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Abstract  

The reconstruction of ancestral scenarios is widely used to study the evolution of 

characters along a phylogenetic tree. In the likelihood framework one commonly uses the 

marginal posterior probabilities of the character states, and the joint reconstruction of the most 

likely scenario. Both approaches are somewhat unsatisfactory. Marginal reconstructions 

provide users with state probabilities, but these are difficult to interpret and visualize, while 

joint reconstructions select a unique state for every tree node and thus do not reflect the 

uncertainty of inferences.  

We propose a simple and fast approach, which is in between these two extremes. We 

use decision-theory concepts and the Brier criterion to associate each node in the tree to a set 

of likely states. A unique state is predicted in the tree regions with low uncertainty, while several 

states are predicted in the uncertain regions, typically around the tree root. To visualize the 

results, we cluster the neighboring nodes associated to the same states and use graph 

visualization tools. The method is implemented in the PastML program and web server. 

The results on simulated data consistently show the accuracy and robustness of the 

approach. The method is applied to large tree comprising 3,619 sequences from HIV-1M 

subtype C sampled worldwide, which is processed in a few minutes. Results are very 

convincing: we retrieve and visualize the main transmission routes of HIV-1C; we demonstrate 

that drug resistance mutations mostly emerge independently under treatment pressure, but some 

resistance clusters are found, corresponding to transmissions among untreated patients. 
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INTRODUCTION 

A central issue in biology is to recover and understand the evolutionary history of 

biological entities. These may be of different nature and scale, ranging from DNA and proteins 

to communities, going through biological systems, organs, strains, individuals, species and 

populations. The characteristics and evolution of these objects are measured using a variety of 

“characters”, including molecular properties (e.g, Werner et al. 2014, Bickelmann et al. 2015, 

Busch et al. 2016), gene-contents of genomes (e.g, Iwasaki and Takagi 2007), morphological 

and phenotypic characteristics (e.g, Endress and Doyle 2009, Marazzi et al. 2012, Beaulieu et 

al. 2013, Sauquet et al. 2017), ecological traits (e.g, Maor et al. 2017), and geographic locations 

(e.g. Wallace et al. 2007, Arbogast 2001, Lemey et al. 2009, Edwards et al. 2011, Lemey et al. 

2014, Magee et al. 2017, Dudas et al. 2017). Ancestral character reconstruction (ACR) is a 

major approach to tackle these questions, allowing us to trace the origin and evolution of the 

character of interest. ACR relies first on the inference of phylogenetic relationships among the 

studied objects, that is, a phylogenetic tree. Tips of the tree represent extant objects, 

progressively  connected  by  branches  to  their  ancestors  represented  by  the  internal nodes 

of the tree. The common ancestor of all tips corresponds to the tree root. ACR determines how 

the character has changed on the tree from the root to the tips over evolutionary time, by 

assigning the most likely ancestral character states to each internal node. This global 

reconstruction over the whole tree describes the evolutionary history of the character of interest 

and is commonly called an “ancestral scenario”. Several approaches have been proposed for 

ACR so far, including parsimony (Swofford and Maddison 1987, Maddison and Maddison 

2000), maximum-likelihood (ML; Felsenstein 1981, Pagel 1999, Pupko et al. 2000, Ree and 

Smith 2008) and Bayesian methods (Huelsenbeck and Bollback 2001, Pagel et al. 2004). 

Parsimony-based ACR provides quick and simple methods to infer ancestral scenarios. 

However, due to the over-simplification of evolutionary processes (e.g. not accounting for 

branch lengths and evolutionary times), parsimony has limited accuracy (Zhang and Nei 1997, 

Collins et al. 1994). ML and Bayesian approaches are based on probabilistic models of character 

evolution. ML methods were shown to perform better than parsimony, using both theoretical 

arguments and simulation studies under a variety of conditions (Zhang and Nei 1997, Gascuel 

and Steel 2014). Simulation results showed that even the simplest models (e.g. JC, Jukes and 
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Cantor 1969) yield more accurate reconstructions than parsimony (Gascuel and Steel 2014), 

thanks to the consideration of evolutionary times and branch lengths, and are robust to moderate 

model violations and phylogenetic uncertainty (Hanson-Smith et al. 2010). 

The size of the trees subjected to ACR has rapidly increased thanks to new generation 

sequencing technologies. Evolutionary and epidemiological analysis of pathogens like human 

immunodeficiency virus (HIV), Influenza and Ebola is one of the hotspots of this problem, with 

data sets commonly comprising thousands strains (Ratmann et al. 2016, Holmes et al. 2016, 

Durães-Carvalho and Salemi 2018). With such rapidly evolving pathogens, the links between 

evolutionary and epidemiological processes raise essential public health questions with 

important practical issues, notably the routes and patterns of pathogen spread (Gräf et al. 2015) 

and the emergence of drug resistances (Mourad et al. 2015). ACR has been widely applied to 

tackle these questions aiming to map ancestral states of pathogen characters (e.g. sampling 

location, risk group of the host, presence of drug resistance) on the tree inferred from genetic 

sequences.  

Bayesian methods (Huelsenbeck and Bollback 2001, Pagel et al. 2004, Drummond et 

al. 2012) are commonly used in this context, notably in phylogeography studies (Lewis et al. 

2015, Magree et al. 2017). The main approach is to infer using a Markov chain Monte Carlo 

(MCMC) procedure the joint posterior distribution of ancestral character states, phylogenetic 

tree and model parameters. This involves complex probabilistic models describing the 

evolution of the sequences, the molecular clock (possibly relaxed and correlated), the 

demography, and last but not least the evolution of the studied character. The character 

evolution model can be very simple, typically symmetrical with a few states, but the current 

trend is to rely on increasingly complex models, non-symmetrical, with latent variables, dozens 

of character states, and evolution over time (Stadler and Bonhoeffer 2013, Leventhal et al. 2013, 

Kühnert et al. 2014, Lambert et al. 2014, Kühnert et al. 2016). The Bayesian approach is very 

popular because of this wealth of options and flexibility, via famous software programs like 

BEAST (Drummond et al. 2012). However, MCMC-based methods have high computational 

cost, and the joint inference of all these tree, parameter and character distributions cannot be 

achieved for large data sets. Even the stepwise approach where we first infer the tree 

distribution, and then the distribution of the studied character along the most likely trees is 
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hardly applicable to big datasets, requiring high performance computing units (typically GPUs) 

and sophisticated parallel implementations (Ayres et al. 2011). In contrast, the ML approach is 

less computationally demanding as it gives point estimates for the parameters of interest, instead 

of distributions. For example, TreeTime (Sagulenko et al. 2018) is able to deal with large trees 

with thousands of tips and perform fast ML-based ACR in a few minutes or even a few seconds. 

However, there are still potential limitations in applying standard ML-based ACR to 

large datasets and trees. These limitations are related to the inference of the character states, the 

uncertainty that is inherent to such inference and that of the phylogeny, and the visualization 

and interpretation of the (large) resulting ancestral scenario. Two main approaches are used in 

ML-based ACR:  

 Either we compute the marginal posterior probabilities of every state for each of the tree 

nodes (Felsenstein 1981, Yang 2007). Then, we usually select the state with the highest 

posterior. This maximum a posteriori (MAP) selection is independent from one node to 

another, which could induce globally inconsistent scenarios (typically: two very close nodes 

with incompatible predictions). This possible shortcoming formed the basis of criticisms 

against the marginal approach (but see Gascuel and Steel (2014) and our simulation results 

below). 

 Or we compute with dynamic programming the joint ancestral scenario with the maximal 

posterior probability (Pupko et al. 2000). This approach has some global consistency 

guaranty, but does not reflect the fact that with real data and large trees, billions of scenarios 

may have similar posterior probabilities.  

From a theoretical standpoint, both methods are based on MAP and thus have some 

optimality guaranty, at least in the absence of model violation. Simulations performed by 

Gascuel and Steel (2014) showed that the predictions and accuracy of both are extremely close. 

