
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region. This is indeed the case. For example, consider ZP2 and LINC00507, the former is 148

highly expressed in cerebellum, and the latter in cortical brain tissue (Fig. 4b). By contrasting 149

the region-level expression for these genes with their estimated CTS expression (Fig. 4c), we 150

find that ZP2 is expressed largely in GABAergic neurons in the cerebellum, which contains 151

large GABAergic Purkinje cells and other types of GABAergic neurons, while LINC00507 152

tends to be expressed solely in pyramidal cells, which make up a substantial fraction of the 153

neuronal cells of the cortex. A priori, and based on recent findings17, we would also expect cell 154

type to be a strong predictor of gene co-expression. Moreover, because GTEx subjects were all 155

adults at death, but not elderly, recent findings17 suggest that age would not be a strong 156

predictor of gene co-expression. Thus, we asked if the estimated CTS expression clusters by cell 157

type or by age of the subject using estimates from 98 genes with the largest variability in 158

expression across brain regions. Based on these genes, we compute the correlation matrix for 159

the 4n subject-cell-type configurations (4 cell types and n = 105 subjects). Hierarchical 160

clustering of the entries in the correlation matrix reveals that cell-type is a strong predictor of 161

co-expression, while age is not (Fig. 4d), consistent with MIND’s modeling assumptions. 162

Nonetheless, CTS expression by age reveals interesting patterns that are not always 163

apparent at the tissue level. For example, for GRIN3A, expression is nearly constant across age 164

in tissue, but GABAergic and pyramidal neurons show opposite trends in expression by age 165

(Fig. 4e). Overall, 18% of genes show age trends at the region level or cell-type level, with the 166

false discovery rate (FDR)18 controlled at 0.05: 7% show age trends in at least one brain region 167

and at least one cell type; 7% show age trends in at least one brain region, but not in any cell 168

type; and 4% show age trends in at least one cell type, but not in any brain region. 169

Because MIND yields subject-level and CTS gene expression, we can identify eQTLs for 170

each cell type. To do so, CTS gene expression data were analyzed using MatrixEQTL19, with 171

FDR controlled at 0.05 for each cell type. We then compared the MIND-identified eQTLs with 172

region-specific eQTLs identified by the GTEx project6. Notably, the rate at which eQTLs are 173

both region-specific and CTS increases as the cell type becomes more prominent in the region 174

(Fig. 5a; Supplementary Fig. 6a). Moreover, when an eQTL was jointly identified in more 175

brain cell types, it was more likely to be detected across a variety of tissues and especially across 176

brain regions20 (Fig. 5b and Supplementary Fig. 6b). We find that the absolute effects of 177

eQTLs increase with the number of cell types in which they are identified (Supplementary 178

Fig. 6c; correlation test p-value = 2.2× 10−16). Finally, 52% of eQTLs that were identified in 179

one or more brain cell types were not identified from any GTEx brain region, which suggests 180

MIND’s results can identify novel eQTLs. Moreover, some eQTLs were shared by all four cell 181

types, while others are specific to certain cell types, especially for neuronal cells (Fig. 5c), 182

which implies that eQTL analysis based on MIND’s results can shed light on gene expression 183

regulation within cell types. Interestingly, those genes that have eQTLs in fewer cell types are 184

more likely to be marker genes (Chi-squared-test of independence, p-value = 5.9× 10−4). 185

Analysis of the BrainSpan data yields insights into autism 186

We observed that five cell types had non-negligible estimated cell type fractions in regional 187

BrainSpan tissue (astrocytes, OPC, oligodendrocytes, immature neurons, and mature neurons). 188

Consistent with expectation, the fraction of immature neurons decreased and that of mature 189

neurons increased with age (Supplementary Fig. 7); likewise, oligodendrocytes replaced 190

OPC, consistent with the myelination process. As the brain develops, the overall neuronal 191

fraction (immature neuron plus mature neuron) decreased relative to other cell types, again 192
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consistent with what is known about brain maturation21. 193

Because the BrainSpan resource represents a dynamic period of development, results from 194

the MIND algorithm provide a developmental expression profile for each cell type, which should 195

prove useful for the study of typical and atypical neurodevelopment. For example, the 196

neurodevelopment of subjects diagnosed with ASD probably diverges from typical development 197

during the fetal period5,22. These profiles also permit construction of a co-expression network 198

for each cell type. To do so, we calculated the correlation of expression for each pair of genes 199

over subjects. To make the analysis relevant to ASD, we next evaluated a set of 65 genes 200

previously implicated in risk for ASD on the basis of analysis of rare variation by the Autism 201

