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Abstract

Summary: The growth of multi-omics datasets has given rise to many methods for
identifying sources of common variation across data types. The unsupervised nature of
these methods makes it di�cult to evaluate their performance. We present MOVIE,
Multi-Omics VIsualization of Estimated contributions, as a framework for evaluat-
ing the degree of over�tting and the stability of unsupervised multi-omics methods.
MOVIE plots the contributions of one data type against another to produce contri-

bution plots, where contributions are calculated for each subject and each data type
from the results of each multi-omics method. The usefulness of MOVIE is demon-
strated by applying existing multi-omics methods to permuted null data and breast
cancer data from The Cancer Genome Atlas. Contribution plots indicated that prin-
cipal components-based Canonical Correlation Analysis over�t null data, while Sparse
multiple Canonical Correlation Analysis and Multi-Omics Factor Analysis provided
stable results with high speci�city for both the real and permuted null datasets.
Availability: MOVIE is available as an R package at https://github.com/mccabes292/
movie
Contact: milove@email.unc.edu
Supplementary information: Supplementary data are available at Bioinformatics

online.

1 Introduction

With the availability of multi-omics datasets, an increasing number of methods have
been developed to decipher the relationship among large scale data types. Some meth-
ods, such as iCluster+ (Shen et al, 2010) and Similarity Network Fusion (SNF) (Wang
et al, 2014), classify samples into groups, such as tumor subtypes. Other methods de-
termine which features or biological processes contribute to the common variation
across all data types, as well as the magnitude of their contributions. These meth-
ods include Sparse multiple Canonical Correlation Analysis (Sparse mCCA) (Witten
and Tibshirani, 2009), Angle-based Joint and Individual Variation Explained (AJIVE)
(Feng et al, 2018), and Multi-Omics Factor Analysis (MOFA) (Argelaguet et al, 2017).
Additionally, Canonical Correlation Analysis (CCA) (Hotelling, 1936) can be modi�ed
for a high-dimensional setting by running the analysis on the top principal components
(PCs) of each matrix. Due to the unsupervised nature of these methods, assessment
of performance, in terms of the stability of the output and the degree of over�tting,
can be di�cult. We propose MOVIE as a tool to evaluate method performance by
examining the contribution of each sample in each data type towards the common
variation space and utilizing a k-fold cross validation to assess stability and potential
over�tting.
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2 Methods

Each of the four aforementioned methods decomposes sources of common variation
across data types. CCA identi�es weights for each feature to maximize the correla-
tion between two separate weighted matrices. In analyses where the datasets have
a large number of features, CCA can be conducted on the top PCs of each matrix.
Unfortunately, CCA is not generalizable to settings with more than two matrices,
and a consensus has not been reached on the appropriate number of PCs to be used.
In null data, correlations as high as 0.9 are possible when the number of PCs in-
cluded in the analysis is large (Supplementary Fig. 1). Sparse mCCA addresses these
issues by imposing a sparsity parameter to identify only the relevant features and in-
corporate multiple large-dimensional matrices. MOFA and AJIVE are two methods
that decompose the variation as common across datasets or unique to the individual
dataset. AJIVE utilizes matrix perturbation theory to decompose the variation struc-
ture across and within data types, while MOFA is a Bayesian factor analysis method
that identi�es latent factors explained by some or all of the data types.

All of the above methods provide sets of weights corresponding to the importance
of each feature in each data type. The larger the absolute value of the weights, the
more the feature contributes to the common variation. Except for Sparse mCCA,
each method provides multiple sets of weights (whereas Sparse mCCA provides only
one set by default). MOVIE only considers the top set of weights to evaluate method
performance (Supplementary Fig. 2). By multiplying the weights by the observed
values of each data type, we can obtain contributions for each sample and data type
combination (Supplementary Methods 1.1 and Supplementary Fig. 3). Plotting con-
tributions of one data type against another allows the user to visualize the strength of
the relationships between data types. Additionally, samples that fall o� the diagonal
in a contribution plot may be biologically meaningful outliers. We call this plot the
contribution plot and use this tool to evaluate these methods via data splitting. Data
splitting and the projection of estimated contributions was proposed by Soneson et al
(2010) for parameter tuning and validation of a multi-omics method. Other methods
have used leave-one-out cross-validation and the projection of learned factors on new
datasets to assess method performance (Brown et al, 2018; Fertig et al, 2012). By
omitting a subset of the samples from the analysis and predicting their contributions
from each data type in the training set, we can discern whether the relationships from
the full analysis su�er from over�tting or provide unstable results. Using the results of
multi-omics methods, scaled contributions can be calculated to make the contribution
plot.