This advocates for the use of the marginal approach, which not only indicates the most likely 

state for each node, but also returns the posteriors of all states. However, interpreting and using 

these probabilistic outputs is difficult, for example when two states have similar posteriors. 

Another difficulty is to visualize and summarize the resulting, global scenario, which 

commonly involves thousands of probability distributions attached to each of the tree nodes. 
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Here, we propose a simple and fast approach to overcome these limitations. We use 

decision theoretic concepts and tools to infer for each of the tree nodes a limited set of likely 

states, which best approximate the marginal posterior probabilities. In the easy regions of the 

tree (typically close to the tips, Gascuel and Steel 2014) this approach predicts a unique (MAP) 

state, while in the difficult parts (typically close to the root) it may predict several likely states 

reflecting the uncertainty of the inferences. To summarize and visualize the results we cluster 

the neighboring nodes with identical predictions and re-use some of the ideas we developed in 

parsimony-based PhyloType software (Chevenet et al. 2013). Thus we obtain a compact, tree-

shaped and easily interpretable graphical representation of the most likely ancestral scenarios, 

which is robust to phylogenetic uncertainties and sampling rate variations. In the following, we 

first describe the different components of the method, then the results with simulated data along 

with comparisons with other ACR methods, and lastly the analysis of a large HIV data set. All 

methods developed and studied in this article are implemented in PastML software, which is 

freely available in several versions and interfaces (open source code, docker container, web 

server, see https://pastml.pasteur.fr/).  

NEW APPROACHES 

Preamble 

The method can be decomposed into three main steps: (1) ML-based rescaling of the 

tree and estimation of the model parameters; (2) ancestral reconstruction of the most likely 

character states; (3) compression and visualization of the inferred ancestral scenario. These 

three steps are described in turn in the following. In this section, we describe the input data, 

notation, model and global framework and goals. 

The input of the method is a rooted tree denoted as T, where every tip is associated to a 

character state. The number of tree tips is denoted as n and the tree root as R. T may be not fully 

resolved, the method applies to both binary and non-binary trees. In most cases T is obtained 

from a multiple alignment of sequences (DNA or proteins) using some standard phylogenetic 

software. Then, the branch lengths are expressed in number of substitutions per site. As we shall 

see, the input tree is rescaled to fit the evolution of the studied character, and thus all branch-

length measures are acceptable. Most interesting results will be obtained with time scaled trees, 
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where branch lengths are expressed in years. Then, the rescaling factor estimated from the input 

data represents the average number of character changes per year. When the goal is to 

reconstruct the ancestral sequences corresponding to the input multiple alignment, rescaling is 

not needed and the original branch lengths in the tree are well suited. 

The studied character may be of various nature, as discussed in the Introduction. Here, 

we consider discrete characters with values taken from a finite, non-ordered set of states; for 

example: {A, T, G, C} for DNA, {Africa, America, Asia, Australia, Europe} in 

phylogeography, or {Sensitive, Resistant} when studying drug resistances. S denotes the set of 

possible states, with size s. A tree tip (or leaf) is denoted as l, and  c l S  is the character state 

associated to l. The method is able to accommodate tips with unknown character values, 

denoted as  c l X . 

 Continuous-time Markov models are commonly used to represent the evolution of 

characters, notably with sequences where all multiple-alignment sites are usually assumed to 

evolve according to the same model (with different rates when using rates across sites models, 

e.g. gamma distributed, Yang 1994). In this setting, especially with DNA where we have 4 

states only, we are able to accurately estimate the parameters of relatively complex models, for 

example GTR (Tavaré 1986) having 10 parameters and 8 degrees of freedom with DNA. Here, 

we have a unique observation describing the evolution of the studied character through the tips 

values. Then, accurately estimating the parameters of complex models is a difficult task, which 

may just be impossible, especially when S is large. We thus use simple JC-like and F81-like 

models (Jukes and Cantor 1969, Felsenstein 1981). With JC-like models all rates of changes 

from state i to state j (i ≠ j) are equal, while with F81-like models, the rate of changes from i to 

j (i ≠ j) is proportional to the equilibrium frequency of j, denoted as j . JC-like models are 

special cases of F81-like ones, with all equilibrium frequencies equal to 1 s . Several studies 

advocate the use of F81-like models. As said above, we showed using simulations that even the 

simpler JC version performs nearly as well as the true model, with DNA data generated using 

an HKY model (Hasegawa et al. 1985). Moreover, Dudas et al. (2017) showed that the main 

factor of state changes in Ebola phylogeography (i.e. virus dispersal) corresponds to a number 

of movements from location i to location j proportional to the product of their population sizes 
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i j  , which precisely corresponds to an F81-like model. Another advantage of F81 is that the 

probability of changes along a branch of length t is simply expressed as: 

   
 

1 if

1 otherwise,

t
j

t t
i

PC i j t e j i

e e



 

    

   
      

where  is the normalization factor:  

 2=1 1 .i    

F81-like models (also called equal input models) have s parameters ( 1s   degrees of 

freedom) corresponding to the equilibrium frequencies of the s states. In our software, these 

frequencies can be user supplied, roughly estimated from the state frequencies observed at the 

tree tips (not recommended), or estimated by maximum likelihood as we shall see in the next 

section. 

Tree rescaling and parameter estimation 

Beyond the state equilibrium frequencies, the whole model involves two additional 

parameters: 

 The global rate, denoted as . With a unique observation, as is the case here, estimating all 

branch lengths in the tree is just impossible. We therefore assume that the number of 

character changes along the tree is proportional to the branch lengths of the input tree. It 

follows that every branch length t is turned into t, which is interpreted as the expected 

number of character changes along the given branch. Moreover, we assume that  is 

constant across the tree over evolutionary time, which is a similar assumption as the one-

rate model (Mooers and Schluter 1999). With dated input trees, the original branch lengths 

are measured in years and  in number of state changes per year. The estimated value of  

is then highly informative about the global evolutionary rate of the studied character along 

the tree. 

 A smoothing parameter, denoted as . Both dated and molecular trees may have branches 

of length zero. For example, when two input sequences are identical (quite common with 

virus strains), we expect that any reasonable phylogenetic method infers a cherry with null 
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branches connecting the two sequences (a cherry is a rooted subtree of two taxa). The same 

configuration may happen in dated trees due to temporal constraints (To et al. 2015). 

However, two identical sequences may have been observed in different countries, thus 

giving rise to two different character states linked by a path of length zero. The likelihood 

of any scenario containing such a configuration is null and no ML-based ancestral 

reconstruction is possible. Thus, we use a smoothing approach to lengthen null and short 

external branches, without modifying their average length, denoted as . Let t be the length 

of a given external branch of the input tree, the smoothed length is equal to    t     

. Zero length internal branches are not smoothed but turned into polytomies, as only null 

external branches may be problematic. The combination of the global rate with the 

smoothing procedure provides the “rescaled” tree with external branches of length 

   t       and internal ones of length t, where t is the original length in the input 

tree. 

To estimate these parameters (, , and the equilibrium frequencies with F81-like 

models) we compute the scenario likelihood using the standard pruning algorithm (Felsenstein 

1981) and optimize this likelihood using the iterative Broyden–Fletcher–Goldfarb–Shanno 

(BFGS) algorithm (Fletcher 2013). Constraints are added to account for the 

biological/mathematical meaning of the parameters: 

 Let  be the average branch length in the input tree, excluding branches with length zero. 

We impose: 1 11 1000 10,         meaning that in the rescaled tree the number of 

changes along a branch with average length is in-between 0.001 and 10 (note that with 10 

changes per branch reconstructing ancestral scenarios is just impossible). 

 Let  be the average length of external branches in the input tree, excluding branches with 

length zero. We impose 100 10,     meaning that null branches will have length in-

between 100  and 10 , before rescaling, while longer branches will not change 

substantially. 

 Last but not least, we (obviously) impose 1i  . 

To ensure that these constraints are satisfied, we use variable transformations: softmax 

for the equilibrium frequencies, and sigmoid-based for the scaling factor  and smoothing 
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parameter . The corresponding variables are then optimized in the full multidimensional space 

using (unconstrained) BFGS. 

