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ABSTRACT

Research into improving methods for absolute quantification
of nucleic acids using standard curves has plateaued despite
its positive, far-reaching impact on biomedical applications
and clinical diagnostics. Currently, the mathematics involved
in this mature area is restricted by the simplicity of
conventional standard curves such as the gold standard
cycle-threshold (Ct) method. Here, we propose a novel
framework that expands current methods into multi-
dimensional space and opens the door for more complex
mathematical techniques, signal processing and machine
learning to be implemented. The heart of this work revolves
around two new concepts: the multidimensional standard
curve and its home - the feature space. This work has
been validated using phage lambda DNA and standard
qPCR instruments. We show that the capabilities of
standard curves can be extended in order to simultaneously:
enhance absolute quantification, detect outliers and provide
insights into the intersection between molecular biology
and amplification data. This work and its vision aims to
maximise the information extracted from amplification data
using current instruments without increasing the cost or
complexity of existing diagnostic settings.

INTRODUCTION

Since its inception, the real-time polymerase chain reaction
(qPCR) has become a routine technique in molecular
biology for detecting and quantifying nucleic acids (1-3).
This is predominantly due to its large dynamic range (7-
8 magnitudes), desirable sensitivity (5-10 molecules per
reaction) and reproducible quantification results (4-6). New
methods to improve the analysis of qPCR data are invaluable
to a number of analytical fields, including environmental
monitoring and clinical diagnostics (7-10).

The current “gold standard” for absolute quantification of
a specific target sequence is the cycle-threshold (Ct) method
(11-13). The Ct value is a feature of the amplification curve
defined as the number of cycles in the exponential region
where there is a detectable increase in fluorescence. Since this
method has been proposed, several alternative methods have
been developed in a hope to improve absolute quantification
in terms of accuracy, precision and robustness. The focus of
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current research is based on the computation of single features,
such as Cy and −log10(F0), that are linearly related to initial
concentration (14,15). This provides a simple approach for
absolute quantification, however, the degrees of freedom to
explore more complex data analysis techniques using multiple
features are limited. Thus, research in this area has plateaued
and its improvements are very incremental.

Inspired by the field of Machine Learning, this paper
takes a multidimensional view, combining multiple features
in order to take advantage of the information and principles
behind all of the current quantification methods developed.
This work describes a general framework which, for the first
time, presents the multidimensional standard curve (MSC),
increasing the degrees of freedom in data analysis and capable
of uncovering trends and patterns in qPCR data. In fact, the
conventional approach is only a special case of the proposed
framework. The presented work provides a new methodology
for all qPCR users in order to guarantee better quantification
in any sense that the user wants, e.g. accuracy and precision.

The structure of the paper is as follows. First, the
conventional approach and the proposed multidimensional
framework are presented and compared. For clarity, the theory
and benefits of the framework are explained and discussed
in the materials and methods section. The methodology has
been validated by exploring an arbitrary instance of this new
framework using phage lambda DNA as a model. Here, a MSC
is constructed using Ct, Cy and −log10(F0) and is shown
to enhance quantification in the combination of accuracy,
precision and overall predictive power. Subsequently, three
qPCR assays specific to blaOXA-48, blaNDM and blaKPC genes
are used to show the capabilities of multidimensional standard
curves for outlier detection. Furthermore, temperature and
primer mix concentration for the phage lambda DNA assay
were altered in order to investigate patterns in the data and the
robustness of the MSC for absolute quantification. Finally, a
discussion section elaborates on the capabilities of this novel
framework and the insights it uncovers.
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Figure 1. Block diagram showing the conventional method (top branch and solid line) compared to the multidimensional framework (bottom branch and dotted
line) for absolute quantification. In both cases, raw amplification data for several known concentrations of the target are typically pre-processed and fitted with an
appropriate curve. In the conventional case, a single feature such as the cycle threshold,Ct, is extracted from each curve. A line is fit to the feature vs concentration
such that unknown sample concentrations can be extrapolated. In the proposed framework, multiple features are extracted and thus a high-dimensional line is fitted
in order to construct a multidimensional standard curve. Through dimensionality reduction, enhanced quantification can be achieved and using multidimensional
analyses, new insights about the data can be observed.

MATERIALS AND METHODS

Conventional Approach
In order to understand the proposed framework, it is useful to
have an overall picture of what is done in the conventional
approach in the same language. Here, two terms, namely
training and testing are borrowed from Machine Learning to
describe the construction of a standard curve and quantifying
unknown samples respectively. Within the conventional
approach for quantification, training is achieved through 4
stages: pre-processing, curve fitting, linear feature extraction
and line fitting. This is illustrated in Figure 1 (top branch and
solid line). Testing is accomplished by using the same first 3
blocks as training, and using the line generated from the final
training block in order to quantify. Pre-processing is typically
necessary to tackle challenges such as background noise such
that an accurate comparison amongst samples is achieved.
Curve fitting is required given that amplification curves are
discrete in time and most techniques require fluorescence
readings that are not explicitly measured at a given time
instance.

