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Summary 

Two types of working memory (WM) have recently been proposed: conscious active WM, 

depending on sustained neural activity, and activity-silent WM, requiring neither conscious 

awareness nor accompanying neural activity. However, whether both states support identical 

forms of information processing is unknown. Theory predicts that activity-silent states are 

confined to passive storage and cannot operate on stored information. To determine whether an 

explicit reactivation is required prior to the manipulation of information in WM, we evaluated 

whether participants could mentally rotate brief visual stimuli of variable subjective visibility. 

Behaviorally, even for unseen targets, subjects reported the rotated location above chance after 

several seconds. As predicted, however, such blindsight performance was accompanied by 

neural signatures of conscious reactivation at the time of mental rotation, including a sustained 

desynchronization in alpha/beta frequency and a decodable representation of participants’ guess 

and response. Our findings challenge the concept of genuine non-conscious “working” 

memory, argue that activity-silent states merely support passive short-term memory, and 

provide a cautionary note for purely behavioral studies of non-conscious information 

processing.  

Keywords: working memory, consciousness, activity-silent brain states, non-conscious 

working memory, magnetoencephalography, multivariate pattern analysis 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 30, 2018. ; https://doi.org/10.1101/379537doi: bioRxiv preprint 

https://doi.org/10.1101/379537
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Introduction 

Working memory (WM) serves a critical role in the online storage of information for 

rapid access, transformation, and flexible use. Until recently, it was thought to depend on 

conscious, effortful processing (Baars and Franklin, 2003; Baddeley, 2000, 2003) and the 

maintenance of persistent neural activity (Fuster and Alexander, 1971; Goldman-Rakic, 1995; 

Kamiński et al., 2017). However, a growing body of evidence suggests that successful WM 

maintenance may be dissociated from consciousness and persistent delay-period activity. Items 

subjectively reported as unseen may still be retrieved above chance-level after several seconds 

(Bergström and Eriksson, 2014, 2015; King et al., 2016; Soto et al., 2011; Trübutschek et al., 

2017). Likewise, an uninterrupted chain of persistent neural firing is not always observed during 

WM maintenance (Watanabe and Funahashi, 2007, 2014) and content-specific delay-period 

activity may vanish during the maintenance of non-conscious or unattended information (Rose 

et al., 2016; Trübutschek et al., 2017; Wolff et al., 2015, 2017).  

 Theories and simulations indicate that such “activity-silent” maintenance in the absence 

of accompanying neural activity may be supported by short-term changes in synapses 

temporarily linking populations of neurons coding for the stored items (Mongillo et al., 2008; 

Stokes, 2015). Later, a non-specific stimulation of the system may reinstate the original neural 

firing pattern, an effect that was recently observed experimentally (Rose et al., 2016; Wolff et 

al., 2017). Short-term synaptic changes may thus effectively allow networks to go silent for 

several seconds while still supporting a delayed information readout.  

 While the evidence for active versus activity-silent forms of WM is mounting, whether 

they support identical forms of information processing remains unknown. Beyond maintenance, 

a defining feature of WM is the ability to manipulate information, for instance during mental 

rotation (Baddeley, 1992; Luck and Vogel, 2013). If non-conscious WM representations are 

indeed stored via activity-silent short-term synaptic changes, it is unclear whether they might 

be transformed without first being reinstated into active firing. Neural network models operate 

by exchanging patterns of spiking activity, and there exists no theory of how computations 

could unfold solely via transient synaptic changes (Mongillo et al., 2008). Thus, we predicted 

that, for an activity-silent WM to enter into an information-processing stream, it would first 

have to be reinstated into an active form. 

We evaluated the limits of information processing for active versus activity-silent WM 

by asking participants to perform a delayed mental rotation task with subjectively seen and 

unseen stimuli. Our results suggest that this task can be performed even with invisible stimuli, 

but that such a manipulation of WM involves the reinstatement of consciousness and persistent 

neural activity, thus suggesting an intrinsic limit to both activity-silent and non-conscious 

operations.  

Results 

 We collected behavioral measures in a first set of participants (n = 23), then recorded 

magnetoencephalography (MEG) signals in a second sample (n = 30), always employing the 

same experimental task (Figure 1). On each trial, a target square in gray (barely visible target-
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present trials, 80%) or black ink (target-absent control condition, 20%) was flashed in 1 of 24 

possible locations, then masked. Halfway during the ensuing 3 s delay period, a symbolic cue 

instructed participants to maintain the original target location (no-rotation condition), or to 

mentally rotate it 120° clockwise or counter-clockwise (rotation condition). Subjects had to 

comply with these instructions even if they had not seen the target: They were asked to guess 

the correct final response location if necessary. At the end of a trial, participants rated their 

subjective visibility of the target using the classical perceptual awareness scale (Ramsøy and 

Overgaard, 2004), ranging from 1 (no perception whatsoever) to 4 (clearly seen).  

 

Figure 1. Experimental design. In the behavioral and MEG experiment, participants completed the same spatial 

delayed-response task. On each trial, a faint target was flashed in 1 out of 24 possible locations and masked. A 

letter cue presented halfway through a 3 s delay period instructed subjects on the specific task to be performed: (1) 

Following an equal-sign (« = »), participants were to report the exact location in which the target had appeared. 

(2) The letter D indicated a 120° clockwise, and (3) the letter G a 120° counter-clockwise rotation with respect to 

the target position. At the end of a trial, subjects rated their subjective visibility of the target on a 4-point scale.  

 

Behavioral evidence for mental rotation of non-conscious stimuli 

 We first quantified the extent to which subjects could detect, maintain, and manipulate 

targets in the behavioral experiment. Participants varied their visibility ratings as a function of 

target presence, reporting the vast majority of target-absent trials as unseen (visibility = 1; 88.1 

± 3.1%) and ~2/3 of the target-present trials as seen (visibility > 1; 67.7% ± 3.5%). Target 

detection d’ therefore exceeded chance (2.0 ± 0.1; t(22) = 13.2, p < .001). Task (no-rotation vs. 

rotation) did not modulate subjects’ visibility (task x target presence x visibility interaction: 

F(1, 22) = 3.2, p = .088), suggesting that participants used the rating scale similarly in both 

tasks. 

 Forced-choice localization performance corroborated this interpretation. On seen trials 

in the no-rotation condition, accuracy was relatively high (65.8 ± 2.5%; chance = 4.17%) and 

increased monotonically from glimpsed (visibility = 2) to clearly seen targets (visibility = 4; all 

pair-wise comparisons: p < .05, except for the comparison between visibility 2 and 3, where p 

= .296; Figure 2A, top). Accuracy remained high on seen rotation trials (30.1 ± 1.9%), albeit, 

as anticipated, lower than on no-rotation trials (t(22) = 12.3, p < .001), and without a clear 

increase as a function of visibility (all pair-wise comparisons: p > .180; Figure 2A, bottom). 