Discrete approximation of the state marginal posterior probabilities 

Our method is based on a discrete approximation of the marginal posterior probabilities 

of the character states, attached to the internal nodes of the tree. The computation of these 

probabilities is standard and used under different forms in most if not all ML-based 

phylogenetic programs. However, the complete description of the procedure is rarely available, 

and not presented in any text book to the best of our knowledge. It is described in the Material 

and Methods, for the sake of completeness. To summarize: we first use the pruning algorithm 

(Felsenstein 1981), which performs a bottom up, post-order tree traversal, and accounts for the 

information of the descendants of every tree node; then, we perform a top-down, pre-order tree 

traversal, which adds to the previous calculations the information coming from the rest of the 

tree. We thus obtain for every tree node N and state i, the marginal posterior probability of i for 

N,  ,Marginal N i , which accounts for the state value of all tree tips. This procedure has a time 

complexity in  2O ns , where n is the number of tips and s the number of states. It is thus linear 

in n and able to process trees with dozens of thousands of tips in a few seconds. It is equivalent 

(but faster) to the procedure consisting in iteratively re-rooting the tree with every internal node 

and applying the pruning algorithm. The reconstruction accuracy is clearly higher than that 

obtained with the pruning algorithm (without re-rooting) and the descendant information only 

(Gascuel and Steel 2014).  

Let N be any given internal node of T. Based on the marginal posterior probabilities

 ,Marginal N i , we have to decide which states are predicted for N and which ones are 

discarded because their posteriors are too low. We could use some thresholding approach, but 

the choice of the threshold values and decision procedure would be very subjective, without 

any formal guaranty on the accuracy of the predictions. We therefore used concepts and tools 

from decision theory and supervised classification (Brier 1950, Gneiting and Raftery 2007). 

Assume that the true evolutionary model (tree, branch lengths, model of character 

changes) is fully known; then, a standard result, known as the Bayes decision rule, is that the 

most accurate prediction for N is obtained by selecting the state with highest posterior (MAP, 
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maximum a posteriori). In this framework, we predict a unique state, and the accuracy is simply 

measured by the probability of correctly predicting the true ancestral state. However, in our 

framework a unique prediction per node is often unsatisfactory, especially when several states 

corresponding to different scenarios have similar posteriors. Then, a refined approach involves 

using probabilistic predictions, where states are assigned to probabilities instead of binary, 

mutually exclusive decisions as with the Bayes rule. Again, when the true evolutionary model 

is fully known, the marginal posterior probabilities can be shown to be optimal. Various scoring 

criteria (or scoring rules) have been proposed to measure the accuracy of probabilistic 

predictors. The most used is the logarithmic scoring criterion, which has strong foundations in 

information theory. This is the negative of “surprisal”, which is commonly used in Bayesian 

inference. However, this scoring criterion is not appropriate in our context, where we have state 

predictions with null probabilities (see below). We thus use the Brier quadratic scoring 

criterion. Let  ,PPr N i  be the predicted probability of state i for node N and  ,Truth N i  be 

the “truth” of i for N, which is equal to 1 when the ancestral state of N is i, and 0 otherwise. The 

Brier score can be expressed as: 

      2, ,
i S

Brier N PPr N i Truth N i


    

In this form the Brier score is simply the squared Euclidean distance between  PPr N  and 

 Truth N  (the lower the better). For instance, assuming that we assign probability 1 to the true 

state, then   0Brier N  . On the opposite, if we assign probability 1 to an incorrect state, then 

  2Brier N  , which is the worst possible value of the score. Assume now that we have no 

information on the ancestral state of N. Then, we have two natural solutions: (i) assign 

probability 1 s  to every state, then       2 2
1 1 1 1 1 1Brier N s s s s      ; (ii) 

randomly, uniformly predict one of the states, then the expected value of  Brier N is equal to 

 0 1 2 1 2 2s s s s      . In other words, random predictions are worse than the 

recognition of our ignorance. 

 As already said, when the model is fully known, predicting the marginal posterior 

probabilities of the states is optimal, regarding the Brier criterion (and other proper scoring 

rules, as the logarithmic one). We thus use a discrete approximation of the posteriors, which is 

consistently selected using the Euclidean distance. The goal is to add as little as possible error 

to the (unknown) optimal value of  Brier N . Assuming that we decide to retain k states 
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(among s) in the predictions, then each of these has probability 1 k , while the discarded states 

have probability 0. These probabilities are used in the selection of state subsets, but are implicit. 

The method returns a set of likely states without any associated probabilities. To define the state 

subsets to be explored, we rank the states based on their posteriors: 1 (= MAP)i  is best and si  

has the lowest posterior. Then, we select the best subset  1 2, ...k kSS i i i  (k=1 to s) by 

minimizing the Euclidean distance between  Marginal N  and the probability vector defined 

by  1Pr 1ki k   and  1Pr 0k si    . 

 This method is both simple and fast, with time complexity in  2O ns  again. Its 

accuracy strongly depends on the accuracy of the marginal posteriors, and thus on the severity 

of model violations, which are inevitable with real data. A possible shortcoming could be that 

these computations are performed independently for each of the nodes. However, we observed 

with simulations (Gascuel and Steel 2014) that joint reconstructions have no advantage over 

marginal ones, likely due to the fact that the conditional likelihoods of neighboring nodes are 

strongly dependent (see formulae in Methods section). Moreover, we tested a number of more 

sophisticated (and time consuming) methods to guaranty that node predictions are globally 

consistent, but did not observe any superiority over this simple approach (data not shown). 

Tree compression and visualization 

On large phylogenies with hundreds or thousands of tips, once the ancestral states are 

reconstructed on each node, it might be difficult for a human eye to visualize and interpret the 

result. To overcome this issue we provide a compressed representation of the ancestral 

scenarios, which highlights the main facts and hides minor details. This representation is 

calculated in two steps: (i) “vertical merge” that clusters together the parts of the tree where no 

state change happens, and (ii) “horizontal merge” that clusters independent events of the same 

kind. Algorithmically, the two merges are performed in the following way: 

 Vertical merge (vertical arrow in Figure 1): while there exists a parent-child couple such 

that the parent’s set of predicted states is the same as the child’s one, merge them. Moreover, 

we compute the size of so-obtained clusters (i.e. nodes in the compressed tree or 

“phylotypes” as named by Chevenet et al. (2013) in a parsimony framework) by the number 

of tips of the initial tree contained in it, as the tips correspond to the input data units used 

for tree and ancestral scenario reconstructions. Accordingly, in the initial tree each tip has 
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a size of 1, each internal node has a size of 0, and when merging two nodes we sum their 

sizes. 

 Horizontal merge (horizontal arrow in Figure 1): starting at the root and going top-down 

towards the tips, at each node we compare its child subtrees. If two or more identical 

subtrees are found, we keep just one representative and assign their number to the size of 

the branch that connects the kept subtree to the current node. Hence a branch size 

corresponds to the number of times its subtree is found in the initial tree. Before the 

horizontal merge all branches have size 1. Two trees are considered identical if they have 

the same topology and their corresponding nodes have the same state(s) and sizes. For 

example, two trees are identical if they are both cherries (a parent node with two tip 

children) with a parent in state A of size 3, a child in state B of size 2, and the other child 

in state C of size 1. However, those trees will not be identical to any non-cherry tree, or to 

a cherry with a parent not in state A, or to a cherry with the B-child of size 6, etc. 

These two routines are illustrated in Figure 1. In the case of a transmission tree with 

states representing countries, the vertical merge will cluster together the transmissions 

happening within the same country and having the same source within that country; for 

instance, see the clouds colored in blue, orange and purple in Figure 1. This operation is closely 

related to phylotyping (Chevenet et al. 2013), where a “phylotype” is a set of tips (strains) 

having the same state, as well as their most recent common ancestor (MRCA) and all nodes 

along the path from the MRCA to the phylotype tips (hence the vertical merge procedure). The 

main difference is that here we may have internal clusters with no tips, corresponding to 

uncertain nodes with 2 or more predicted states. Then, the horizontal merge detects independent 

transmissions from a country A to a country B; for instance in Figure 1, the two red nodes (= 

B) that branch independently from a big blue circle (= A). 