Proposed Framework
The proposed framework extends the conventional method
by increasing the dimensionality of the standard curve in
order to explore, research and take advantage of using
multiple features together. This new framework is presented
in Figure 1 (bottom branch and dotted line). For training,
there are 6 stages: pre-processing, curve fitting, multi-feature
extraction, high dimensional line fitting, multidimensional
analysis and dimensionality reduction. Testing follows a
similar process: pre-processing, curve-fitting, multi-feature
extraction, multidimensional analysis and dimensionality
reduction.

Figure 2 (a-c) illustrates the idea of training and Figure
2 (d-f) shows testing using the multidimensional approach.
Starting with training, Figure 2 (a) shows processed and curve-
fitted real-time nucleic acid amplification curves obtained by
serially diluting the known target template. In contrast with
the conventional training, instead of extracting a single linear
feature, multiple features denoted using the dummy labels X,
Y and Z are extracted from the processed amplification curves.

Therefore, each amplification curve has been reduced to 3
values (e.g. X1, Y1 and Z1) and, consequently, can be viewed
as a point in 3 dimensional space as shown in Figure 2 (b).
It is important to stress that this is a 3-D example in order to
visualise the process and any number of features could have
been chosen.

Figure 2. An illustration of training and testing using the multidimensional
framework. (a-c) Training: (a) Processed and curve-fitted real-time
amplification curves obtained from a conventional qPCR instrument using a
known nucleic acid target at known concentrations. (b) Multiple features - X,
Y and Z - are extracted from the processed amplification curves and plotted
against each other. A multidimensional standard curve is generated through
high-dimensional line fitting. (c) For quantification purposes, the MSC needs
to be mapped into a quantification curve using DRTs. (d-f) Testing: (d)
Unknown test amplification data is pre-processed and curve fitted. (e) The test
data is projected onto the MSC. (f) Using the DRT in training, the projected
data can be quantified.
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In this work, only linear features are considered. This
can be generalised to non-linear features however this is
outside the scope of the proposed framework. Given that all
the features are chosen such that they are linearly related
to initial concentration, the training data should theoretically
form a 1-D line in 3-D space. This line is approximated using
high-dimensional line fitting and generates what is called the
multidimensional standard curve. Although, the data forms a
line, it is important to understand that data points do not lie
exactly on the line. Consequently, there is considerable room
for exploring this multidimensional space, referred to as the
feature space, which will be reported in this paper.

For quantification purposes, the multidimensional standard
curve needs to be mapped into a single dimension, defined as
M0, linearly related to the initial concentration of the target.
In order to distinguish this curve from conventional standard
curves, it is referred to here as the quantification curve. This
can be achieved using dimensionality reduction techniques
(DRT) (16) as illustrated in Figure 2 (c). Mathematically, this
means that DRTs are multivariate functions of the form:M0=
φ(X,Y,Z) where φ(·) :R3→R. In fact, given that scaling
features does not affect linearity, M0 can be mathematically
expressed as M0=φ(α1X,α2Y,α3Z) where αi, i∈{1,2,3}
are scalar constants.

Once training is complete, unknown samples are analysed
(e.g. quantified) through testing as follows. Similar to training,
amplification data is processed (Figure 2 (d)) and can be
considered as points in the feature space (Figure 2 (e)).
Given test points may lie anywhere in the feature space,
it is necessary to project them onto the multidimensional
standard curve generated in training. Using the DRT function,
φ, which was produced in training, M0 values for each test
sample can be obtained. Subsequently, absolute quantification
is achieved by extrapolating the initial concentration based on
the quantification curve in Figure 2 (f).

Given that this higher dimensional space has not been
reported in the literature, it is effective to highlight the
degrees of freedom within this new framework that were non-
existent when observing the quantification process through the
conventional lens. The following advantages arise:

Advantage 1. The weight of each extracted feature can
be controlled by the scalars, α1,...αn. There are two main
observations of this degree of freedom. The first observation
is that features that have poor quantification performance can
be suppressed by setting the associated α to a small value.
This introduces a very useful property of the framework
which is referred to as the separation principle. The
separation principle means that including features to enhance
multidimensional analyses does not have a negative impact on
quantification performance if the α’s are chosen appropriately.
Optimisation algorithms can be used to set the α’s based on
an objective function (17). Therefore, the performance of the
quantification using the proposed framework is lower bounded
by the performance of the best single feature for a given
objective. The second observation is that no upper bound
exists on the performance of using several scaled features.
Thus, there is a potential to outperform single features as
shown in this report.

Advantage 2. The versatility of this multidimensional
way of thinking means that there are multiple methods
for dimensionality reduction such as: principal component

regression, partial-least squares regression and even projecting
onto a single feature (i.e. using the standard curve used in
conventional methods) (18-20). Given that DRTs can be non-
linear and take advantage of multiple features, predictive
performance may be improved.

Advantage 3. Training and testing data points do not lie
perfectly on a straight line as they did in the conventional case.
In fact, this property is the backbone behind why there is more
information in higher dimensions. The closer two points are
in the feature space, the more likely that their amplification
curves are similar (resembling a Reproducing Kernel Hilbert
Spaces (21)). Therefore, a distance measure in the feature
space can provide a means of computing a similarity measure
between amplification curves. It is important to understand
that the distance measure is not necessarily, and in reality
unlikely, to be linearly related to the similarity measure. For
example, it is not true that a point twice as far from the
multidimensional standard curve is twice as unlikely to occur.
This relationship can be approximated using the training data
itself. In the case of training, a similarity measure is useful
to identify and remove outliers that may skew quantification
performance. As for testing, the similarity measure can give a
probability that the unknown data is an outlier of the standard
curve, i.e. non-specific or due a qPCR artifact, without the
need of post-PCR analyses such as melting curves or agarose
gels (22).