Most crucially, even on the unseen trials, performance was well above chance for the no-

rotation and rotation task, irrespective of rotation direction (Table 1). 
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Figure 2. Spatial distributions of forced-choice localization performance in the behavioral (A) and MEG (B) 

experiment as a function of task (i.e., no-rotation vs. rotation) and visibility (0° = target location; positive 

displacement = counter-clockwise offset). The positions at -120° and +120° correspond to the correct locations 

after clockwise/counter-clockwise rotation. For all analyses and figures, clockwise and counter-clockwise 

rotations were combined by normalizing all rotation trials into a single rotation condition (i.e., following a counter-

clockwise rotation, reflecting a position against 0°). Error bars illustrate the standard error of the mean (SEM) 

across subjects. The horizontal, dotted lines indicate chance at 4.17%. Percentages in the top right corner of each 

graph show the grand mean proportion of target-present trials from a given visibility category. Due to low number 

of trials in visibility ratings 2, 3, and 4, we collapsed these ratings into a seen category. 

 

 As shown in Figures 2A and 3A, subjects’ responses always surrounded the correct 

location, yet with greater spread after rotation than no-rotation trials. We separately quantified 

the rate of approximately correct responding (i.e., correct location ± 30°) and the precision of 

the spatial representations held in WM (i.e., standard deviation within this tolerance interval; 

see Methods and Trübutschek et al., 2017). Both task (F(1, 22) = 9.9, p < .001) and visibility 

(F(1, 22) = 151.1, p < .001) affected the rate of correct responding. Participants’ responses fell 
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near the correct location more often in the no-rotation (76.5 ± 2.4%) than in the rotation 

condition (69.4 ± 2.4%), and when having seen (94.1 ± 1.0%) rather than when not having seen 

the target square (51.9 ± 3.8%). These factors did not interact (F(1, 22) = 0.2, p = .657; Figure 

3A, top inset), indicating that decrements in performance following a mental rotation were 

comparable across seen and unseen targets.  

 

Figure 3. Behavioral evidence for manipulation of non-conscious information in the behavioral (A) and MEG 

(B) experiment. Panels depict distributions of participants’ localization responses with respect to the target location 

(0°; positive displacement = counter-clockwise offset) as a function of task (no rotation = solid line, rotation = 

dotted line) and visibility (seen = warm colors, unseen = cool colors). Insets show the rate of correct responding 

(proportion of trials within ± 2 positions of correct response location; top) and the precision of working-memory 

representations in all participants with sufficient blindsight (bottom). Horizontal dotted lines index chance at 

4.17% (for single locations) and 20.83% (for the region of correct responding) respectively. Shaded area and error 

bars represent the standard error of the mean (SEM) across subjects. *p < .05, ** < .01, and *** p < .001 in a 

paired samples t-test.  

 

Analysis of precision reinforced this conclusion: Out of 23 subjects, 19 displayed above-

chance blindsight across both rotation directions (chance = 20.83%; p < .05 in a χ2-test) and 

were thus included here. Task (F(1, 18) = 34.9, p < .001) and visibility (F(1, 18) = 10.3, p = 

.005) again influenced localization performance, but this time also interacted (F(1, 18) = 8.9, p 

= .008). Rotating the target location decreased the precision of participants’ responses for seen 

(t(18) = -11.9, p < .001) and unseen targets (t(18) = -2.3, p = .031), but this reduction was 

stronger for seen than unseen trials (t(18) = -3.0, p = .008; Figure 3A, bottom inset). Again, 

there was therefore no observable detriment to rotating an unseen location. 

We replicated these observations in the MEG experiment. Subjects employed the 

visibility scale meaningfully, rating target-present trials primarily as seen (64.6 ± 3.2%) and 

target-absent trials as unseen (83.6 ± 2.5%; detection d’: 1.7 ± 0.1, t(29) = 14.2, p < .001) in 

both tasks (task x target presence x visibility interaction: F(1, 29) = 2.1, p = .159). Localization 

accuracy for seen targets was modestly high in the no-rotation condition (57.5 ± 2.2%; Figure 

2B, top) and reduced following a mental rotation (27.1 ± 1.6%, t(29) = 14.3, p < .001; Figure 

2B, bottom). Again, we observed a long-lasting blindsight effect in both tasks and for all 

rotation directions (Table 1). Task and visibility influenced the rate of correct responding (main 
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and interaction effects: all Fs(1, 29) > 4.8, all ps < .036) and precision (n = 27; main and 

interaction effects: all Fs(1, 26) > 8.3, all ps < .008). Mental rotation decreased participants’ 

performance on seen (t(29) = 5.0, p < .001), but not on unseen trials (t(29) = 1.8, p = .090; 

Figure 3B, top inset), and also reduced precision more following a rotation with seen (t(26) = 

-15.9, p < .001) than unseen targets (t(26) = -3.9, p < .001; Figure 3B, bottom inset).  

These findings show that, even when failing to perceive the target, subjects succeeded 

in manipulating it. However, there exist at least three possible explanations for this long-lasting 

blindsight effect. First, it may have been the product of a genuine non-conscious manipulation. 

Second, it may have resulted from a fraction of seen trials miscategorized as unseen, yet still 

yielding correct performance; this interpretation, although rejected in our previous experiment 

without rotation (Trübutschek et al., 2017), needs to be re-examined here. Third, subjects may 

have recovered the information from non-conscious WM around the time of the cue, 

transformed it into a conscious, active representation (forced-choice retrieval) and thereafter 

consciously manipulated this early guess. To resolve these possibilities, we turned to our MEG 

data, focusing on five a-priori time windows: early brain responses (0.1 – 0.3 s), the P3b time 

window previously shown to be critical for conscious perception (0.3 – 0.6 s), the delay period 

before (0.6 – 1.76 s) and after (1.76 – 3.26 s) the rotation cue, and the response period (3.26 – 

3.5 s). 

Long-lasting blindsight does not arise from miscategorization of seen trials 

Above-chance objective performance for unseen targets could have resulted from the 

erroneous mislabeling of some seen targets as unseen. If this were the case, the unseen correct 

trials should display the same neural signatures of conscious processing as seen trials 

(Trübutschek et al., 2017). There should be an amplification of brain activity during the P3b 

time window, and a classifier trained to distinguish accuracy on the unseen trials should 

resemble a standard visibility decoder (i.e., seen vs. unseen). By contrast, the classification of 

seen versus unseen correct trials should produce a different pattern of results or fail entirely.  