For large trees with many state changes even after the compression the visualization 

might contain too many details. To address this issue, a program option makes it possible to 

relax the definition of identical trees for the horizontal merge: instead of requiring identical 

sizes of the corresponding nodes, we allow for nodes of sizes of the same order (log10); for 

instance, now a node in state A of size 3 can correspond to a node in state A of any size between 

1 and 9, and a node in state B of size 25 can correspond to a node in state B of any size between 

10 and 99. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 29, 2018. ; https://doi.org/10.1101/379529doi: bioRxiv preprint 

https://doi.org/10.1101/379529


 

Figure 1: Ancestral state reconstruction and visualization steps. Starting from the initial tree with 

annotated tips (top left, different annotations correspond to different colors), we reconstruct the ancestral 

node states (top right; colored sectors are used for ambiguous nodes, e.g. green and blue), and then perform 

a two-step compression: the vertical compression (bottom right) clusters together the regions of the tree 

where no state change happens and puts the number of tips collapsed into each node as its size (e.g. the 

blue root cluster of size 5 in the bottom right tree corresponds to the part of the top-right tree highlighted 

blue and containing 5 tips), while the horizontal compression (bottom left) merges identical subtree 

configurations, keeping their number as branch sizes (e.g. the two red tip children of the bottom right root 

got merged into a red tip attached with a branch of size 2 in the bottom left tree).  

If even after a relaxed horizontal merge the compressed representation contains too 

many details, an additional option removes minor details using the following procedure. For 

each leaf node we calculate its importance by multiplying its size by the size of its branch; for 
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instance, a leaf of size 2 with a branch of size 3 gets an importance of 6. We then set the cut-

off threshold to the 15-th largest node importance (a parameter that can be adjusted), and 

iteratively remove all leafs with smaller importance. Finally, we rerun horizontal merge as some 

of the previously different topologies might become identical after trimming. 

To simplify the ancestral state analysis of phylogenetic trees with multiple character 

data, we developed a pipeline that combines the results for different characters, for example 

geographical location and resistance to drugs. The user provides as input the tree and a table 

containing the state values for the tree tips. This table is horizontally indexed by the tip 

identifiers, with columns corresponding to the characters. The user can choose the characters 

to be analyzed. We then apply ancestral reconstruction separately for each character to obtain 

their ancestral states, and visualize each character on the tree nodes as sectors (see application 

to HIV below). If we could not choose a unique state for a character, we keep the corresponding 

sector uncolored (i.e. white). Once the tree is colored and each node is assigned its combined 

states (pie of colors), we compress the tree as described in the previous section. 

When sampling dates are available for the tree tips, we also provide an option to 

visualize a timeline: For each year between the year of the first sampled tip and the year of the 

last sampled one, we prune the tree to remove the tips sampled after this year, and add a slider 

to the visualization, allowing to navigate in time. 

Software and utilities 

PastML takes as input a rooted tree and a tip state annotation table. It produces a table 

with predicted ancestral states, and an interactively modifiable visualization (an html file that 

can be viewed in a browser). PastML is available in several versions and interfaces: 

 The ancestral character reconstruction algorithms discussed in this article are implemented 

in C, with the GNU scientific library version of the BFGS algorithm. This includes: our new 

Marginal Posterior Probabilities Approximation (MPPA) algorithm; the standard marginal 

posterior probability approach (both MAP and full probabilistic predictions); the joint 

posterior probability estimation algorithm of Pupko et al. (2000); and the three usual 

variants of parsimony-based ACR: ACCTRAN, DELTRAN, and DOWNPASS (Swofford 

and Maddison 1987, Maddison and Maddison 2000). Our code is open source and available 

from https://pastml.pasteur.fr.   
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 The visualization and compression procedures are implemented in Python 3.6 and 

JavaScript, using the Cytoscape.js library (Franz et al. 2016) for tree visualization. We 

implemented a Python 3 wrapper of the core C PastML library to allow for a seamless use 

of the whole functionality within Python 3 or from a command line. The package is 

available on pip3 as CytoPast. The source code and examples are available from 

https://pastml.pasteur.fr. We also provide a docker container that includes all the 

functionality and does not require installing python/C libraries: evolbioinfo/pastml. 

 Last but not least, a user friendly web application is available to perform ACR, 

visualization, and online edition of ancestral scenarios: https://pastml.pasteur.fr. 

RESULTS: METHOD COMPARISON USING SIMULATED DATA 

Simulation protocol 

In this study, we basically followed the simulation procedure used in (Gascuel and Steel 

2014). We generated pure-birth trees with n = 1,000 tips. To obtain a broad range of ACR 

difficulties, we used different values of the speciation/substitution rate ratio (⍵), which was 

equal to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, and 

10.0. In other words, the average number of substitutions per branch was respectively equal to 

5.0, 2.5, 1.67, 1.25, 1.0, 0.83, 0.71, 0,625, 0.56, 0.5, 0.25, 0.167, 0.125, 0.1, 0.083, 0.071, 

0.0625, 0.056, and 0.05 (Steel and Mooers 2010). With a high number of substitutions per 

branch (e.g. 5.0) ACR is very difficult, especially for the tree root, while with a low number of 

substitutions (e.g. 0.05) ACR becomes easy as all tips and nodes tend to have the same state 

value. Fifty trees were generated for each value of ⍵. We simulated both DNA and protein data 

sets along these trees, using Seq-Gen v1.3.2 (Rambaut and Grassly 1997). For DNA, nucleotide 

sequences of 50 sites were generated using the HKY model (Hasegawa et al. 1985) with 

equilibrium frequencies of A, C, G and T being equal to 0.2, 0.1, 0.3, and 0.4, respectively, and 

a transition/transversion ratio of 8.0. These relatively extreme values were chosen to challenge 

ACR when using the F81 and JC models, as implemented in PastML. Likewise, protein 

sequences of 50 sites were generated using the JTT model (Jones et al. 1992) with its default 

amino-acid equilibrium frequencies. We thus obtained 19 ( values) x 50 (1000-tip trees) x 50 

(sequence length) x 2 (DNA/protein) datasets to assess the accuracy of ACR methods. During 

the Monte-Carlo simulation procedure with Seq-Gen, we memorized the ancestral states of the 
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nucleotide/amino-acid character seen at each internal nodes, including the root. Thus, the ‘true’ 

ancestral scenario was known. All these data are available from https://pastml.pasteur.fr/. 

Methods being compared 

Simulated trees and tip state values were then subjected to ACR with five different 

methods:  

 Parsimony: We computed the most parsimonious states for all nodes including the root. 

This computation was performed by two tree traversals (Maddison and Maddison 2000), 

analogous to the calculation of marginal posteriors (see Methods). The first post-order, 

bottom-up (Fitch-Hartigan or UPPASS) algorithm assigns to each parent node the most 

parsimonious state(s) based on the states of its child nodes. The second pre-order, top down 

(DOWNPASS) algorithm combines for each node the state information from its children 

and parent (i.e. the information derived from all tree tips). The DOWNPASS algorithm 

provides all most parsimonious states for all nodes, as opposed to ACCTRAN and 

DELTRAN heuristics which have been designed to solve ancestral ambiguities. This 

method returns a set of possible states for each node, and thus shares some common points 

with MPPA. 

 Joint: we used the dynamic programming algorithm described in (Pupko et al. 2000) to infer 

the most likely ancestral scenario over all the tree and possible state values. For each of the 

nodes we thus obtained a joint estimation of the most likely state. This method returns a 

unique state for each node. 

 Marginal: we computed the marginal likelihoods and posterior probabilities of all states for 

all internal nodes including the root (see Methods). This method returns full probabilistic 

predictions (each state is assigned a probability) for all nodes. Marginal is the best possible 

probabilistic predictor when the model is fully known. 