Advantage 4. The effect of changes in reaction conditions,
such as annealing temperature or primer mix concentration,
can be captured by patterns in the feature space. Uncovering
these trends and patterns can be very insightful in
understanding the data. This is also possible in the
conventional case, e.g. how Ct varies with temperature,
however since reaction conditions affect different features
differently, conclusions can be drawn with higher confidence
if a pattern is observed in multidimensional space. For
example, consider the following. A change in temperature,
∆T , causes a different change for different features, e.g. ∆X ,
∆Y and ∆Z. Therefore, if only a single feature, X, is used
and a variation ∆X is observed then it is unlikely to capture
the source of the variation, i.e. ∆T with high confidence.
Whereas, considering multiple features and observing ∆X ,
∆Y and ∆Z simultaneously provides more confidence that
the source is due to ∆T .

An extension of advantage 4 is related to the effect of
variations in target concentration. Clearly, the pattern for
varying target concentration is known: along the axis of the
multidimensional standard curve. Therefore, the data itself is
sufficient to suggest if a particular sample is at a different
concentration than another. This is significant as variations
amongst replicates, which are possible due to experimental
errors such as dilution and mixing, can be identified and
potentially compensated for. This is of particular importance
for low concentrations as the error is more significant.

Given the nature of the framework, it is now trivial to
observe that the conventional approach is a special instance
of the proposed framework whereby only a single feature is
used. It is also interesting to observe that even if multiple
features are used, if the DRT is chosen such that the
multidimensional curve is projected onto a single feature, e.g.
Ct, then the quantification performance is exactly the same
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as the conventional process yet the opportunities and insights
obtained in multidimensional space still remain.

Instance of Framework
Each stage of the proposed framework can be accomplished
using several different techniques. It is not the focus of
this paper to explore different techniques in each stage as
this is application dependent. Thus, for each stage, arbitrary
methods are chosen to prove the power and versatility of this
framework.

Pre-processing. The only pre-processing performed in this
instance of framework is background subtraction. This is
accomplished using baseline subtraction: removing the mean
of the first 5 fluorescence readings from every amplification
curve. More advanced methods can be used to improve
performance (23).

Curve fitting. The chosen model for curve fitting is the 5-
parameter sigmoid (Richards Curve) given by:

F (x)=Fb+
Fmax

(1+e−(x−c)/b)d
(1)

Where x is the cycle number, F(x) is the fluorescence at cycle
x, Fb is the background fluorescence, Fmax is the maximum
fluorescence, c is the fractional cycle of the inflection point,
b is related to the slope of the curve and d allows for an
asymmetric shape (Richard’s coefficient).

The optimisation algorithm used to fit the curve to the
data is the trust-region method and is based on the interior-
reflective Newton method (24,25). Here, the trust-region
method is chosen over the Levenberg-Marquardt algorithm
(26,27) since bounds for the 5 parameters can be chosen in
order to encourage a unique and realistic solution. The lower
and upper bounds for the 5 parameters, [Fb, Fmax, c, b, d],
are given as: [-0.5, -0.5, 0, 0, 0.7] and [0.5, 0.5, 50, 100, 10]
respectively.

Feature extraction. The number of features, n, that can be
extracted is arbitrary, therefore 3 features were chosen in this
study in order to visualise each step of the framework: Ct, Cy
and−log10(F0). Therefore each point in the feature space is a
vector in 3-dimensional space, i.e. p=[Ct,Cy,−log10(F0)]T

where [·]T denotes the transpose operator. Note that by
convention, for the formulas in this paper, vectors are denoted
using bold lowercase letters and matrices are indicated using
bold uppercase letters. The details of these features are not the
focus of this study thus the reader may wish to review these
papers to understand each feature (14,15).

Line fitting. When constructing a multidimensional standard
curve, a line must be fitted in n-dimensional space. This
can be achieved in multiple ways such as using the first
principal component in principal component analysis (PCA)
or techniques robust to outliers such as random sample
consensus (RANSAC (28)) if there is sufficient data. This
study uses the former since a relatively small number of
training points are used to construct the standard curve.

Distance and Similarity measure. There are two distance
measures used in this study: Euclidean and Mahalanobis
distance. The Euclidean distance between a point, p, and
the multidimensional standard curve can be calculated by
orthogonally projecting the point onto the multidimensional
standard curve and then using simple geometry to calculate
the Euclidean distance, e:

P =Φ(p,q1,q2)=
(p−q1)T (q2−q1)

(q2−q1)T (q2−q1)
(2)

e= |(p−q1)−(q1+P ·(q2−q1))| (3)

Where Φ computes the projection of the point p∈Rn onto the
multidimensional standard curve. The points q1,q2∈Rn are
any two distinct points that lie on the standard curve and |· |
denotes the absolute value operator.