To evaluate this alternative miscategorization hypothesis, we first characterized 

univariate neural markers tied to conscious perception. Contrasting brain activity on seen and 

unseen trials revealed typical signatures of conscious processing (Gaillard et al., 2009; Sergent 

et al., 2005; Trübutschek et al., 2017). Seen targets elicited a strong positive response between 

~300 and 600 ms in right-lateralized centro-parietal sensors, corresponding to activations in 

occipital, temporal, parietal and dorsolateral prefrontal brain areas (pclust = .011; Figure 4A). 

Moreover, brain activity was amplified during the P3b time window (i.e., ~292 and 576 ms; 

puncorrected < .05), though further differences with unseen targets also persisted between ~964 and 

1320 ms (puncorrected < .05; Figure 4B). Importantly, task did not modulate these brain responses 

(task x visibility interaction: pclust > .280). 

When contrasting the unseen correct with the unseen incorrect epochs, we observed no 

evidence for a miscategorization. No significant differences emerged (pclust > .221) and there 

was no sign of any amplification of brain activity (Supplementary Figure 1A), even when 

considering the time courses in channels most sensitive to divergences in amplitude for seen 

and unseen targets (Supplementary Figure 1B). Bayesian statistics provided substantial 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 30, 2018. ; https://doi.org/10.1101/379537doi: bioRxiv preprint 

https://doi.org/10.1101/379537
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

evidence in favor of the null hypothesis (i.e., no difference in MEG amplitude between unseen 

correct and incorrect trials) for all time windows (all Bayes’ Factors < 0.38). 

 

Figure 4. Typical neural signatures and dynamics of conscious processing for seen targets. (A) Sequence of 

brain activations (-0.2 – 3.5 s) evoked by seen targets in both tasks in sensor (top) and source space (bottom). Each 

topography depicts the difference in amplitude between seen and unseen trials averaged over the time window 

shown (magnetometers only). Sources reflect z-scores of absolute difference with respect to a pre-stimulus 

baseline. Black asterisks indicate sensors showing a significant difference between seen and unseen trials at any 

point during the respective time window as assessed by a Monte-Carlo permutation test. (B) Average time courses 

(-0.2 – 3.5 s) of seen (red) and unseen (blue) trials in that subset of magnetometers having shown a significant 

effect in (A). Shaded area illustrates standard error of the mean (SEM) across subjects. Significant differences 

between conditions are depicted with thick black line (two-tailed Wilcoxon signed-rank test, uncorrected). Vertical 

dotted lines index onset of the target (T), symbolic cue (C), and response (R) screens. For display purposes only, 

data were lowpass-filtered at 8 Hz. (C) (Top) Average time course of diagonal decoding of visibility (i.e., seen vs. 

unseen). Thick black line and shaded area denotes above-chance decoding as assessed by a one-tailed cluster-

based permutation analysis. Horizontal, dotted line represents chance level at 50%. (Bottom) Temporal 

generalization matrix of the same visibility decoder. Each horizontal row in the matrix corresponds to an estimator 

trained at time t and tested on all other time points t’. The diagonal gray line demarks classifiers trained and tested 

on the same time points (i.e., the diagonal estimator shown on top). Thick black outline indexes above-chance 

decoding as evaluated by a two-tailed cluster-based permutation test. In both plots, vertical lines mark onset of the 

target (T), symbolic cue (C), and response (R) screens. For display purposes, data were smoothed with a moving 

average of 5 samples (i.e., 40 ms). AUC = area under the curve. See also Figures S1, S2, and S3.  

 

Because chance corresponded to 20.83% (i.e., 5/24 positions), a non-negligible portion 

of the unseen correct trials might have resulted from guessing, thus potentially obscuring 

differences between unseen correct and incorrect epochs. To address this possibility, we next 

estimated neural activity for unseen correct epochs while accounting for chance-responding (cf. 

Lamy et al., 2009, footnote 2). If these chance-free unseen correct trials resulted from a 

miscategorization of seen epochs, we should now observe clear signatures of conscious 
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processing. This was not the case. Chance-free brain activity was still indistinguishable from 

the one on unseen incorrect and unseen correct trials (whole-brain: all pclust > .252; critical time 

courses: all Bayes’ Factors < 0.76). Moreover, it remained strikingly different from a synthetic 

waveform, derived by proportionally mixing the signals from seen and unseen incorrect trials 

(as would be expected under the miscategorization hypothesis; Supplementary Figure 1B). 

Those findings allow us to reject the hypothesis of a miscategorization of some seen trials as 

unseen. 

 Decoding analyses refined this conclusion. Training a linear multivariate pattern 

classifier to discriminate seen from unseen trials resulted in above-chance diagonal decoding 

from ~120 ms to the end of the epoch (all pclust < .05; Figure 4C, top), quickly peaking at ~528 

ms, then first slowly decaying until the cue before being sustained throughout the remainder of 

the trial (time bins: AUCs > 0.54, pscorr < .005). The temporal generalization of each estimator 

trained at a specific time to all other time points confirmed this picture (Figure 4C, bottom): 

Visibility decoding was primarily confined to a thick diagonal, indicating that conscious 

perception was associated with a dynamically evolving chain of metastable patterns of brain 

activity (King and Dehaene, 2014). Similar findings emerged when training and testing a 

visibility classifier separately in the no-rotation and rotation condition, or when generalizing 

from one task to the other (Supplementary Figure 2). Multivariate neural signatures of 

conscious perception were thus stable across experimental tasks and in line with previous 

observations (Marti et al., 2015; Salti et al., 2015; Trübutschek et al., 2017).  

Crucially, we found no discernable pattern when classifying unseen correct versus 

unseen incorrect trials (all pclust > .05; time bins: AUCs < 0.51, pscorr > .05; Bayes’ Factors < 

0.28; Supplementary Figure 1C). However, training a classifier to distinguish the seen from 

the unseen correct epochs resulted in a similar, albeit weaker, decoding time course and 

generalization matrix as when directly training on all unseen or even just the unseen incorrect 

trials (time bins: AUCs > 0.52, all pscorr < .05; Bayes’ Factors > 2.07; Supplementary Figure 

3). As such, this pattern of results is exactly opposite to what one would have expected in the 

case of a miscategorization. These findings persisted even when including only those subjects 

with sufficient blindsight (n = 27). This replication of our previous work (Trübutschek et al., 

2017) thus rules out a miscategorization of unseen correct trials as an alternative explanation 

for the long-lasting blindsight effect. Instead, it indicates that information was genuinely 

encoded in non-conscious WM.  