 Maximum-a-Posteriori (MAP): Using previous computations, we assigned to each node the 

state having the highest marginal posterior. MAP thus returns a unique state for each of the 

nodes, just as Joint. 

 Marginal Posterior Probabilities Approximation (MPPA): we used above described method 

to approximate the state posteriors and return for every node a subset of likely states 

minimizing the prediction error measured by the Brier score. 
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With the ML-based methods (i.e. Joint, Marginal, MAP and MPPA), the simulated 

datasets were analyzed under the six following conditions, corresponding to various model 

violations intended to measure the robustness of the ACR methods being compared: 

 True model and branch lengths: the true substitution model (i.e. the model used in 

simulations, HKY for DNA and JTT for proteins) was used for ACR. Moreover, the model 

parameters were set to the same values as used in simulations, and we did not rescale the 

tree, keeping the branch lengths equal to those used to generate the data. Smoothing was 

useless as no branch had length zero, due to the tree generation procedure. In this setting 

we had no model violation and the accuracy was the best possible. The goal was to check 

that the results were only slightly degraded in the other conditions, which include various 

levels of model violation. 

 True model and flattened branch lengths: just as in the previous condition we used the true 

substitution model and did not optimize any parameter, but all branch lengths were equal 

and set to the average of their original lengths. This strong model violation was used to 

measure the impact on ACR of branch lengths estimated from molecular data and possibly 

poorly fitted to the reconstruction of non-molecular characters. 

 F81 model and rescaled branch lengths: we used the F81 model for DNA and F81-like 

model (see above) for proteins. All parameters (equilibrium frequencies, global rate , 

smoothing parameter ) were estimated from the true tree, which was rescaled accordingly 

before performing ACR. This setting corresponds to the standard, default option of PastML. 

The goal was to check that the loss of accuracy was low, compared to the perfect ‘true 

model and branch length’ setting. 

 F81 model and flattened branch lengths: we combined the F81 (DNA) and F81-like 

(protein) models and optimizations, with flattened branch lengths, as described above. 

PastML was launched with the flattened tree and the F81 option described above. The goal 

was to measure the additional loss of accuracy when the branch lengths are ignored, 

compared to the previous setting.   

 JC model and rescaled branch lengths: this setting is the same as ‘F81 model and rescaled 

branch lengths’, but using JC (DNA) and JC-like (proteins) models, which assume that all 

equilibrium frequencies are equal, as well as all substitution rates. The goal was to measure 

the loss of accuracy, compared to F81 and F81-like models. 
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 JC model and flattened branch lengths: we used JC and JC-like models with flattened branch 

lengths, thus a very strong model violation, which was used to measure the combined impact 

of ignoring both the substitution model and branch lengths. Parsimony is based on similar 

assumptions, but performs very different calculations. 

Comparison criteria 

To compare the accuracy of the various ACR methods being tested, we used the Brier 

score of the predicted states against the known, true scenario. In the above Brier score formula 

 ,Truth N i  was equal to 1 when the true state of node N was i, and 0 otherwise. Accordingly: 

 ,PPr N i  was equal to 1 (i is predicted) or 0 (i is not predicted) for the methods predicting a 

unique state (i.e. Joint and MAP);  ,PPr N i  was equal to 1 k  (i is predicted) or 0 (i is not 

predicted) with Parsimony and MPPA when k states were predicted; with Marginal,  ,PPr N i  

was simply equal to the marginal posterior probability of state i for node N. The Brier scores of 

the nodes were then averaged, and we returned the average score over 2,500 trials (50 trees x 

50 sites) for each of the simulation conditions. 

To compare the performance of the various methods in producing consistent predictions 

across the tree, we applied the Brier score to edges instead of nodes. The goal was to check that 

the predictions for the two extremities of any given edge were compatible and close to the truth, 

thus establishing, or not, the superiority of global predictions as produced by Joint, over 

independent predictions as produced by MAP or MPPA (see also Gascuel and Steel 2014). An 

edge E was perfectly predicted     , , , , 1PPr E i j Truth E i j  when its two extremity states 

i, j were the same as the true ones. In case of multiple predictions, k on one extremity and p on 

the other,  , ,PPr E i j  was equal to 1 kp  when the true states were included in the predicted 

states at both edge extremities, and 0 otherwise. With Marginal we simply used for  , ,PPr E i j  

the product of the state posteriors of i and j at both extremities of E. The formula to compute 

the Brier score was the same as for nodes, but considering a state space of size 2s . 

Lastly, for Parsimony and MPPA we counted the average number of predicted states per 

node in the various simulation conditions. The goal was to check the advantage of predicting 

several states instead of a single one, in case of uncertainty. 
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Figure 2: Accuracy of ACR methods with DNA-like (4 states) simulated data. X-axis: 

speciation/mutation rate ratio. Y-axis: Brier score. ‘All states’: all states are predicted with equal probability 

(= 1/4). ‘Marginal True’: best possible accuracy, obtained with Marginal using the mutation model and tree 

(including branch lengths) used to generate the data. ACR was performed with each ML method based on: 

A: the true model (HKY) and true branch lengths; B: the F81 model and rescaled branch lengths (default 

PastML option); and C: the JC model and flattened branch lengths (see text for details). 
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Figure 3: Accuracy of ACR methods with protein-like (20 states) simulated data. See note to Figure 2 

and text for details. With ‘All states’ every state is now predicted with probability 1/20. 
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 DNA-like data Protein-like data 

speciation/ 
substitution 

Parsimony 
HKY 

true BL 
F81 

rescaled BL
JC  

flat BL 
Parsimony

JTT 
true BL 

F81-like 
rescaled BL 

JC-like 
flat BL 

0.1 1.36 2.75 2.66 1.82 2.93 12.81 13.65 10.45 

0.2 1.32 2.50 2.37 1.55 2.77 10.16 11.20 5.56 

0.3 1.28 2.25 2.10 1.42 2.62 7.96 9.04 3.59 

0.4 1.25 2.04 1.88 1.34 2.48 6.33 7.35 2.89 

0.5 1.23 1.85 1.67 1.28 2.35 5.00 5.88 2.47 

0.6 1.21 1.71 1.53 1.24 2.23 4.08 4.80 2.21 

0.7 1.19 1.61 1.42 1.21 2.12 3.35 3.87 2.02 

0.8 1.18 1.54 1.34 1.19 2.02 2.82 3.17 1.87 

0.9 1.17 1.49 1.30 1.17 1.93 2.45 2.68 1.76 

1 1.16 1.45 1.27 1.16 1.85 2.18 2.33 1.67 

2 1.10 1.25 1.16 1.10 1.39 1.26 1.28 1.26 

3 1.08 1.15 1.11 1.07 1.20 1.10 1.12 1.14 

4 1.07 1.09 1.08 1.06 1.12 1.05 1.07 1.09 

5 1.05 1.06 1.06 1.05 1.08 1.03 1.04 1.06 

6 1.04 1.04 1.04 1.04 1.06 1.02 1.03 1.04 

7 1.04 1.03 1.03 1.03 1.04 1.01 1.02 1.03 

8 1.03 1.02 1.02 1.03 1.03 1.01 1.02 1.03 

9 1.03 1.02 1.02 1.02 1.03 1.01 1.01 1.02 

10 1.02 1.01 1.02 1.02 1.02 1.01 1.01 1.02 

Table 1. Average number of states predicted per node by Parsimony and MPPA. HKY and true BL: 

the HKY model and the true branch lengths were used for ACR; F81 and rescaled BL: the F81 model was 

used and all parameters including the global rate and smoothing parameter were estimated from the data; 

then, the tree was rescaled accordingly and ACR was performed.  JC and flat BL: the JC model was used 

and all parameters were estimated from the data using the tree with flattened branch lengths; then, the tree 

was rescaled accordingly and ACR was performed. JTT and true BL: same as ‘HKY and true’ but using 

JTT; F81-like and rescaled BL: same as ‘F81 and rescaled BL’, but using an F81-like model with 20 states 

(amino-acids). JC-like and flat BL: same as ‘JC and flat BL’ but using a JC-like model with 20 states. See 

text for details. 