Sequencing Consortium23. We find that the correlations between ASD genes are higher than 202

those between non-ASD and ASD genes only in immature neurons (Fig. 6a). 203

On the basis of the CTS correlations, we regarded genes as connected in an adjacency 204

matrix if the absolute correlation passed a threshold, here taken to be 0.9. We counted the 205

number of connections for each gene and tested if there was a difference between the 65 ASD 206

genes and random sets of 65 non-ASD genes matched on size of ASD genes (Fig. 6b). ASD 207

genes were more connected than non-ASD genes in immature neurons (p-value = 3.0× 10−4), 208

while other cell types showed no more connections than expected by chance (all p-values 209

> 0.05). When we performed the same CTS network analysis using a scRNA-seq dataset1, 210

however, we did not observe similar findings (Supplementary Fig. 8); apparently these 211

scRNA-seq data were too noisy to calculate accurate correlations or, because the scRNA-seq 212

data were derived from only a few subjects, cells of the same type lacked sufficient variability 213

to reveal correlation patterns. However, when we examined gene expression in these scRNA-seq 214

data, not co-expression, immature neurons were the most enriched cell type for ASD genes 215

(odds ratio = 7.9; Fisher’s exact p-value = 2.8× 10−8; Supplementary Fig. 9). 216

Fifteen of the 65 putative ASD genes were connected in the immature neuron network (Fig. 217

6c), all were positively and highly correlated and, remarkably, all of these genes played a 218

regulatory role according to Gene Ontology annotation for biological processes. Sixteen genes 219

were highly correlated to more than six ASD genes in this network (Fig. 6d), although they 220

lacked genetic evidence for ASD association23. We refer to them as ASD-correlated genes. The 221

products of these ASD-correlated genes also tend to play regulatory or developmental roles, 222

including acetyltransferase activity (EPC1 24, KAT6A, KAT6B 25), transcriptional regulation in 223

some form (AFF4, CNOT2, GATAD2B, PCF11, SUPT20H, TUG1 26,27,28,29,30,31,32) and DNA 224

replication (HNRNPUL1 33). Intriguingly, the encoded protein of FUBP could be a key 225

regulator of cell differentiation34,35, specifically the transition from progenitor cells to neurons, 226

and it is possible that all 31 genes (Fig. 6c,d) play a part in this transition. Of the 16 227

ASD-correlated genes, 13 have pLI = 1 (the probability of being Loss of Function intolerant)36; 228

exceptions are UBXN7 (pLI = 0.99), SUPT20H (pLI = 0) and TUG1 (pLI undetermined, it is 229

a long non-coding RNA). According to DECIPHER 9.23 (https://decipher.sanger.ac.uk/), four 230

genes have been previously implicated in neurodevelopmental disorders (QRICH1, KAT6A, 231

KAT6B, and GATAD2B), while two others lie in syndromic regions defined by structural 232

variation associated with developmental disorders, specifically CNOT2 (one of three genes in 233

the 12q15 deletion region37) and UBXN7 (3q29 microdeletion/microduplication region). 234
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Discussion 235

We develop an algorithm, MIND, to obtain gene expression by cell type and subject, even 236

though gene expression is measured from tissue. There are notable advantages to the MIND 237

algorithm. Because its estimates are CTS for each subject, they represent the cell-specific 238

features inherent in the database, such as the change in CTS gene expression over development 239

for BrainSpan or eQTLs from CTS expression for GTEx. While we have concentrated our 240

analyses on brain tissue, MIND is not specific to brain, any tissue could be appropriate, given 241

these two conditions: there are a group of subjects for which transcriptomes have been assessed 242

repeatedly; and the repeatedly sampled tissue, per subject, has cell types in common. For 243

example, several other GTEx tissues meet these requirements, including artery and esophagus6. 244

Other experimental settings fit these requirements too, such as organoids38,39. It is also 245

possible that one could substitute repeated measures per subject with repeated measures of 246

genetically similar subjects, such as sibships for model organisms. Importantly, the number of 247

repeated measures needed to obtain accurate estimates of CTS gene expression is not large, it 248

appears three is sufficient (Fig. 2d; Fig. 3d). 249

There are also limitations to the current version of MIND, which relies on reference samples 250

to identify genes whose expression are largely specific to cell type, so-called marker genes. 251