Long-lasting blindsight effect results from active, conscious rotation 

What process allowed participants to perform a mental rotation on unseen trials? Was it 

the result of a genuine non-conscious manipulation? Or did subjects perform a conscious 

manipulation by first reinstating an active representation of the estimated target position around 

the time of the rotation cue and then rotating this conscious guess? Disambiguating between 

these alternatives requires the identification of a neural marker of active, conscious processing. 

Prior work has pointed towards a rhythmic signal – a suppression of power in the alpha (8 – 12 

Hz) and low (13 – 20 Hz) as well as high beta frequency bands (20 – 27 Hz) – as a reflection 
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of such a cognitive state (Backer et al., 2015; Meyniel and Pessiglione, 2014; Trübutschek et 

al., 2017).  

 

Figure 5. Time-frequency markers of conscious processing emerge around the time of the rotation cue on 

the unseen trials. (A) Average pre-cue (0.6 – 1.8 s; bottom) and post-cue (1.8 – 3.3 s; top) desynchronization in 

the alpha (8 – 12 Hz; left), low beta (13 – 20 Hz; middle), and high beta (20 – 27 Hz; right) frequency bands in 

magnetometers and source space (in dB; relative to pre-stimulus baseline). (B) (Top) Alpha band activity (8 – 12 

Hz) related to consciously perceiving the target square (i.e., seen vs. unseen) is shown in magnetometers and source 

space (in dB; relative to pre-stimulus baseline). Black asterisks denote cluster of sensors displaying a significant 

difference at any point in time during the respective time window (as evaluated by a Monte-Carlo permutation 

test. (Bottom) Same as on top, but for the contrast between unseen correct and unseen incorrect trials. (C) Average 

time-frequency power relative to baseline as a function of visibility and target presence in a subset of central 

magnetometers. Horizontal lines demark onset of target (T) and cue presentation. (D) Plots depict average pre-cue 

and post-cue power in the same group of sensors as in (C) as a function of frequency (i.e., alpha, low beta, and 

high beta) and visibility (i.e., seen, unseen, unseen correct and unseen incorrect). Error bars represent standard 

error of the mean (SEM) across subjects. Asterisks denote significant interaction in a repeated-measures ANOVA 

at p < .05. See also Figure S4.  
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Across all trials, we indeed observed a prominent desynchronization in alpha/beta 

frequencies over an extensive set of central sensors, emanating primarily from parietal brain 

sources (Figure 5A). Cluster-based permutation analyses revealed reliable differences in brain 

responses in a slightly larger set of channels between seen targets and all other experimental 

conditions exclusively prior to the presentation of the rotation cue. Power decreased more 

strongly on seen than on unseen trials between ~580 and 1320 ms in the alpha (pclust = .032), 

and between ~460 and 1300 ms in the low beta band (pclust = .046; Figure 5B, top). Similarly, 

pre-cue desynchronizations were more pronounced for seen than for target-absent epochs in the 

low (pclust = .015) and high beta bands (pclust = .030) between ~280 and 940 and ~820 and 2000 

ms. There were no discernable differences in the power profiles between (1) unseen and target-

absent trials (all pclust > .250) and (2) unseen correct and incorrect epochs (all pclust > .280; 

Figure 5B, bottom). Desynchronization of alpha/beta power may therefore serve as a signature 

of conscious processing in the current task.  

Using this marker, we are now in a position to evaluate the remaining alternatives. If the 

long-lasting blindsight effect resulted from a genuine, non-conscious rotation, on seen trials, 

we should observe a sustained desynchronization in the alpha and beta bands throughout the 

entire epoch, while no (or at least significantly weaker) power decreases should be associated 

with unseen and target-absent epochs. By contrast, if participants consciously rotated a guess, 

neural signatures of conscious processing should be highly similar across all experimental 

conditions after the cue. Differences in desynchronization between seen and unseen/target-

absent trials should only exist during the pre-cue phase. 

Our results support the latter hypothesis (Figure 5C). Following an initial divergence 

during the early pre-cue maintenance phase (Supplementary Figure 4A-C), differences in 

spectral profiles between seen, unseen, and target-absent trials vanished by ~1 s. All epochs 

were characterized by a prominent, sustained desynchronization in the alpha, low and high beta 

frequencies. This suppression in power varied as a function of subjective visibility (i.e., seen 

vs. unseen) and time (i.e., pre-cue vs. post-cue delay). It was much more pronounced during the 

post-cue than the pre-cue maintenance period (i.e., main effect of time: all Fs > 18.6, all ps < 

.001). Crucially, this difference between pre- and post-cue power was also larger for unseen 

than for seen targets in the alpha and low beta bands (visibility x time interaction: all Fs > 4.01, 

all ps <= .05), and marginally so in the high beta band (visibility x time interaction: F(1, 29) = 

2.95, p = .097; Figure 5D). No such interaction emerged when contrasting the unseen correct 

with the unseen incorrect trials (i.e., visibility x time interaction: all Fs < 2.83, all ps > .103; 

Figure 5D), as these conditions displayed largely similar power profiles throughout the entire 

epoch (Supplementary Figure 4D-F).  

We thus observed a reliable distinction between seen and unseen brain states only during 

the maintenance period preceding the execution of the experimental task up until at least 1 s. 

Seen targets were accompanied by a significantly larger desynchronization in the alpha and low 

as well as high beta frequencies. These differences vanished entirely by the time the symbolic 

rotation cue was presented. The mental rotation task appeared to be solved by reinstating a 

conscious estimate of target location.  
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The location of unseen targets can only be tracked transiently 

 To further test this conclusion, we used multivariate decoding to track neural activity 

underlying the encoding, maintenance, manipulation and retrieval of seen and unseen target 

locations. We first trained a multivariate regression model to predict target angle from 

participants’ brain activity separately for each point in time. In order to maximize statistical 

power and increase our ability to detect small effects, we fitted the estimator while collapsing 

target-present trials across rotation and visibility conditions. We then evaluated model 

performance on left-out subsets of epochs (see Methods for details). Note that, unless explicitly 

stated, none of the findings changed qualitatively when testing separately on the rotation and 

no-rotation task (Supplementary Figure 5).  

Starting at ~80 ms, estimator performance for seen targets steadily rose until ~264 ms 

and then slowly decayed towards chance at ~1.46 s (Figure 6A). Following the rotation cue, a 

rebound of position-selective activity was observed and was then fairly sustained for the 

remainder of the trial, with a short gap between ~2.70 and 3.10 s right before the onset of the 

response screen (pclust < .05; time bins: Ws > 417.0, pscorr < .005, Bayes’ Factors > 77.93). Thus, 

in line with previous findings (Trübutschek et al., 2017), seen targets were initially encoded via 

active neural firing. Then, this representation decayed and was reactivated throughout most of 

the post-cue delay period.  