The Mahalanobis distance is defined as the distance
between a point, p, and a distribution, D, in multidimensional
space (29,30). Similar to Euclidean distance, the point is first
projected onto the multidimensional standard curve and the
following formula is applied to compute the Mahalanobis
distance, d:

d=
√

(p−P ·(q2−q1)T Σ−1(p−P ·(q2−q1) (4)

Where p, P, q1 and q2 are given in equation (2) and Σ is the
co-variance matrix of the training data used to approximate
the distribution D.

In order to convert the distance measure into a similarity
measure, it can be shown that if the data is approximately
normally distributed then the Mahalanobis distance squared,
i.e. d2, follows a χ2-distribution (31). Therefore, a χ2-
distribution table can be used to translate a specific p-value
into a distance threshold. For instance, for a χ2-distribution
with 2 degrees of freedom, a p-value of 0.001 corresponds to
a Mahalanobis distance of 3.72.

Feature weights. As mentioned previously, different weights,
α, can be assigned to each feature. In order to accomplish
this, a simple optimisation algorithm can be implemented.
Equivalently, an error measure can be minimised. This is
illustrated in Figure 3. In this study, the error measure to
minimise is the figure of merit described in the following
subsection. The optimisation algorithm is the Nelder-Mead
simplex algorithm (32,33) with weights initialised to unity, i.e.
beginning with no assumption on how good features are for
quantification. This is a basic algorithm and only 50 iterations
are used to find the weights so that there is little computational
overhead.
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Figure 3. An illustration of how an optimisation algorithm can be used to
find optimal parameters, α, for the framework.

Dimensionality reduction. In this study, principal component
regression is used, i.e. M0=P from equation (2), and it is
compared with projecting the standard curve onto all three
dimensions, i.e. Ct, Cy and −log10(F0).

Statistical Analysis
In consistency with the current literature on evaluating
standard curves, relative error (RE) and coefficient of variation
(CV) are used to measure accuracy and precision respectively.
The CV for each concentration is calculated after normalising
the standard curves such that a fair comparison across standard
curves is achieved. The formula for the two measures are given
by:

RE=100×
( x̂i
xi
−1
)

(5)

Where i is the index of a given training point, xi is the true
concentration of the ith training data, x̂i is the estimate of xi
using the standard curve.

CV=100× std(x̂j)

mean(x̂j)
(6)

Where j is the index of a given concentration and x̂j is a vector
of estimated concentrations for a given concentration indexed
by j. The functions std(·) and mean(·) perform the sample
standard deviation and sample mean of their vector arguments
respectively.

Borrowed from Statistics, this paper also uses the leave-
one-out cross validation (LOOCV) error as a measure for
stability and overall predictive performance (34). Stability
refers to the predictive performance when training points are
removed. The equation for calculating the LOOCV when a
given data point is removed is given as:

LOOCV=

√√√√M−1∑
i=1

(
zji − ẑji

)2
(7)

Where M is the total number of training data points, i is the
index of a given training point, zi is the true concentration of
the ith training point, and ẑ

j
i is the estimate of zi generated by

the standard curve without the jth training point. In this study,
the LOOCV is specified as a percentage in order to compare
across different template concentrations. This is achieved
through dividing the empirical LOOCV for each concentration
by its true value.

In order for the optimisation algorithm for computing α to
simultaneously minimise the three aforementioned measures,
it is convenient to introduce a figure of merit, Q, to capture
all of the desired properties. Therefore, Q is defined as
the product between all three errors and can be used to
heuristically compare the performance across quantification
methods. The average Q across all training data points is the
error measure that the optimisation algorithm will minimise.

Q=RE×CV×LOOCV (8)

The statistical tests used to determine the significance of
the results between the proposed method and conventional
methods is the paired t-test for sample means with a two-sided
distribution. Statistical analyses were performed in MATLAB
software (The MathWorks).

Fluorescence Datasets
Several DNA targets were used for qPCR amplification in this
study:

(i) Standard curves were constructed using synthetic
double-stranded DNA (gblocks Fragments Genes,
IDT) containing phage lambda DNA sequence (DNA
concentration ranging from 102 to 108 copies per
reaction). See supplementary data for primer and
sequence information, sheet 1.

(ii) Outlier detection experiments were performed using
synthetic double-stranded DNA (gblocks Fragments
Genes, IDT) carrying blaOXA-48, blaNDM and blaKPC
genes, in this work referred to as outlier 1, 2 and 3
respectively. See supplementary data for primer and
sequence information, sheet 2.

(iii) Primer and temperature variation experiments were
carried out with phage lambda DNA (New England
Biolabs, Catalog #N3011S) at 3×106 copies per
reaction. Final primer concentration ranged from 25
nM/each to 850 nM/each and annealing temperature
ranged from 52◦C to 72◦C.