Identifying which reference samples are appropriate can be challenging. A different challenge is 252

presented when there are a large number of cell types in the tissue. Reliably estimating 253

expression by cell type and subject will require a large number of repeated measures per 254

subject, something most resources do not have at this time. For this reason, we limit our 255

analyses to major cell types. Furthermore, MIND is limited to estimating the average gene 256

expression across cells of the same type within a subject, ignoring the diversity of expression 257

within single cells. 258

One might imagine that scRNA-seq methods can be used to obtain many of the features 259

captured by MIND, for example, gene co-expression networks for specific cell types. When we 260

tried to construct such networks, however, they show very little coherent structure. By 261

contrast, results from MIND yield coherent and interpretable networks, which show relevance 262

to risk for ASD, potentially highlighting new genes in risk, their functional impact, and periods 263

during which neurodevelopment begins to diverge from typical patterns. 264

Methods 265

The MIND algorithm 266

For a single measure (t) from subject i, let Xijt be the observed expression of gene j. When the 267

tissue consists of K cell types, typically the goal of gene expression deconvolution is to find 268

W it, the K cell type fractions for subject i in measure t, such that 269

Xijt

(1×1)
= W it

(1×K)
Aj

(K×1)
+ eijt

(1×1)
, (1)

where Aj is the cell type gene expression and eijt is the error term (csSAM8 is an exception to 270

this rule.) When reference samples are available, such as purified cells or scRNA-seq data, the 271

signature matrix can be estimated for the marker genes by differential expression analysis of 272

cell types from the reference samples. Plugging in Aj , deconvolution becomes a standard 273

regression problem7,9 and W it can be estimated directly. 274
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We extend the single-measure deconvolution in Eq. 1 by borrowing information across 275

multiple measurements, t = 1, . . . , Ti from the same tissue for subject i to estimate 276

subject-specific and CTS gene expression (Ti can vary by subject.) Step 1 of the MIND 277

algorithm is to estimate cell type fractions for subject i and measure t, W it, for t = 1, . . . , Ti. 278

Combining estimated information across measures yields W i, a Ti ×K matrix, of cell type 279

fractions. Step 2, treating W i as known, we reverse the problem from single-measure 280

deconvolution, estimating instead CTS gene expression. For gene j in subject i, the observed 281

gene expression Xij is a Ti × 1 vector that represents Ti quantified measurements (Fig. 1e), 282

rather than a scalar as in Eq. 1. We model Xij as a product of cell type fraction (W i) and 283

CTS expression (Aij), 284

Xij

(Ti×1)
= W i

(Ti×K)
Aij

(K×1)
+ eij

(Ti×1)
, (2)

where eij is the error term that captures the unexplained random noise and eij ∼ N
(
0, σ2

eITi

)
. 285

In summary, with W i pre-estimated using an existing deconvolution method (e.g., 286

CIBERSORT), our goal is to estimate CTS expression Aij . To ensure robustness, we assume 287

that (Aij) is randomly distributed as Aij ∼ N (0,Σc), where Σc is a K ×K covariance matrix 288

for K cell types. Estimation is performed across all subjects and genes simultaneously. In 289

contrast to single-measure deconvolution, we assume 290

1) cell type fraction (W i) is subject- and measure-specific; 291

2) CTS expression (Aij) is subject-specific but constant across measures. 292

We estimate the parameters through maximum likelihood via a computationally efficient 293

EM (Expectation-Maximization) algorithm (see Supplementary Note). CTS expression 294

(Aij) is estimated using an empirical Bayes procedure. To achieve reliable results, the number 295

of cell types (K) to be estimated is limited by the number of measures (e.g., brain regions) per 296

subject, whereas all genes in the genome can be efficiently deconvolved together. Tissue 297

expression can be centered beforehand to meet the prior distribution of CTS expression and 298

ensure more precise estimates. When comparing the deconvolved and measured expression, 299

however, we keep the tissue expression as uncentered to impose a fair comparison. Centering is 300

an option that can be chosen by users of MIND software and can be done for each tissue 301

sample or over all samples. If centered, the subtracted mean of expression can be added back 302

after deconvolution. 303

MIND ignores gene-gene correlation in the prior distribution of CTS expression to achieve 304

efficient computation, deconvolving for the whole genome in several minutes. Gene-gene 305

correlation can be recovered from the CTS gene expression estimates. To compute correlations, 306

CTS estimates are weighted by the average cell type fraction per subject. 307

Software availability 308

We implement the method discussed in this paper as an R package MIND to deconvolve the 309

expression of multiple measurements of tissue. The package is publicly hosted on the GitHub 310

repository https://github.com/randel/MIND. 311

Validating model assumptions 312

To partition variation in gene expression by cell type and brain region, we analyzed 313