Accuracy of the various ACR approaches 

Brier score results are displayed in Figure 2 (four states, DNA-like) and Figure 3 (twenty 

states, protein-like) for the most relevant simulation conditions. In Table 1 we provide the 
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number of predicted states for Parsimony and MPPA. Additional results are provided in 

Supplementary Material (Fig. S1, S2, S3) for all simulation conditions and the edge Brier score. 

We observe that: 

 As expected, predictions are very difficult with the lowest speciation/mutation rate ratios 

(0.1); then, all methods have similar or worse accuracy as/than the agnostic method 

predicting all states with equal probability. With higher speciation/mutation rate ratios, 

predictions become easy, as very few mutations occur in the tree. With the highest ratios 

(≥5) all methods succeed (Brier score ≈ 0) and are equivalent. 

 As expected again, predictions are more difficult with 20 states (Fig. 3, Brier score ≈ 1.7 

for the worst methods and conditions) than with 4 states (Fig. 2, Brier score ≈ 1.1 for the 

worse methods and conditions). Moreover, the gap between the best and worse methods is 

larger with 20 states than with 4 states. However, the ranking of the various methods is just 

the same in both settings. 

 Marginal is the best method, as expected from decision theory, and its advantage still holds 

with strong model violations (Panels C in Figs. 2-3, JC-like model with flattened branch 

lengths). Joint and MAP are the worst, due to the fact that they predict a unique state and 

do not account for uncertainty. Their accuracies are similar, with a slight advantage for 

MAP in certain conditions (e.g. in the absence of model violations, Panels A in Fig. 2-3). 

This result still holds with the edge Brier score (Fig. S1, S2), thus indicating again (Gascuel 

and Steel 2014) that Joint and global predictions have no advantage compared to the more 

local calculations implemented in Marginal. Moreover (Fig. S1 to S3), all results obtained 

with the edge Brier score are congruent with those of the node Brier score, and the various 

model violations described above confirm the findings of Figures 2-3. 

 Thanks to multiple predictions in uncertain configurations, Parsimony has a clear advantage 

over Joint and MAP (Tab. 1). The advantage of MPPA is even larger, due to the fact that 

MPPA predicts more states than Parsimony, and that these states are predicted using a 

rigorous probabilistic procedure. With medium speciation/mutation rate (1.0), the number 

of predicted state by MPPA is ~1.25 and ~2.5, for 4 and 20 states, respectively (Tab. 1). 

This indicates that the large accuracy gain of MPPA, compared to unique state prediction 

methods (Joint, MAP), is obtained thanks to a relatively low number of predicted states, 
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which eases the interpretability and visualization of the global scenarios returned by MPPA. 

We shall see that these findings are confirmed with real HIV data.  

 In terms of accuracy, MPPA is close to Marginal in all conditions and is the second best 

method. When violations occur in the mutation model (i.e. F81 and F81-like models are 

used to analyze data simulated with HKY and JTT, respectively, Fig. 2B and 3B; see Fig. 

S3 for JC and JC-like analyzes) MPPA accuracy remains close to the best possibly results 

that are obtained with Marginal using the true model. This advocates the use of F81-like 

model as default option, a choice which is not only computationally simple but also fairly 

accurate. With flattened trees, the accuracy gap between MPPA and Marginal using the true 

model becomes more substantial. Interestingly, with flattened branch lengths the number of 

states predicted by MPPA is close to the one predicted by Parsimony (both are based on 

similar assumptions), and significantly lower than the number of states predicted by MPPA 

with full branch lengths. With flattened branch lengths the uncertain and conflictual parts 

of the tree (e.g. nodes surrounded by long branches, tips with different states separated by 

short branches, etc.) are hidden, and less states are predicted. This indicates the importance 

of having (even approximate) branch lengths to obtain accurate state predictions. 

To summarize, MPPA performs well in this simulation study, with accuracy close to the 

fully probabilistic Marginal method, but outputs that are much easier to interpret and visualize. 

Moreover, the F81-like model seems to be a relevant choice, as it yields accurate ancestral 

predictions while avoiding difficult estimations of the relative rates of change from one state to 

another.  

RESULTS: APPLICATION TO A LARGE HIV-1M SUBTYPE C DATA SET 

Data and Analyses 

To demonstrate PastML’s performance on real data, we reconstructed the ancestral 

history of HIV-1M subtype C (HIV-1C) epidemics. We used a large data sets of 3,619 HIV-1C 

pol sequences, obtained from (Jung et al. 2012), (Chevenet et al. 2013), and the latest (2017) 

pol alignment of the Los Alamos HIV database (http://www.hiv.lanl.gov). This dataset is 

annotated with sampling dates and countries grouped into 11 regions (Central Africa, South 

Africa, Southern Africa excluding South Africa, West Africa, East Africa, Horn of Africa, 
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North America, Central America, South America, Europe, and Asia; see Chevenet et al. 2013 

for details). We built a PhyML tree (Guindon et al. 2010) from the DNA sequences, and rooted 

this tree using non-C sequences. To check the robustness of PastML inferences against 

phylogenetic uncertainty, the tree building and rooting procedure was repeated 5 times with 

different starting trees, resulting in 5 trees with clearly different topologies. We also checked 

the robustness of the results regarding state sampling variations, as some regions were sampled 

more intensively than others (e.g. 991 from Central Africa, and 64 from West Africa). For this 

purpose, we randomly pruned the tree by keeping at most 250 tips per region (i.e. 250 from 

Central Africa, and still 64 from West Africa). This severe pruning was repeated 5 times.  

We reconstructed the phylogeography of HIV-1C epidemics using PastML. The 

historical worldwide diffusion of HIV-1C has been studied in several articles (Vidal et al. 2000, 

Hemelaar 2012, Faria et al. 2014, see also further references about subtype C sub-epidemics) 

and constitutes a good test bench for phylogeography methods.  

PastML was also used to reconstruct the ancestral scenarios describing the emergence 

and diffusion, and reversion in some cases, of surveillance drug resistance mutations (SDRMs, 

Bennett et al. 2009). SDRMs emerge under the pressure of drug treatments, and then may be 

transmitted to drug naïve patients. Thus, an essential public health issue is to detect potential 

drug resistant sub-epidemics, which could become prevalent and pose major problems, as is 

already the case with other pathogens and diseases (e.g. malaria). Parsimony-based ancestral 

reconstructions were already used fruitfully in this context (Mourad et al. 2015, Zhukova et al. 

2017), considering two character states: the SDRM is absent or present, and the corresponding 

strain (tip, node) is respectively sensitive or resistant. Five of the most prevalent SDRMs were 

analyzed by PastML with default options, and we performed analyses through time to study the 

dynamics of SDRM emergence, diffusion and reversion. 

All these data are available from https://pastml.pasteur.fr/. See Material and Methods 

for details and method options. PastML analyses were performed on a laptop with a 4-core 

2.50GHz CPU. ACR and visualization of HIV-1C phylogeography (11 states) took ~5 minutes 

per tree, ACR and visualization of SDRM dynamics (2 states) took ~10 seconds per tree. 
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Figure 4: Ancestral reconstruction of HIV-1C epidemic locations. The figure shows the compressed 

visualization of the MPPA+F81 location reconstruction for HIV-1C, with minor details removed (10 as 

trimming threshold). Different colors correspond to different geographical regions as shown in the map in 

the top right corner. 