 

Figure 6. Tracking a mental rotation on seen and unseen trials. (A) Time courses of average decoding of target 

location on seen (red), unseen (dark blue), unseen correct (light blue) and unseen incorrect (blue) trials. Thick lines 

and shaded areas represent above-chance performance as assessed by a one-tailed cluster-based permutation test. 

Horizontal dotted lines index chance. Event markers denote the onset of the target (T), cue (C), and response (R) 
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screens. For illustration purposes, data were smoothed with a moving average of 5 samples (i.e., 40 ms). (B) Same 

as in (A), but for pre-rotation location. (C) Same as in (A), but for response location. See also Figure S5.  

 

A different picture emerged for unseen targets. While target location was again encoded 

and actively stored during the early part of the epoch, this representation was weaker than the 

one for seen targets (paired-samples Wilcoxon signed rank test: pre-cue time bins: Ws > 370.0, 

pscorr < .02, Bayes’ Factors > 3.42) and decayed much more quickly, vanishing entirely by ~920 

ms (pclust < .05; pre-cue time bins: Ws > 351.0, pscorr < .035, Bayes’ Factors > 7.34). During the 

post-cue delay period, although we found no evidence in favor of an actively coded 

representation of target location when considering the decoding time course itself (pclust > .05; 

Figure 6A), the estimator’s performance over the entire time window remained above chance 

(rads = 0.03 ± 0.01, W = 355.0, pcorr =.025, Bayes’ Factor = 6.41) and at comparable levels as 

on seen trials (W = 315.0, pcorr = .460, Bayes’ Factor = 0.86). A more fine-grained analysis with 

a moving average of 100 ms revealed that this effect was driven primarily by the initial phase 

of the delay, up to ~2.6 s. We observed no modulation of this pattern of findings by accuracy 

(time bins: Ws < 279.0, all pscorr > .950, Bayes’ Factors < 0.41; Figure 6A, insets).  

Overall then, a mixture of two different mechanisms seems to have supported the initial, 

pre-cue storage of seen and unseen target locations. Whereas seen targets were maintained with 

persistent albeit decaying, neural activity, unseen targets elicited weaker position-related 

activity that also quickly decayed to baseline-level. During the post-cue phase, once participants 

either actively maintained or manipulated the contents of their WM, the representation of seen 

targets was reactivated and sustained for the remainder of the epoch. Unseen targets may also 

have benefitted from a short-lived revival, but this effect was weak and the associated decoding 

time course much less compelling than the one for seen trials. 

An estimate of the location of unseen targets is reinstated prior to the rotation cue 

 Localization responses on unseen trials did not always follow the actual target position. 

On more than half of the unseen trials (62.0 ± 2.8%), subjects chose an incorrect location. What 

determined participants’ final response on those trials? According to the activity-silent account 

of WM, around the time of mental rotation, subjects should have attempted to reinstate an active 

neural representation of the target, albeit with occasional location errors, and then rotated this 

guess. To evaluate this prediction, we set out to track the neural representation of participants’ 

location estimates throughout the task. Around the time of the rotation cue, brain signals should 

contain a decodable representation of the “pre-rotation location”, i.e. the spatial location that, 

given the subjects’ response, would have been the location retrieved and then rotated. On no-

rotation trials, this location coincided with response location, whereas on rotation trials, it 

corresponded to the position of participants’ response rotated 120° in the direction opposite to 

what the rotation cue had instructed. Detecting the presence of such a pre-rotation 

representation on unseen rotation trials would support the results of our time-frequency analyses 

and the hypothesis that, around the time of the cue, subjects attempted to recover a conscious 

representation of the target (sometimes an erroneous one) and then consciously rotated this 
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guess. If, however, unseen performance was based on an active manipulation of activity-silent 

WM, then such decoding should fail. 

On seen trials, decoding the pre-rotation location was possible, with a time course 

strikingly similar to the one for the true position of the target (Figure 6B). From ~56 ms 

onwards, the pre-rotation location was coded in activity-based brain states (pclust < .05; time 

bins: Ws > 408.0, pscorr < .005, Bayes’ Factors > 517.26), first peaking at ~ 264 ms (rad = 0.18 

± 0.02) and then slowly decaying before being revived by the rotation cue and sustained for the 

remainder of the epoch.  

 Crucially, pre-rotation location could also be decoded on unseen trials. Shortly after the 

presentation of the target, the estimator’s performance began to rise and first exceeded chance 

at ~376 ms (rad = 0.052 ± 0.015). Decoding persisted until ~1.8 s (pclust < .05; P3b time window 

and pre-cue delay: Ws > 382, pscorr < .005, Bayes’ Factors > 78.83), though estimator 

performance itself did not drop until ~ 2.5 s. Indeed, a follow-up analysis with narrower 100-

ms time windows suggested that the pre-rotation location may have been maintained until ~ 2.2 

s (p < .05, uncorrected). There was again no evidence for a modulation of this pattern as a 

function of accuracy (time bins: Ws > 120.0, pscorr > .600, Bayes’ Factors < 1.44; Figure 6B, 

insets).  

As predicted, while the representation of the pre-rotation location was stronger for seen 

than for unseen targets during the early part of the epoch (early and P3b time window: Ws > 

450.0, pscorr < .005, Bayes’ Factors > 124,688.30), this difference started to diminish during the 

pre-cue maintenance phase (W = 347.0, pcorr = .085, Bayes’ Factor = 1.76) and vanished entirely 

by the last second before the rotation cue (moving average of 100 ms: Ws < 359.0, pscorr > .05, 

Bayes’ Factor < 1.32). Participants’ location estimates were therefore similarly represented on 

both seen and unseen trials during the last part of the pre-cue maintenance period: Even on 

unseen trials, the material rotated was an active, conscious guess of a target location. 

An active representation of target location is mentally rotated in WM 

 We last trained and tested a multivariate regression model to decode response location. 

On seen trials, response location emerged reliably only in the second half of the post-cue delay 

period (Figure 6C). Starting at ~2.38 s, decoding performance gradually built up until its peak 

at the very end of the epoch (pclust < .05; post-cue time bins: Ws > 440.0, pscorr < .005, Bayes’ 

Factors > 21,997.68). There was substantial temporal overlap between the decoding of the 

target/pre-rotation location and the response position: As the former started to decay around 

~2.5 s, the latter slowly began to pick up.  