NeuroExpresso normalized data on expression of 11,546 genes11. To evaluate the correlation of 314

gene expression across brain regions, we analyzed the read count data for all genes detected in 315
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brain by GTEx6. Expression was transformed as log2(X + 1) prior to analysis. Unless 316

otherwise noted, all expression count data analyzed herein were log-transformed in this way. 317

(See Supplementary Note for discussion and analysis of log-transformation of the data.) 318

GTEx brain data were further quantile normalized. To estimate principal components (PCs) 319

from gene co-expression, we first quantile normalized and scaled the expression data. All genes 320

were used to compute the co-expression matrix and the top 10 PCs were computed. For each 321

cell type, we chose the PC with the highest absolute correlation with the cell type fraction. 322

The performance of MIND is a function of the number of measures of gene expression, but 323

its exact nature was unknown. We addressed this question in two ways: (1) by evaluating the 324

variability of gene expression as a function of the number of brain regions measured; and (2) 325

how marker gene expression behaved in cell types they are reported to mark in mouse brain. 326

The key idea of (1) is that MIND will tend to shrink CTS expression toward a common mean 327

and thereby estimates will be less variable when there is little information about CTS 328

expression. For (2), we expect marker genes will tend to be expressed at highest levels in the 329

cell type they mark; however, when there is little information about CTS expression, this is not 330

the expected pattern due to shrinkage to the mean. As described previously, CIBERSORT was 331

used to select marker genes from NeuroExpresso normalized data on expression of 11,546 genes; 332

192 genes were selected, of which 189 are found to be expressed in GTEx brain tissue samples. 333

Validating model estimates 334

Habib et al.3 quantified single-nucleus RNA-seq data from seven brain tissue samples from five 335

GTEx donors. Because the authors classified the cells into cell types, we could average their 336

read count data for cells of each type to obtain CTS expression on a scale similar to that 337

produced by MIND. One of the five subjects that only has hundreds of cells and thus cannot 338

provide accurate CTS expression was excluded from our analyses. For a fair comparison, we 339

converted the read counts to count per million (CPM) and then compared the directly 340

measured subject-specific and CTS expression to MIND’s estimated quantities from bulk 341

transcriptomes (in CPM) from the same subjects. In Fig. 3b, we showed MIND’s predicted 342

bulk transcriptome data for two brain regions, frontal cortex and cerebellum: we chose the 343

former because it is the most studied region of brain; we chose the latter because it deviates 344

greatly from other regions; and we noted that all brain regions showed similar patterns. Figs. 345

3a and 3b showed results using the R function smoothScatter, which was implemented using 346

128 bins for the density estimation and default settings. 347

To evaluate MIND via simulations, in Supplementary Table 1, we generated artificial 348

gene expression from the multi-measure deconvolution model Eq. 2. We systematically varied 349

the values of the true variance parameters, σ2
e and Σc, which denote the error variance and the 350

covariance of CTS expression. Here we let Σc have equal variance σ2
c and equal covariance σkk

′

c 351

across cell types, where k and k′ denote cell types. The cell type fraction was estimated from 352

the GTEx brain data and we focused on the 105 subjects with at least nine measures and 353

allowed some brain regions to be unmeasured. The number of cell types was set at four. We 354

simulated 100 replicated datasets with 100 genes and 9-13 measurements of the same tissue. 355

We produced data for 100 genes to reduce simulation time; these genes were randomly 356

generated, they were not necessarily cell type marker genes. 357

Using single-cell measurements from 4 GTEx subjects as a guide, we simulated bulk 358

expression for 4 subjects from Eq. 2. The measured CTS expression was taken to be the 359
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average expression values across cells derived from the Habib et al.3 single-nucleus RNA-seq 360

data as described above, for four subjects, four cell types and 31,496 genes. The cell type 361

fractions (W i) were derived from those estimated in GTEx for these subjects. In Fig. 3c, we 362

varied the error variance σ2
e via the noise level defined as σ2

e/σ
2
c , where σ2

c is the variance 363

calculated from the measured CTS expression3. For this display, the number of measures is 13 364

as in the GTEx brain data. In Fig. 3d, we fixed σ2
e = σ2

c and varied the number of measures 365

from 1 to 13. For Supplementary Fig. 4a, on the basis of the simulation in Fig. 3c, we 366

added region-specific variation to Aij (CTS expression per subject). The variation was 367

simulated from a normal distribution with zero mean and variance the same as the error 368

variance (σ2
e), which increased up to the variance of the measured CTS expression (σ2

c ). 369

To assess whether MIND produces approximately unbiased parameter estimates, we 370

calculated the average of the variance parameter estimates from the 100 replications 371