All oligonucleotides used in this study were synthesised
by IDT (Integrated DNA Technologies, Germany) with
no additional purification. The specific PCR primers for
lambda phage were designed in-house using Primer3
(http://biotools.umassmed.edu/bioapps/
primer3_www.cgi), whereas the primers pairs used for
the outlier detection were taken from Monteiro et al. 2012
(35). Real-time PCR amplifications were conducted using
FastStart Essential DNA Green Master (Roche) according
to the manufacturer’s instructions, with variable primer
concentration and a variable amount of DNA in a 5 µL final
reaction volume. Thermocycling was performed using a
LightCycler 96 (Roche) initiated by a 10 min incubation at
95◦C, followed by 40 cycles: 95◦C for 20 sec; 62◦C (for
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lambda) or 68◦C (for the outliers) for 45 sec; and 72◦C for 30
sec, with a single fluorescent reading taken at the end of each
cycle. Each reaction combination, starting DNA and specific
PCR amplification mix, was conducted in octuplicate (5 µL
per reaction). All the runs were completed with a melting
curve analysis to confirm the specificity of amplification
and lack of primer dimer. The concentrations of all DNA
solutions were determined using a a Qubit 3.0 fluorometer
(Life Technologies). Appropriate controls were included in
each experiment.

RESULTS

Given that there is a separation principle between
quantification performance and insights in the feature space,
this section is split into two parts: quantification performance
and multidimensional analysis. The first part shows the results
that arose from the two degrees of freedom introduced in
advantage 1 & 2 and the latter explores advantage 3 & 4
regarding interesting observations in multidimensional space.

Quantification Performance
Synthetic phage lambda dsDNA was used to construct
a multidimensional standard curve and evaluate its
quantification performance relative to single feature
methods. The resulting multidimensional standard curve,
constructed using the features Ct, Cy and −log10(F0),
is visualised in Figure 4 (a). The computed features and
curve-fitting parameters for each amplification curve grouped
by concentration, ranging from 102 to 108, is presented in
supplementary data, sheet 3. For comparison, Figure 4 (b)
shows the quantification curves for all methods including
M0 which is obtained after dimensionality reduction through
principal component regression.

The optimal α to control the contribution of each feature
to quantification, after 50 iterations of the optimisation
algorithm, converged to α=[1.3310,0.9153,0.6386] where
the weights correspond to Ct, Cy and −log10(F0)
respectively. This result is readily interpretable and it
suggests that −log10(F0) exhibits the poorest quantification
performance amongst the three features; as consistent with
the literature (14). It is important to stress again that although
the weight of −log10(F0) is smaller than the other features to
improve quantification, there is still a lot of value in keeping
it as it can uncover trends in multidimensional space: as will
become apparent later.

The performance measures and figure of merit, Q, for this
particular instance of the proposed framework against the

Table 1. Comparison between quantification methods used in this study along
with a heuristic figure of merit, Q.

RE (%) CV (%) LOOCV (%) Fig. of Merit, Q
Ct 5.72 ± 3.73 0.83 ± 0.74 5.89 ± 3.79 23.37 ± 21.01
Cy 5.97 ± 4.08 0.99 ± 1.35 6.14 ± 4.15 27.83 ± 32.22
F0 20.51 ± 14.20 8.65 ± 13.76 21.21 ± 14.68 5035.73 ± 10804.56
M0 5.77 ± 6.06 0.71 ± 0.63 5.94 ± 3.77 19.67 ± 15.58

Values are given as average ± standard deviation across concentrations with
10-fold dilutions from 108 to 102. RE = relative error, CV = coefficient
of variation, LOOCV = leave-one-out cross validation corresponding to
accuracy, precision and overall predictive power respectively.

conventional instance is given in Table 1. A breakdown of
each calculated error grouped by concentration is provided
in supplementary data, sheet 4. It can be observed that in
terms of the figure of merit, M0 enhances quantification
by 15.8%, 29.3% and 99.6% compared to Ct, Cy and
−log10(F0) respectively. A statistical analysis was performed,

Figure 4. The multidimensional standard curve and quantification using
information from all features. (a) A multidimensional standard curve
is constructed using Ct, Cy and −log10(F0) for lambda DNA with
concentration values ranging from 102 to 108 (top right to bottom left).
Each concentration was repeated 8 times. The line fitting was achieved
using principal component analysis. (b) The quantification curve presented is
obtained by dimensionality reduction of the multidimensional standard curve
using principal component regression.
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Figure 5. Statistical analysis for the average figure of merit combining
accuracy, precision and overall predictive power. P-values between M0 and
other methods are shown above the bar chart and are computed using a paired
t-test with two-tail distribution.

as summarised in Figure 5, and the significance of the results
is confirmed (p-values < 0.05).

Multidimensional Analysis
Given the feature space is a new concept, there is a lot of room
to explore what can be achieved. In this section the concept of
distance in the feature space is explored and is demonstrated
through an example of outlier detection. Furthermore, it is
shown that a pattern exists in the feature space when altering
reaction conditions.

Here, synthetic dsDNA carrying carbapenamase genes,
namely blaOXA-48, blaNDM and blaKPC, are used as deliberate
outliers for the multidimensional standard curve and are
referred as outlier 1, 2 and 3 respectively. Figure 6
shows the mean of the outliers in the feature space. The
computed features and curve-fitting parameters for outlier
amplification curves are presented in supplementary data,
sheet 5. Specificity of the outliers is confirmed using a melting
curve analysis as presented in supplementary data, sheet 6.
Given that the outlier test points do not lie exactly on the
multidimensional standard curve, Figure 6 also shows the
orthogonal projection of the mean of the outliers onto the
standard curve; as described in the proposed framework.