Phylo-geographic analyses 

PastML results using MPPA are displayed in Figure 4, showing that the epidemic started 

in Central Africa. This agrees with the results of Faria et al. (2014), who showed using a 

Bayesian approach that HIV-1 subtype C originated in Mbuji-Mayi (Democratic Republic of 

Congo, DRC), in Central Africa, developed in the DRC mining regions and spread from there 

south and east, probably through migrant labor (see also Vidal et al. 2000 for the origin of HIV-

1M). Our reconstruction shows several introductions of HIV-1C from Central Africa to 

Southern (violet) and South Africa (orange), forming infected clusters of different sizes. For 

instance there are 130 independent introductions to Southern Africa leading to small clusters of 

1-8 patients, and three larger clusters of 36-79 patients and the largest South African cluster of 

194 patients. Our reconstruction also shows 42 independent cases of HIV-1C spread from 
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Central Africa to East Africa that formed small clusters of 1-5 patients, and a larger one 

comprising 136 patients. From the latter one it was further introduced to South America (lilac 

cluster of size 254), and the Horn of Africa (red clusters of size 49). There is a second direct 

introduction to the Horn of Africa from Central Africa (red cluster of size 43 directly connected 

to the root cluster), which could be a plausible explanation for the observation of the C and C’ 

sub-clusters in Ethiopia (Abebe et al. 2000; see also Chevenet et al. 2013). Lastly, we recover 

the result of Jung et al. (2012), showing a Central Africa origin of the HIV-1C epidemic in West 

Africa, especially in the Senegalese MSM population. 

The study of Soares et al. (2003) has shown evidence that subtype C has entered Brazil 

as a single introduction, or at least as a very small group of genetically related viruses. Our 

reconstruction confirms this statement: in our dataset 245 out of 254 South American sequences 

come from Brazil, and we can see 244 of them in the lilac South American cluster of size 254. 

Our reconstruction also shows a major introduction of HIV-1C epidemic from Central 

Africa to Asia forming a large cluster of 376 patients (light-blue). Most of the Asian sequences 

in our dataset (371 out of 404) come from India, and it was previously shown that the Indian 

HIV-1C epidemic originated from a single or few genetically related African lineages (Neogi 

et al. 2012). The introductions to Europe, on the other hand, are multiple, from different regions 

and lead to smaller clusters (in pink), a finding already pointed out in numerous studies. 

Figure S4 in Supplementary Material indicates that these finding are remarkably robust 

against phylogenetic uncertainty. While the 5 trees being tested are quite different (topological 

distance >30%, see Material and Methods), the main components (as shown in Fig. 4) of the 

ancestral scenarios reconstructed using these trees are nearly identical. The same holds with the 

sampling rate (Fig. S5), where our severe pruning of the most represented locations (>250 tips, 

see above) does not change substantially the results. 

Dynamics of SDRM emergence, diffusion, and reversion 

Results for M184V, which is the most prevalent SDRM in our data set, and the 

combination with phylogeography for the largest resistant cluster are displayed in Figure 5. 

M184V is a major non-nucleoside RT inhibitor (NRTI) mutation selected in patients receiving 

Lamivudine (3TC) and Emtricitabine (FTC) (Gallant 2006). 3TC was approved for medical use  
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Figure 5: Ancestral state reconstruction of the presence/absence of DRM M184V over time (top), 

combined with location data (bottom left). The reconstruction was done with MPPA+F81. For the 

timeline the tree was pruned at each year to remove the tips sampled after that year prior to the 

reconstruction. In the bottom left panel M184V presence/absence is combined with location data: M184V 

state is shown color-coded in the left half of each node (green when mutation is absent, and orange for 

resistant strains), countries are color-coded in the right half of each node, and shown in the labels. 

in the United States in 1995, and FTC in 2006. They are both used worldwide nowadays. 

According to the study of Castro et al. (2013) on the persistence of SDRMs in the absence of 

drug-selective pressure, M184V median time to loss is 1 (0.5–2.0) years.  

Ancestral state reconstruction allows us to detect potentially acquired (ADR) and 

transmitted drug resistance (TDR) patterns. An acquired drug resistance is represented by a 

single-patient resistant node in the compressed visualization, which implies a state change from 

a sensitive parent node. Potential TDRs are represented by cluster(s) of resistant patients, where 

internal edges correspond to transmissions of resistant strains. Note that these simple statements 
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still hold with incomplete sampling (Mourad et al. 2015): transmissions of SRDMs within 

resistant clusters are then indirect, while a one-patient resistant node may correspond to a small 

resistance cluster, the root of which acquired the DRM. 

We analyzed the reconstructed transmission tree at different time points, each time 

pruning the tree to remove the nodes sampled after the corresponding year. Figure 5 shows the 

results for 1996 (the sampling year corresponding to the first sequences with M184V in our 

dataset), 2005 and 2015 (last sampling year in our dataset). We see the appearance and growth 

of potential TDR clusters over time. In 2005 the main configurations included a major TDR 

cluster of 53 patients, and 78 cases of independent DRM emergence (ADR, i.e. one-patient 

node, or small resistant clusters of two patients). There are also multiple cases of reversion of 

the DRM (e.g, 67 cases of patients having a sensitive virus at the time of sampling, which 

originate from the major resistant cluster). By 2015 the main TDR cluster grew (to 72 patients), 

and so did the numbers of cases of ADR and DRM reversion. Importantly, the main resistance 

cluster in 2005 is included in the one of 2015, which demonstrates the potential of the method 

in surveying the emergence of problematic resistant sub-epidemics, as the 2015 cluster was 

already predictable in 2005. 

To further investigate the largest TDR cluster we combined the ancestral state 

reconstruction for M184V with the location. The result located the whole resistant cluster in 

South America. We then increased the geographical resolution by replacing the regions with 

the countries and focused on the subtree with the root in East Africa, as this is from where the 

virus was spread to South America according to our reconstruction (Fig. 4). The results are 

shown in the bottom left panel of Figure 5, and suggest that the resistant cluster is located in 

Brazil, and that it originated from either a sensitive or a resistant case in Brazil (the parent node 

of the TDR cluster is a Brazilian node with unresolved M184V state). It also shows that the 

virus was introduced to Brazil from Burundi, from where it was also spread to Tanzania, and 

Ethiopia. This geographical result agrees with the study on HIV-1C epidemics in Eastern Africa 

and Southern Brazil by Mir et al. (2018), although the latter was performed using a Bayesian 

approach and a different dataset, which included more Brazilian sequences.  

The results for the 2nd, 3rd and 4th most prevalent SDRMs in our dataset (K103N, 

D67N, and K70R) are similar to those for M184V: they show emergence and growth of TDR 
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clusters over time, and well as growth of the number of ADR and reversions to sensitive state. 

The largest TDR cluster is located in Brazil. With the decrease of SDRM prevalence, the size 

of TDR clusters in our data decreases, from a 72-patient TDR cluster for M184V to a 7-patient 

one for K70R. The analysis of K103N can be found in Supplementary Material (Figure S6). 

The results for the 5th most prevalent SDRM (Y181C) are different: We hardly see any TDR 

clusters (their size is at most 4 patients), and the largest TDR cluster is located in India (see 

Figure S7). This could be the very start of TDR spread for this mutation hence making it a 

candidate for closer surveillance, or it could simply be due to Y181C's quick reversion time 

(median of 1.3 years, cf. Castro et al. 2013) and hence inability to form TDR clusters. 

CONCLUSIONS 

 We presented a new, simple approach to reconstruct ancestral scenarios, deal with the 

uncertainty of ancestral inferences in the difficult regions of the tree (typically around the tree 

root), and visualize and edit interactively the tree-shaped graphical representation of the most 

likely ancestral scenarios. All the results obtained with a large HIV-1 subtype C dataset are 

fully congruent with previous studies, and are obtained very quickly using a simple laptop. 

Moreover, these results are robust against phylogenetic uncertainty and sampling rate 

variations. This study on HIV-1C (and others in preparation) indicate that the signal extracted 

by ACR is remarkably strong and bears a very useful information in a molecular epidemiology 

context. 

 Directions for further research include the development of methods and tools to compare 

our tree-shaped, compressed representations of ancestral scenarios, calculate some distance 

between two scenarios, extract the common parts and the differences, and propose some 

consensus. Moreover, the current version of PastML is based on JC-like and F81-like models. 