(Supplementary Table 1). To evaluate whether MIND can recover the true CTS expression, 372

we computed the correlation between MIND’s and true CTS expression. 373

Analysis of the GTEx brain tissue 374

We have described the processing of the GTEx gene expression data from brain regions 375

previously. For the Remark about cell size and level of gene expression, our analyses made use 376

of the scRNA-seq data in Zeisel et al.2, which also contained spike-in information. We 377

leveraged the spike-in information to estimate cell size15 for neurons and non-neurons 378

(Supplementary Fig. 5) and thus interpreted the impact of size versus cell type composition 379

in the deconvolution of bulk transcriptomes. To identify genes that show the greatest 380

variability across regions of the brain, we selected the top 10 genes that have the most 381

significant difference in expression between each region and other regions. Pooling these genes 382

from 13 regions, we obtained 98 unique genes. As described previously, eQTLs from CTS 383

expression were estimated using MatrixEQTL. To compare MIND’s results to eQTLs from 384

GTEx data, we downloaded eQTLs from GTEx portal, https://storage.googleapis.com/gtex_a 385

nalysis_v7/single_tissue_eqtl_data/GTEx_Analysis_v7_eQTL.tar.gz. To get eQTLs specific 386

to region, we removed any eQTLs shared by two or more regions. 387

Analysis of the BrainSpan data yields insights into autism 388

Because we used BrainSpan’s exon microarray data with normalized expression values, no 389

transformation of the data was performed. For the signature matrix to estimate cell type 390

fractions for regions and subjects, we used the scRNA-seq data in Darmanis et al.1, which 391

includes both fetal and adult cells. We also used this dataset for the enrichment analysis of 392

ASD genes (Supplementary Fig. 9); we defined a gene as “expressed” in a cell type if at 393

least 15% of the cells of that type contain at least one RNA-seq read attributed to that gene. 394

We restricted the enrichment analysis to the 11,215 genes that were expressed in one or more 395

cell types. To determine if the genes expressed in a particular cell type are enriched for ASD 396

risk genes, we tabulated whether the gene is expressed and whether it is associated with ASD 397

risk. When comparing the number of connections for ASD and non-ASD genes, we calculated 398

the tail probability for the average number of connections for ASD genes in the reference 399

distribution of average number of connections. To construct the reference distribution, we first 400

matched each ASD gene with the top 100 genes with the closest gene size. We then randomly 401

sampled one gene from those matched genes for each ASD gene and constituted a gene set. We 402

10

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 12, 2018. ; https://doi.org/10.1101/379099doi: bioRxiv preprint 

https://doi.org/10.1101/379099
http://creativecommons.org/licenses/by-nc-nd/4.0/


calculated the average number of connections for this gene set and repeated this process 10,000 403

times. Gene Ontology40 was performed using Enrichr41. pLI was obtained from the EXAC36 404