In order to fully capture the position of the outliers
in the feature space, it is convenient to view the feature

Figure 6. Outliers in the feature space. (left) The multidimensional standard
curve for lambda DNA along with three outliers. (right) Zoomed into the
region of the feature space with the mean of the replicates and the projection
of the outliers onto the standard curve.

Figure 7. Multidimensional analysis using the feature space for clustering
and detecting outliers. (a) A multidimensional standard curve using Ct, Cy

and −log10(F0) for lambda DNA with concentration values ranging from
102 to 108 (top right to bottom left). An arbitrary hyperplane orthogonal to
the standard curve is shown in grey. (b) The view of the feature space when
all the data points have been projected onto the aforementioned hyperplane.
The data points consist of training standard points and the three outliers.
Errors corresponding to the Euclidean distance, e, from the multidimensional
standard curve to the mean of the outliers is given by e1=1.16, e2=0.77
and e3=1.41. The 99.9% confidence corresponding to a p-value of 0.001 is
shown with a solid black line. (c) A transformed space where the Euclidean
distance, d, is equivalent to the Mahalanobis distance in the orthogonal view.
The black circle corresponds to a p-value of 0.001.
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space along the axis of the multidimensional standard curve.
This is possible by projecting data points in the feature
space onto the plane perpendicular to the standard curve as
illustrated in Figure 7 (a). The resulting projected points are
shown in Figure 7 (b). It can be observed that all three
outliers can be clustered and clearly distinguished from the
training data. Furthermore, the Euclidean distance, e, from the
multidimensional standard curve to the mean of the outliers
is given by e1=1.16, e2=0.77 and e3=1.41. Given that
the furthest training point from the standard curve in terms
of Euclidean distance is 0.22: the ratio between e1, e2, e3
and 0.22 is given by 5.27, 3.5, 6.41 respectively. Therefore,
this ratio can be used as a similarity measure and the three
clusters could be classified as outliers. However, this similarity
measure has two implicit assumptions: (i) The data follows
a uniform probability distribution. That is, a point twice
as far is twice as likely to be an outlier. This assumption
is typically made when there is not enough information to
infer a distribution. (ii) Distances in different directions are
equally likely. This is intuitively untrue in the feature space
because a change in one direction, e.g. Ct, does not impact
the amplification curve as much as another, e.g. −log10(F0).
It is important to emphasise that directions in the feature
space contain information regarding how much amplification
kinetics change and, therefore, direct comparisons between
amplification reactions should be made along the same
direction. This information is not captured in the conventional
approach which is based on unidimensional data analysis.

In order to tackle the two aforementioned assumptions,
the Mahalanobis distance, d, can be used. Clearly, by
observing Figure 7 (b), the training data predominantly
varies in a given direction. The Mahalanobis distance can be
computed directly using equation (4). In order to visualise
the Mahalanobis distance, the orthogonal view of the feature
space (Figure 7 (b)) can be transformed into a new space
(Figure 7 (c)) where the Euclidean distance is equivalent to the
Mahalanobis distance in the original space. This is achieved
by normalising principal components of the training data. It is
now obvious from Figure 7 (c) that data in all directions are
equiprobable, i.e. the training data forms a circular distribution
in the transformed space. The Mahalanobis distance from
the multidimensional standard curve to the mean of the
outliers is given by d1=12.65, d2=18.87 and d3=19.36.
In comparison to the Euclidean distances, it is observed that
when considering the distribution of the data, the position of
the outliers significantly change. As an example, based on
Euclidean distance, outlier 2 is the closest whereas using the
Mahalanobis distance suggests outlier 1.

A useful property of the Mahalanobis distance is that
its squared value follows a χ2-distribution if the data is
approximately normally distributed. Therefore, the distance
can be converted into a probability in order to capture
the non-uniform distribution. Figure 8 shows the histogram
of Mahalanobis distance squared for the entire training
set superimposed with a χ2-distribution with 2 degrees of
freedom. Based on the χ2-distribution table, any point further
than 3.717 is 99.9% (p-value < 0.001) likely to be an outlier.
Since all the outliers have a Mahalanobis distance significantly
greater than 3.717, they are classified as outliers.

The second multidimensional analysis is concerned with
observing patterns and robustness of the MSC for absolute

Figure 8. Data distribution. A histogram of the Mahalanobis distance squared
of all training data points used in constructing the multidimensional standard
curve superimposed with a χ2-distribution with 2 degrees of freedom (orange
line).