The �rst step in utilizing MOVIE is to conduct a k-fold cross-validation analysis
and a full analysis using the selected method. Our software package provides template
code in the vignette for performing this step for each method. The number of folds
must be chosen such that the number of samples per fold is at least 20, and careful
consideration must be taken when selecting fold membership to ensure balanced folds
(Supplementary Methods 1.2). The cross-validation analysis is then performed by
analyzing the samples in the training set and calculating contributions for those in
the test set.

Because the results of many methods may di�er slightly in scale across fold, while
still identifying the same components of variation, MOVIE scales the contributions
within each fold to compare contributions across folds on the same scale (See Supple-
mentary Methods 1.3). Scaling helps with small variations in estimation, but it will
not address potential issues related to the identi�cation of di�erent components of the
variation space in separate folds. After scaling, contribution plots can be constructed
for both the cross-validated and full analyses, and comparisons can be made between
the two plots. Additionally, MOVIE provides comparison plots that plot the contri-
butions from the cross-validated analysis to the contributions from the full analysis
for a speci�c data type. This plot can be used to evaluate whether the results of these
methods are stable with the exclusion of a subset of the samples.
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3 Results

To demonstrate the usefulness of MOVIE, we constructed contribution and comparison
plots for Sparse mCCA, AJIVE, and MOFA on both real and simulated datasets. We
applied these three methods to 558 breast cancer samples from The Cancer Genome
Atlas (TCGA) (Wong et al, 2017). Copy number variation was measured for 216
genes; RNA expression was measured for 12,434 genes; and miRNA expression was
measured for 305 genes. Five folds were selected for the analysis, and fold member-
ship was determined by stratifying the samples with the �rst PC of RNA expression.
Supplementary Figs. 4-6 provide side-by-side contribution plots for Sparse mCCA con-
structed by MOVIE and indicate that the method did not over�t. The comparison plot
shows that the sample contributions maintained their ordering in the cross-validated
and full analyses, indicating the consistency of Sparse mCCA with the removal of sam-
ples from the analysis (Supplementary Fig. 7). Plots indicated consistency for MOFA
(Supplementary Figs. 8-11) and less consistency for AJIVE (Supplementary Figs. 12-
15), although the latter could be due to the identi�cation of di�erent components of
the variation space in separate folds.

Using the same TCGA dataset as before, we randomized sample order for both
the RNA and miRNA datasets to create a null dataset. The above three methods,
along with PC-CCA, were analyzed to determine which methods returned a false-
positive relation. Only RNA and miRNA expression data were analyzed to allow for
the inclusion of PC-CCA. Fig. 1a shows the side-by-side contribution plots for Sparse
mCCA and demonstrates correctly that there is no relation between the two data
types in the null set. Fig. 1b shows a strong linear relation in the full analysis and
no relation in the cross-validated analysis for PC-CCA, thus demonstrating that PC-
CCA greatly over�ts the data and that MOVIE can identify such over�tting. MOFA
and AJIVE correctly identi�ed a null result (Supplementary Figs. 16-19).

Due to the unsupervised nature of multi-omics methods for variance decomposi-
tion, determining a preferred method is di�cult. Using a data-splitting approach,
MOVIE provides a framework to compare the performance of unsupervised multi-
omics methods through the construction of the contribution plot.

Figure 1: Side-By-Side Contribution Plots for a) Sparse mCCA in null data and b) PC-

CCA in null data: Left panels are the contribution plots from the full analysis, while right

panels are the contribution plots for the cross-validated analysis. Points are colored by the

fold membership of each sample.
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