browser, http://exac.broadinstitute.org. 405
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Figure 1. Flow diagram for the MIND algorithm. (a) For a set of relevant cell types, select
cell type marker genes and build a signature matrix using reference samples. (b) Multiple
transcriptomes are measured from each subject; here, one transcriptome for each of multiple
regions. (c) Using an existing deconvolution method, e.g., CIBERSORT, estimate the cell type
fractions for each brain region and subject. Here we depict K = 4 cell types for which their
fractions will be estimated per brain region. (d) With results from (b) and (c), MIND
estimates cell-type-specific (CTS) expression for each of p genes for each subject and cell type.
Colors map to the cell types in (c) and (d) and we depict two of n subjects, 1 and n. (e)
Matrix representation of key data elements of the MIND algorithm: for each of T brain regions
for subject i, expression of p genes from the transcriptome is measured, Xij ; and the key
outputs are the subject level CTS gene expression (Ai) and the subject and measurement level
cell type fractions (W i). (f) Examples of downstream applications for MIND.
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Figure 2. Validation of the assumptions of MIND. (a) Heatmap of expression of cell type
marker genes in the NeuroExpresso database of purified-cell samples. Columns denote 192
marker genes selected by CIBERSORT from NeuroExpresso. Rows represent 185 purified-cell
samples that we use to estimate fractions of four cell types in GTEx. Purified-cell samples are
clustered, then annotated by cell type and brain region (labels on left, scale of expression on
right). (b) Correlation matrix of gene expression (heatmap) for brain regions from GTEx
samples. (ACC: anterior cingulate cortex; hemis.: hemisphere.) (c) Heatmaps of region-specific
and CTS expression of marker genes estimated by reversing the role of subject and measure in
MIND. The four marker genes correspond to astrocyte, oligodendrocyte (oligo), GABAergic,
and pyramidal neurons, respectively. (d) Left scale: variance of expression across all genes, per
subject, as a function of the number of measures in GTEx brain data. Right scale: fraction of
marker genes showing greatest expression in a different cell type than the cell type they mark.
Marker genes are selected by CIBERSORT using the reference data of NeuroExpresso.
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Figure 3. Validation of the estimates of MIND. (a) Direct quantification of average gene
expression from single cells (observed)3 from GTEx brain samples of the same subjects as the
CTS expression estimated by MIND. Shown are scatter plots represented as a smoothed
two-dimensional color density. For each panel, two summary statistics are given, correlation for
all genes with positive observed expression (left) and for all genes (right). On average, there are
17,223 out of 31,496 genes that have positive observed CTS expression. Smooth line at y = x.
(b) Smoothed scatter plots of the observed GTEx brain tissue expression and MIND predicted
expression for frontal cortex and cerebellum. Smooth line at y = x. (c-d) Correlation between
the true and MIND estimated expression for each cell type in simulation. We simulated cell
mixture data following Eq. 2 using the measured CTS expression3 and the estimated cell type
fractions from GTEx data, with increasing noise levels (the error variance relative to the
variance of CTS expression, c) and number of measures (d). For (c), the number of measures is
13 as in the GTEx brain data; for (d), the noise level is set as 1, which means that the error
variance equals the variance of CTS expression.
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Figure 4. Analyses of CTS gene expression of the GTEx brain data. (a) Estimated cell type
fractions in each GTEx brain region, averaged over subjects. Putamen, caudate, and nucleus
accumbens are the three basal ganglia structures. (b-c) For two transcripts selected for
differential expression in cortex versus cerebellum, (b) boxplots of tissue-level expression across
brain regions and (c) CTS expression estimated by MIND from tissue-level expression across
brain regions. (d) The heatmap and clustering of estimated CTS expression from MIND by cell
type and age. Here we visualize a 4n× 4n correlation matrix for the 4 cell types and n = 105
subjects, based on the expression of 98 genes that have the largest variability across brain
regions. (e) Age trends for expression of gene GRIN3A in tissue and its estimated CTS
expression from MIND.
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Figure 5. Expression quantitative trait loci (eQTL) discovered from tissue-level or CTS gene
expression. (a) Scatter plot of eQTL mapping rate versus the estimated cell type fraction. The
rate is for mapping region-specific eQTLs identified by the GTEx consortium to eQTLs from
CTS expression estimated by MIND. Each point denotes a brain region and cell type. The
dashed line depicts the fitted linear regression model and the p-value (pval) is for the test of
the regression slope. (b) Rate of correspondence between eQTLs appearing in one to more cell
types and those in each tissue type. For eQTLs that appear in one, two, three, and four cell
types, respectively, we calculate their probability of being identified in each tissue type. We
show brain regions and whole blood here. For results from all GTEx tissues, see
Supplementary Fig. 6b. (c) Overlap among eGenes (genes with eQTLs) for each cell type.
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Figure 6. Analyses of MIND-estimated CTS networks from BrainSpan and their relationship
to genes implicated in risk for ASD23. (a) The density distribution of absolute weighted
correlations for pairs of ASD genes (red solid line) and pairs involving one ASD and one
non-ASD gene (blue dashed line) for each of four cell types. The weights are the average cell
type fractions per subject. (b) The average number of connected genes for ASD genes and
non-ASD genes in different cell types (in log10 scale) based on CTS networks. A connection
between genes is indicated if the absolute weighted pairwise correlation of expression is greater
than 0.9. (c) Co-expression network of 15 out of 65 ASD genes in the immature neuron. (d)
For the network in immature neurons, 16 genes are connected to more than six ASD risk genes
(red) and we call them ASD-correlated genes (blue). These ASD-correlated genes were not
detected as risk genes by Sanders et al.23. Here we show only the 13 ASD risk genes that are
connected to those 16 ASD-correlated genes. The interactive version of this figure is available
at http://rpubs.com/randel/ASDnetwork.
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