Figure 7 further shows the probability density distributions for decoded target and 

response locations. On seen trials, prior to the rotation cue, decoder estimates for target angle 

were strongly concentrated around the actual target location, irrespective of rotation condition 

and direction (resultant vector lengths > .41; Rayleigh tests for non-uniformity: zs > 5.09, ps < 

.005; non-parametric multi-sample test for equal medians: ps > .302). This picture changed 

following the rotation cue. While angle estimates on no-rotation trials continued to stay fairly 

centered on the original target location (resultant vector lengths > .37; Rayleigh test: z > 4.01, 
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p < .017), their counterparts for clock- and counter-clockwise rotations began to shift towards 

the respective correct response positions (response period: clockwise rotation: Mcirc = 37.3°; 

resultant vector length = .49; one-sample test against a mean direction of 0°: p < .05; counter-

clockwise rotation: Mcirc = 95.6°; resultant vector length = .31; one-sample test against a mean 

direction of 0°: p < .05). During the response period, all three distributions were characterized 

by a different center of mass (non-parametric multi-sample test for equal medians: ps < .05), 

located in close proximity to the expected final position. Depending on the direction of the 

rotation, the representation of the original target location was progressively transformed into a 

representation of the response position. On average, then, a mental rotation following seen 

targets was reflected by an active transition period, during which the stimulus code was 

progressively replaced by the response code. Note however that, while such a smooth transition 

was visible in the mean, we cannot determine here whether continuous or discrete transitions 

occurred on individual trials (Latimer et al., 2015). 

 

Figure 7. Tracking a mental rotation on seen trials. (A) (Left) Time courses of probability density distributions 

of the angular distance between the estimates of a decoder trained with target angle and actual target location are 

shown as a function of rotation condition. For display purposes, data were smoothed with a moving average of 12 
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samples (i.e., 96 ms). Overlaid black line illustrates the evolution of the circular mean of the individual 

distributions (also smoothed). Shaded area reflects circular standard variation across subjects. Vertical event 

markers denote the onset of the target (T), cue (C), and response (R) screens, horizontal markers index correct 

response positions after rotation. (Right) Same as in the left panels, except for angular distance between the 

estimates of a decoder trained with response angle and actual target location. (B) Circular means of the above 

distributions as a function of rotation condition and time bin (i.e., E = 100 – 300 ms, P3b = 300 – 600 ms, D1 = 

0.6 – 1.76 s, D2 = 1.76 – 3.26 s, R = 3.26 – 3.5 s). Error bars reflect circular standard deviation. Asterisks inside 

markers denote significant deviation from mean direction of 0 (as assessed by a circular equivalent of a one-sample 

t-test), asterisks on top significant differences in median direction between conditions (as assessed by a circular 

equivalent to the Kruskal-Wallis test; black = clockwise vs. counter-clockwise; red = clockwise vs. no rotation; 

violet = counter-clockwise vs. no rotation). * p < .05, ** p < .01, *** p < .001. See also Figure S6.  

 

 We next considered the unseen trials. If subjects similarly performed a conscious 

rotation of (an estimate of) unseen locations, then one would predict the response estimator to 

perform comparably on seen and unseen targets. This was indeed the case (Figure 6C). 

Decoding response location on unseen trials yielded consistent above-chance performance from 

~2.84 s onwards (pclust < .05; post-cue time bins: Ws > 410.0, pscorr < .005, Bayes’ Factors > 

594.74), again beginning to rise around the same time as the model for the pre-rotation location 

had faded (cf. time courses in Figure 6B and C). As would be expected if the same underlying 

process were responsible for the generation of responses across all experimental conditions, we 

observed no differences as a function of accuracy (time bins: Ws < 314.0, pscorr > .480, Bayes’ 

Factors < 0.81) or visibility (time bins: Ws < 334.0, pscorr > .600, Bayes’ Factors < 2.45). Pre-

rotation and response locations could also be tracked on unseen trials, albeit, as expected, with 

reduced accuracy (Supplementary Figure 6). The transformation from one representation into 

another therefore appeared to have been comparable for seen and unseen targets, in both cases 

relying on decodable activity patterns rather than on activity-silent brain states. 

Discussion 

 Recent work has challenged classical views of WM as a purely conscious process based 

on persistent neural firing. Instead, information may also be stored in non-conscious, activity-

silent WM, without any accompanying neural activity, via slowly decaying changes in synaptic 

weights (Mongillo et al., 2008; Rose et al., 2016; Stokes, 2015; Trübutschek et al., 2017; Wolff 

et al., 2015, 2017), and in the complete absence of subjective awareness (Bergström and 

Eriksson, 2017; Soto et al., 2011; Trübutschek et al., 2017). So far however, only the short-term 

maintenance of information has been explored, while its transformation, a key feature of WM, 

has been ignored.  

Here, we show that, whether or not information was consciously perceived, 

manipulating it was associated with a prior reinstatement of an active neural representation, 

accompanied by signatures of a conscious state. These findings question the term non-conscious 

working memory, and suggest that WM manipulation requires a conversion from activity-silent 

to active WM. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 30, 2018. ; https://doi.org/10.1101/379537doi: bioRxiv preprint 

https://doi.org/10.1101/379537
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

Manipulation as a limit for non-conscious, silent processes 

 It has proven notoriously difficult to put clear upper bounds on the depth of non-

conscious processing. Non-conscious signals tend to affect a wide range of behaviors and 

trigger activity in many different brain areas, including the prefrontal cortex (van Gaal et al., 

2010; Naccache and Dehaene, 2001; Nakamura et al., 2018; van Vugt et al., 2018). Recent work 

on non-conscious WM has even called into question some of the most basic assumptions 

regarding the nature of non-conscious processes, suggesting that non-conscious signals may be 

maintained much longer than previously thought (Bergström and Eriksson, 2017; King et al., 

2016; Soto et al., 2011; Trübutschek et al., 2017).  

 Our behavioral results, superficially, support this conclusion, as they provide evidence 

for a non-conscious process of mental rotation. On unseen trials, subjects reported the correct 

response position much better than chance after several seconds, irrespective of whether they 

just had to maintain the original target location or rotate its position. We replicated this long-

lasting blindsight effect in two independent experiments and, as such, seemingly expanded the 

range of possible non-conscious WM processes to include manipulation of information 

(Bergström and Eriksson, 2015; Bona et al., 2013; Soto et al., 2011; Trübutschek et al., 2017).  

 Our neural data further indicated that subjective visibility reports were genuine. Prior to 

the rotation cue, we observed typical markers of conscious, active processing almost 

exclusively for seen targets. Brain activity was amplified during the P3b time window (Gaillard 

et al., 2009; Sergent et al., 2005), and participants’ visibility (i.e., seen vs. unseen) was 

decodable with high accuracy (King et al., 2016; Salti et al., 2015; Trübutschek et al., 2017). 