Some refinement (e.g. in the line of Lemey et al. 2014, and Dudas et al. 2017) should be useful, 

not only to improve the accuracy and ancestral reconstructions, but also to provide users with 

a global view of the evolutionary processes at stake (strain flow between regions and countries, 

acquisitions and losses of molecular characters, dynamics of ecological character changes, etc.). 
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MATERIAL AND METHODS 

Computation of the Marginal Posterior Probabilities 

Let N be a given internal node of T, and U, V and F be the left descendant, right 

descendant and father of N, respectively, with corresponding rescaled branch lengths denoted 

as u, v and f. Moreover, let  Down N  be the vector of state conditional likelihoods induced by 

the state values of the tips of the “down” subtree rooted with N.  ,Down N i  is the ith 

component of  Down N .  ,Down N i  is equal to the likelihood of having state i in N given 

the states observed in the extant descendants of N.  

 Down N  is computed recursively using the pruning algorithm (Felsenstein 1981), 

which combines a post-order tree traversal with the following formula: 

         

     

, , * , ,

and for a tip :  if  or , then , 1, else , 0.

j j

Down N i PC i j u Down U j PC i j v Down V j

l c l i X Down l i Down l i

   
     
      

  

 
 

This algorithm proceeds in a bottom-up fashion, first computing the conditional likelihoods of 

the nodes close to the tips and progressing until the tree root (e.g. we first compute  Down U  

and  Down V , and then  Down N ). The conditional likelihoods so obtained can be used to 

compute marginal posterior probabilities and then predict the ancestral states attached to every 

tree node. Several ancestral reconstruction programs use this approach. However, a more 

accurate method does exist (Yang 2007). Indeed, when using  Down N  we only account for 

the information contained in the tips descending from N, and not for the information contained 

in the rest of the tree. 

 To account for all tree information, we define a second vector of conditional likelihoods 

attached to N,  Up N , where  ,Up N i  denotes the conditional likelihood of having i in N 

given the tip values observed in the “up” subtree of N. To define this subtree, assume that T is 

re-rooted with N; then N has three direct descendants: U, V and F, each associated to a subtree. 

The up subtree of N is defined as the subtree associated to F including the branch (of length f) 

from F to N. In other words the up subtree contains all branches, nodes and tips which are not 

included in the down subtree of N. To compute the Up conditional likelihoods we use formula 
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(applied to node U to simplify the notation, but the same formula applies to V, N and all tree 

nodes): 

         , , , .
j k

Up U i PC i j u Up N j PC j k v Down V k
  

    
    
   

This formula is exploited recursively thanks to a top-down, pre-order tree traversal. We start 

from the tree root R, having  , 1Up R i   for all states i, and progress toward the tips; for 

example,  Up N  is computed after  Up F  and before  Up U  and  Up V , as seen in the 

formula. Moreover, this formula uses the Down likelihoods, which have to be computed first. 

Both Down and Up calculations are easily extended to polytomies: the Down formula contains 

as many sum terms as N has descendants (instead of 2 above with U and V); the Up formula 

contains as many internal sum terms as U has brother nodes (instead of 1 above with V). 

  Once  Down N  and  Up N  have been computed, the state marginal posterior 

probabilities of N are computed using (remember that for the tree root  , 1Up R i  ): 

     
 

     

, ,
, , where (law of total probability):

, , .

i

j
j S

Down N i Up N i
Marginal N i

TotalProba N

TotalProba N Down N j Up N j





 
 

 These algorithms have a time complexity in  2O ns , where n is the number of tree tips 

and s the number of states. The whole procedure is thus linear in n and remarkably fast.  

All along these calculations, some of the conditional likelihood values may be extremely 

small when n is large, and smaller than the minimum value permitted for double floating 

numbers. As in other ML programs, if the conditional likelihoods of N are smaller than a given 

threshold, then all conditional likelihoods of N are multiplied by a power of 2. This numerical 

trick does not change the marginal posterior probabilities, as the relative values of the 

conditional likelihoods are preserved. 

HIV-1C data and analyses 

We used an HIV-1C pol sequence dataset, previously used in (Jung et al. 2012), and 

then (in a slightly updated version) in (Chevenet et al. 2013). We extended the latter alignment 
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with HIV-1C pol sequences from the latest (2017) pol alignment in the Los Alamos HIV 

database (https://www.hiv.lanl.gov/content/index), hence adding 583 sequences not present in 

Chevenet et al. (2013). Addition of the new sequences was performed using MAFFT multiple 

sequence alignment program with the --add option (Katoh et al. 2013). The final alignment 

contains 3,619 HIV-1C pol sequences, plus 35 outgroup reference sequences from the non-C 

subtypes. The dataset is annotated with sampling dates and countries grouped into 11 regions: 

12 sequences from North America, 26 from Central America, 256 from South America, 366 

from Europe, 404 from Asia, 64 from West Africa, 144 from the Horn of Africa, 991 from 

Central Africa, 224 from East Africa, 353 from Southern Africa excluding South Africa, and 

777 from South Africa (see Chevenet et al. 2013 for details). 

We detected the Surveillance Drug Resistance Mutations (SDRMs) in the alignment, 

using the Sierra web service of the Stanford HIV drug resistance database (Liu et al. 2006). We 

removed the SDRM positions from the alignment and reconstructed 5 most parsimonious trees 

using TNT (Goloboff et al. 2016), which were used as starting trees for 5 runs of PhyML 

(Guindon et al. 2010) with GTR+I+Γ6 substitution model and aLRT SH-like branch supports. 

The resulting trees were rooted with the outgroup sequences, which were subsequently removed 

from the trees. The branches of length zero and aLRT SH-like support less than 0.5 were 

collapsed into polytomies. We thereby obtained 5 ML trees with clearly different topologies. 

The average normalized bipartition distance was equal to 0.33 (ETE 3 toolkit, Huerta-Cepas et 

al. 2016), and the average quartet distance to 0.31 (tqDist library, Sand et al. 2014), where 0.0 

means identical trees, and 1.0 corresponds to trees that have no bipartition / no quartet in 

common. These multiple trees were used to check the robustness of our ancestral 

reconstructions against phylogenetic uncertainty. Results in Figures 3 and 4 are provided for 

the most likely tree. Results for all trees are in Supplementary Materials (Fig. S4, scenario 4 

corresponds to the most likely tree used in Fig. 3, 4, and S5). 

PastML was used with default options (MPPA prediction method, F81 model, and a 

trimming threshold of 10 to remove minor details) to reconstruct the ancestral locations of all 

tree nodes, among the 11 regions (character states) present in the dataset. We also checked the 

robustness of the results regarding state sampling variations, as some regions were sampled 

more intensively than others. For this purpose, we pruned the tree by keeping at most 250 tips 
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per region (for the regions with less samples all the tips were kept, for those with more samples 

250 random tips were kept) and performed ancestral state reconstruction of the location for 5 

such trees. Results in Figure 4 are for complete sampling. Results for partial sampling are in 

Supplementary Material (Figure S5). 

PastML was also used to reconstruct the ancestral scenarios describing the emergence 

and diffusion, and reversion in some cases, of surveillance drug resistance mutations (SDRMs, 

Bennett et al. 2009). We analyzed SDRMs with high prevalence in our dataset: M184V with a 

prevalence of 0.07 (highest prevalence in our dataset), K103N (prevalence = 0.05, second 

highest prevalence), and Y181C (prevalence = 0.03, fifth highest prevalence). Results 

(available on request) for the third and fourth highest prevalence SDRMs are similar to those 

of M184V and K103N. PastML was used with default options, and we performed analyses 

through time to study the dynamics of SDRM emergence, diffusion and reversion. In this 

context, we have two character states: the SDRM is absent or present, and the corresponding 

strain (tip, node) is sensitive or resistant, respectively. Results for the most prevalent SDRM 

(M184V) are provided in Figure 4. Results for the two other SDRMs are in Supplementary 

Materials (Fig. S6, S7). 

All the data and pipelines used to reconstruct the trees and analyze them are available 

from https://pastml.pasteur.fr.   
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