quantification in non-ideal reaction conditions. As an
example, annealing temperature and primer mix concentration
are chosen to illustrate the idea. Specificity of the qPCR
is not affected, as shown with melting curve analyses (see
supplementary data, sheet 6). Figure 9 (a) shows the effect of
how a given concentration of the phage lambda target moves
in the feature space as annealing temperature is varied. It
is observed that temperatures ranging from 52.0 to 69.9◦C
mostly affect −log10(F0) whereas changes from 69.9 to
72.0◦C affects mostly Ct and Cy (see supplementary data,
sheet 7). Similarly, Figure 9 (b) shows, that for a given
concentration of phage lambda DNA, there is a pattern
in the feature space associated with varying primer mix
concentration from 25 to 850 nM. The pattern is observed
to be approximately linear and to predominantly change
along the −log10(F0) direction (see supplementary data,
sheet 8). Both experiments suggest that Ct and Cy are more
robust to changes in annealing temperature and primer mix
concentration which is good for quantification performance.
Furthermore, the patterns are observed in the feature space
predominantly due to −log10(F0). Based on this finding, the
unidimensional way of thinking would suggest to use Ct or
Cy for future experiments. However, this implies a loss of
information contained in patterns generated by −log10(F0).
Therefore, the proposed multidimensional approach combines
features that are beneficial for quantification performance
and pattern recognition: preserving all information whilst
uncompromising the quantification performance.

Following this, the robustness of M0 for quantification
is evaluated compared to the underlying single features.
Table 2 and 3 show the estimated quantification for
lambda phage DNA using each method as temperature
and primer mix concentrations are varied respectively. The
assumed concentration of the lambda phage DNA is 3×
106 copies/reaction; based on Qubit 3.0 fluorometer. The
significance between the average quantification between
methods is determined using a paired t-test with a two-tailed
distribution.

For temperature variation (Table 2), the estimated average
concentration for M0 is closer to the true concentration.
Statistical analyses show that the results is significant
compared with Ct and Cy (p-value < 0.1). As compared
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with−log10(F0), the test is inconclusive because the variance
of quantification using −log10(F0) is very large. For primer
mix concentration variation (Table 3), the estimated average
concentration for M0 is comparable with Ct and closer to
the true concentration compared with Cy and −log10(F0).
The statistical analyses show that there is no difference in
the mean of M0 and Ct (p-value ≈ 0.12), whereas the
results are significant compared with Cy and −log10(F0)
(p-value < 0.1). All data and analyses regarding variation
experiments can be found in supplementary data, sheet
7 & 8. Overall, M0 outperforms or provides comparable
robustness in quantification under temperature and primer mix
concentration variation compared to the best single feature
method.

Finally, a further interesting observation is that for low
concentrations of nucleic acids, there is a variation of training
data points along the axis of the multidimensional standard
curve as seen in Figure 9 (c). Thus it is intuitive to hypothesise
that the variation is due to fluctuations in concentration
as apposed to changes in reaction kinetics. There are two
implications of this assumption: (i) all the points are inliers
and thus likely to be specific without the need of resource
consuming post-PCR analyses. Specificity is confirmed using
a melting curve analysis given in supplementary data, sheet
6. (ii) The outcome of absolute quantification is based on
3 features as apposed to a single feature which implies an
increased confidence in the estimated target concentration.

Table 2. Estimated concentration when varying annealing temperature.

Temperature (◦C) Ct Cy F0 M0
52.00 2.88E+06 2.97E+06 2.15E+06 2.90E+06
53.00 2.88E+06 2.92E+06 2.25E+06 2.89E+06
54.90 2.84E+06 2.85E+06 2.33E+06 2.83E+06
57.30 2.79E+06 2.84E+06 2.69E+06 2.80E+06
59.90 2.89E+06 2.94E+06 2.97E+06 2.90E+06
62.70 3.22E+06 3.20E+06 3.14E+06 3.21E+06
65.40 3.16E+06 3.46E+06 3.52E+06 3.25E+06
67.80 3.20E+06 3.93E+06 3.96E+06 3.43E+06
69.90 3.18E+06 4.78E+06 9.28E+06 3.67E+06
71.30 2.76E+06 4.96E+06 3.14E+07 3.42E+06
71.90 1.27E+06 2.51E+06 4.29E+07 1.65E+06
72.00 4.24E+05 7.01E+06 8.66E+08 5.71E+05
Average 2.62E+06 3.70E+06 8.10E+07 2.79E+06
± SD 8.66E+05 1.30E+06 2.48E+08 8.65E+05

Each value is the average of 8 replicates. The true concentration is 3×106.

Table 3. Estimated concentration when varying primer mix concentration.

Primer Conc. (nM) Ct Cy F0 M0
25 4.45E+06 3.33E+06 3.59E+05 3.94E+06
100 3.56E+06 2.78E+06 1.19E+06 3.25E+06
175 3.25E+06 2.84E+06 3.02E+06 3.11E+06
250 2.84E+06 3.02E+06 5.66E+06 2.91E+06
325 2.43E+06 3.24E+06 2.52E+07 2.67E+06
400 2.84E+06 3.09E+06 4.15E+06 2.93E+06
475 2.73E+06 3.22E+06 5.02E+06 2.90E+06
550 2.64E+06 3.45E+06 6.94E+06 2.88E+06
625 2.72E+06 3.37E+06 5.66E+06 2.93E+06
700 2.98E+06 3.42E+06 4.02E+06 3.11E+06
775 2.79E+06 3.25E+06 4.17E+06 2.94E+06
850 2.74E+06 3.23E+06 4.42E+06 2.90E+06
Average 3.00E+06 3.19E+06 5.82E+06 3.04E+06
± SD 5.42E+05 2.15E+05 6.37E+06 3.18E+05

Each value is the average of 8 replicates. The true concentration is 3×106.