Moreover, there was a sustained desynchronization of alpha/beta frequency, which became 

even more pronounced after the rotation cue, thereby coinciding with the most demanding phase 

of our task (Pessiglione et al., 2007; Trübutschek et al., 2017; Wyart and Tallon-Baudry, 2009). 

By contrast, for unseen targets, signatures of conscious processing were entirely absent or 

markedly reduced in comparison to the ones on seen trials early during the epoch. There was 

neither an ignition of brain activity during the P3b time window, nor a comparably strong 

alpha/beta desynchronization. These findings, in line with our previous work (Trübutschek et 

al., 2017), show that “unseen” trials were genuine and did not correspond to a subset of 

miscategorized seen trials. 

Those neural signatures, however, changed drastically around the time of the mental 

rotation cue, suggesting that an estimate of target location was reactivated and regained 

consciousness. Slightly before the rotation cue, around ~1 s, alpha/beta power decreased for 

unseen targets, reaching similar levels as on seen trials during the post-cue maintenance period. 

Starting at more or less the same time (i.e., around ~500 ms), a decodable representation of the 

pre-rotation location emerged. Participants therefore seem to have estimated and reinstated an 

active representation of target location in anticipation of the upcoming rotation task. On unseen 

trials, the weak activity-silent representation of the target may have competed against other 

ongoing noise fluctuations in the brain, resulting in a mixture of trials where decision was solely 

based on stochastic events (Vul et al., 2009) and others biased towards the correct target 

location. Variability across trials and participants as well as the temporal smoothing inherent to 
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time-frequency analyses precludes a definitive determination of the exact onset of the 

pronounced and sustained alpha/beta desynchronization on unseen trials, but the results indicate 

that this transition already occurred shortly before the presentation of the symbolic rotation cue. 

 In conjunction with previous work (Bergström and Eriksson, 2017; Soto et al., 2011; 

Trübutschek et al., 2017), these findings thus highlight the limits of non-conscious WM. While 

information may be temporarily stored non-consciously, manipulating items is associated with 

a reinstatement of an active conscious representation. Our results may thus help to circumscribe 

the boundaries of non-conscious processing. Consciousness has been theorized and empirically 

demonstrated to be a necessary prerequisite for the execution of serial tasks, such as the 

chaining of mental operations (Dehaene, 2001; Sackur and Dehaene, 2009). We here observed 

that such chaining may remain possible even if the initial input was not represented consciously, 

but only inasmuch as subjects willfully operate on previously non-conscious information by 

forcing it into an active state before routing it to a conscious processor. Future research might 

expand on this work and attempt to more strongly encourage the reliance on non-conscious 

processing by, for instance, rendering the task cues subliminal.  

The complementarity of active and silent processes in WM 

 Our data speak to the current debate on the nature of WM representations in the brain. 

Traditional models emphasize stable, persistent neural activity as the main candidate 

mechanism supporting WM (Fuster and Alexander, 1971; Kamiński et al., 2017). More recent, 

multivariate investigations point towards a more dynamic view, with the contents of WM being 

maintained in dynamically changing patterns of neural activity or activity-silent brain states 

(Rose et al., 2016; Spaak et al., 2017; Stokes, 2015; Stokes et al., 2013; Trübutschek et al., 

2017; Wolff et al., 2015, 2017).  

 Together with our previous work (Trübutschek et al., 2017), our current results suggest 

that sustained neural activity and activity-silent mechanisms may accommodate different 

processes. Storage of information in WM need not require neural activity. Without the 

manipulation requirement in our task, delay-period activity vanished entirely for unseen and 

was only intermittent for seen targets (Trübutschek et al., 2017). Such prolonged activity-silent 

periods occurred less frequently in the current experiment, probably because participants tried 

to more actively retain information about the target location in preparation for the required 

mental rotation. However, even in the present setting, target-related neural activity first decayed 

towards chance before being reactivated by the cue.  

By contrast, after the symbolic cue, once subjects were manipulating the contents of 

their WM, neural activity was sustained throughout the remainder of the epoch, with the 

representation of the response emerging while the target representation slowly faded. 

Importantly, we observed a similar pattern of results for unseen targets. As decodability of 

target location vanished, it was replaced by the emergence of the guess (i.e., pre-rotation 

location), that was maintained until the rise of response-related neural activity. The slightly 

different post-cue time courses observed for the decoding of the pre-rotation location on seen 

and unseen trials may not indicate any meaningful difference in the type of operation deployed 

by the participants, but likely reflected the differential levels of certainty with which subjects 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 30, 2018. ; https://doi.org/10.1101/379537doi: bioRxiv preprint 

https://doi.org/10.1101/379537
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

performed the mental rotation, having a clear starting point on seen trials and a more fluctuating 

representation on unseen trials. 

 Taken together, then, we propose that active and activity-silent processes make distinct 

contributions to WM. WM maintenance can be achieved without any accompanying neural 

activity via activity-silent mechanisms, but WM manipulation appears to depend on active 

neural firing. Recent evidence from a computational model corroborates this conclusion by 

demonstrating that, while short-term synaptic plasticity may support short-term maintenance, 

persistent neuronal activity automatically emerges from learning during active manipulation 

(Masse et al., 2018). Moreover, similar divisions of labor between activity-silent and activity-

based brain states have recently been observed for the active selection vs. maintenance of WM 

contents (Quentin et al., 2018). All of these data thus lend support to the emerging view that 

WM is best conceptualized as an activity-induced temporary and flexible shift in the 

functionality of a network (i.e., dynamic coding; Stokes, 2015). 

Tracking intermediate representations during a mental rotation 

 A last aspect of our work that deserves attention concerns the act of mental rotation 

itself. Numerous behavioral and neuroimaging studies support the idea that mental rotation 

depends on analog spatial representations, with the initial representation progressively being 

rotated through intermediate positions or views. Reaction times have been found to increase in 

near-linear fashion with the size of the rotation angle (Cooper, 1975; Shepard and Cooper, 1986; 

Shepard and Metzler, 1971), and activity in spatially mapped brain areas, such as the posterior 

parietal cortex, has been reported to be modulated parametrically by angular distance (Gauthier 

et al., 2002; Jordan et al., 2001; Wager and Smith, 2003). Recordings of single-neuron activity 

from the motor cortex during a motor rotation task also suggest a gradual rotation of a neural 

population vector (Georgopoulos et al., 1989).  

 Our results indicate that such a transformation of neural representations is now 

decodable from human MEG recordings. On seen trials, following the rotation cue, average 

decoder estimates of target and response angle progressively moved away from the original 

target location towards the expected response position, seemingly passing through a series of 

intermediate locations. A similar transformation may also have been present for the pre-rotation 

location for unseen targets, though data were too noisy to support any definitive conclusions. 