Figure 9. Patterns associated with changing reaction conditions. The
multidimensional standard curve in all plots are using Ct, Cy and
−log10(F0) for lambda DNA with concentration values ranging from 102

to 108 copies/reaction (top right to bottom left). (a) The magnified image
shows the effect of changing the reaction temperature from 52◦C to 72◦C
for lambda DNA at 5×106 copies/reaction. (b) The magnified image shows
the effect of changing the primer mix concentration from 25nM to 850nM for
each primer for lambda DNA at 5×106 copies/reaction. (c) The magnified
image shows the individual training sample location in the feature space for a
given low concentration: 102 copies/reaction.

DISCUSSION

Absolute quantification of nucleic acids in real-time PCR
using standard curves is undoubtedly important and significant
in various fields of biomedicine, although research has
saturated in recent years. This is partially due to the movement
of research towards digital PCR (dPCR) because of the
advantages it poses over qPCR such as the absence of a
standard curve for absolute quantification. However, dPCR
is currently not suitable for point-of-care applications given
the cost and complexity of instruments. This paper presents
a framework that shows the benefits of standard curves
extend beyond absolute quantification when observed in
a multidimensional environment. Consequently, this work
opens the door for researchers from different fields to explore
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mathematical methods and applications that are enabled by the
proposed framework.

The focus of current researchers is on the computation of
a single value, referred to here as a feature, that is linearly
related to concentration. Therefore, there has been a gap in
the literature in taking advantage of multiple features. The
potential reason for a lack of research in this area is because
of the non-trivial benefits of combining linear features. The
only intuitive interpretation of using several features is in the
reliability of quantification. For example, instead of trusting
a single feature, e.g. Ct, other features such as Cy and
−log10(F0) can be used to check if the quantification result is
similar. This unidimensional way of thinking prevents several
degrees of freedom and advantages that the proposed versatile
framework enables.

There are four main capabilities that are enabled by the
proposed framework: (i) the ability to select multiple features
and weight them based on quantification performance. (ii)
the flexibility of choosing the optimal mathematical method
that maps multiple features into a single value representing
target concentration. The first two capabilities lead to the
separation principle which lower bounds the quantification
performance of the framework to the best single feature.
However, the insights and multidimensional analyses from the
multiple features still remain. It is interesting to observe that
for the dataset used in this study, the gold standard Ct method
outperformed the other single features. This is an example
of why the community is reluctant to using other features
given that the outcome is data dependent. The proposed
framework offers a robust method of absolute quantification
without the need to select a specific feature with a guaranteed
quantification performance. This paper shows that in fact it is
possible to increase the quantification performance as apposed
to single features. (iii) the third capability enables applications
such as outlier detection through the information gain captured
by the elements of the feature space (e.g. distance measure,
direction, distribution of data) that are typically meaningless
or not considered in the unidimensional approach. (iv) the
fourth advantage complements the prior advantage in that
specific perturbations in reaction conditions are observed as
characteristic patterns in the feature space.

The multidimensional way of thinking is not completely
unfamiliar in absolute quantification. The shape based outlier
detection (SOD) (36) takes a multidimensional approach in
order to define a similarity measure between amplification
curves. However, there are two fundamental differences with
the work of this paper. The first is that SOD relies on using
a specific model for amplification, namely the 5-parameter
sigmoid, and is therefore not a general method. The second
difference is that the pattern between the features in SOD
and initial target concentration is unknown, therefore the
SOD cannot be naturally integrated into the quantification
process and is typically used as an add-on (37). In other
words, the multidimensional approach is only considered
for outlier detection and quantification is still considered as
unidimensional.

The contribution of this work can be accredited to
the framework as a whole and the feature space which
incorporates the multidimensional standard curve. Currently,
the framework is limited to considering features that are
linearly related to initial target concentration. This limitation

is in fact a design choice given there is a lack of other
types of features available in the literature that are non-
linear and in order to reduce the complexity of the analysis.
The second limitation is related to the feature space. The
question arises as to whether sufficient information is captured
between amplification curves in order to distinguish them in
the feature space. For example, if two unrelated PCR reactions
exhibit a perfectly symmetric sigmoidal amplification curve,
their respective standard curves may potentially overlap.
This limitation can be tackled from a molecular perspective
by tuning the chemistry in order to sufficiently change
amplification curves without compromising the performance
of the reaction (e.g. speed, sensitivity, specificity, etc).

In terms of future directions, there are many research paths
that can be explored. Both the theory of the framework and
applications of the framework can be investigated. The results
presented in this paper raise a number of questions: can
compensating for reaction conditions significantly improve
quantification performance? Does amplification efficiency
describe a pattern in the feature space? Can the proposed
framework be extended to non-linear features? Can the
proposed framework be used for emerging isothermal
amplification chemistries?

In conclusion, this paper presents a versatile framework,
multidimensional standard curve and the feature space - which
opens the door for researchers to explore techniques and ideas
that were not previously possible. We hope by sharing these
concepts, others will be able to adapt and enhance this work
to meet their objectives and advance the field of nucleic acid
research.
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