These findings are compatible with the view that locations intermediate between the target/pre-

rotation position and the response location were coded and represented in the brain. However, 

this interpretation is based on an analysis of multivariate estimates averaged across trials and 

participants. Isolated bursts of activity, occurring at different points in time and coding for 

discrete spatial positions, if averaged over many events, might also result in the apparent smooth 

transition we observed here (Lundqvist et al., 2016; Stokes and Spaak, 2016). Future research 

relying on single-trial analyses will be needed to disambiguate between these alternatives.  
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Conclusion 

 In the wake of recent proposals of non-conscious and/or activity-silent WM, we have 

identified an important boundary condition: While the storage of information in WM requires 

neither consciousness nor persistent activity, the manipulation of WM contents is associated 

with both. This conclusion is at odds with the very idea of non-conscious working memory. We 

therefore propose “activity-silent short-term memory” as an alternative term for the 

phenomenon of long-lasting blindsight. This observation may also help reconcile current 

debates on the nature of WM. WM is a generic term that refers to a conglomerate of cognitive 

processes including attentional selection, storage, and manipulation. Active and activity-silent 

brain states both contribute to produce these behaviors, and an essential goal for future research 

will be to further disentangle their differential contribution to WM.  
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Methods 

Participants 

 23 healthy volunteers (4 men; Mage = 23 years, SDage = 2.5 years) with normal or 

corrected-to-normal vision were included in the behavioral experiment. Another 30 participants 

(14 men; Mage = 25.4 years, SDage = 3.8 years) were entered in the analyses of the MEG study. 

In compliance with institutional guidelines, all subjects gave written informed consent prior to 

enrollment and received up to 80€ as compensation.  

WM task 

 We adapted our previous paradigm (Trübutschek et al., 2017) to probe participants’ 

ability to manipulate WM representations under varying levels of subjective visibility (Figure 

1). Following a 1 s fixation period, a small, gray target square was flashed for 17 ms in 1 of 24 

circular locations and subsequently masked (233 ms). Mask contrast was calibrated separately 

for each subject to yield ~equal proportions of seen and unseen trials (see below). Halfway 

throughout a 3 s delay period, a centrally presented, symbolic cue in white ink instructed 

participants as to the specific task to be performed: A third of the trials, indexed by an equal 

sign, served as a control condition, requiring subjects to maintain and identify the position in 

which the target had appeared. On the remainder of the trials, participants were to mentally 

rotate the original target location and report this rotated position. While the uppercase letter D 

necessitated a 120° clockwise rotation (1/3 of the trials), the letter G indicated a 120° counter-

clockwise rotation (1/3 of the trials). Subjects responded by either speaking (MEG experiment; 

2.5 s) or typing on a standard AZERTY keyboard (behavioral experiment; 3 s) the letter – out 

of a set of 24 (excluded: j, p) randomly presented in all possible locations, – corresponding to 

the desired position. For example, had the cue in Figure 1 been an equal sign, participants 

would have had to report the letter w. Had it been a D, the correct answer would have been b. 

With the trial as shown, subjects should have indicated the letter g. Importantly, a location 

response was required even when participants had not seen the target square; in that case, they 

were instructed to guess the correct final position. Subjects then rated their visibility of the 

target on the 4-point Perceptual Awareness Scale (Ramsøy and Overgaard, 2004), using the 

index, middle, ring, and little finger of their right hand to operate either the number-pad keys 

of the computer keyboard (behavioral experiment; 2 s) or the buttons of a non-magnetic 

response box (Fiber Optic Response Pad, Cambridge Research Systems Ltd; MEG experiment; 

2 s). To qualify as unseen (visibility = 1), participants were to have no visual experience 

whatsoever of the target stimulus as well as no hunch concerning its location. All other 

subjective impressions were to be categorized as seen (visibility 2, 3, or 4). Inter-trial intervals 

(ITIs) ranged between 333 and 666 ms (MEG experiment) or between 1 and 2 s (behavioral 

experiment). A central fixation cross was shown throughout the entire trial, and 20% target-

absent catch trials were included to allow for the computation of objective measures of subjects’ 

perceptual sensitivity and for the isolation of brain activity specific to the target square. 
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Calibration task 

 Participants performed a separate calibration procedure to identify the mask contrast 

needed for roughly equal proportions of seen and unseen targets in the WM paradigm. Trials 

were identical to the first part of the main experimental task (up to, and including, the 

presentation of the mask), but required either an immediate target localization and visibility 

response (behavioral experiment) or just an instantaneous visibility rating (MEG experiment). 

Mask contrasts were adjusted on a trial-by-trial basis with a double-staircase technique: We 

first divided the color spectrum between black and white into 20 equally spaced hues. Following 

an unseen target (visibility = 1), mask contrast was reduced by one step on the subsequent trial, 

whereas it was increased by the same amount when subjects had seen the target (visibility > 1). 

Initial values for the two staircases were set to RGB values of 12.75, 12.75, 12.75 and 242.5, 

242.5, 242.5, respectively, and one of the two staircases was selected randomly at the beginning 

of each trial. In case of target-absent trials, the previous mask contrast from a randomly chosen 

staircase was re-used without being updated. We computed individual mask contrasts for the 

WM task by taking the grand average of the last four switches (i.e., from seen to unseen or vice 

versa) across the two staircases. 

Experimental protocol 

 Each experimental session began with written and verbal instructions for all tasks. 

Subjects then performed either 60 (behavioral experiment; 1 block) or 90 training trials (MEG 

experiment; 2 blocks) of the WM paradigm. In contrast to the main experiment, during this 

training session, the target stimulus was always visible (mask set to the lowest contrast possible) 

and visual feedback on localization and rotation performance was provided at the end of each 

trial (2.5 s): The target location, connected by a white arc to the correct response position (in 

green ink), was displayed. If the participant had answered incorrectly, this location was also 

shown in red ink. Following the training, participants completed the calibration and WM task. 

While the former was comprised of 125 trials (1 block) in the behavioral and 120 trials (1 block) 

in the MEG experiment, the latter consisted of 180 (2 blocks; 2 repetitions of each of the three 

rotation conditions/location) and 450 trials (10 blocks; 5 repetitions of each of the three rotation 

conditions/location), respectively.  

Behavioral analyses 

 We followed our previous approach (Trübutschek et al., 2017) to evaluate WM 

performance as a function of subjective visibility. Repeated-measures analysis of variance 

(ANOVA) was applied to three indices of objective performance: (1) Accuracy refers to that 

proportion of trials that falls exactly onto the correct response location and serves as a crude 

measure of the amount of information which can be maintained and manipulated in WM. 

Chance performance corresponds to 1/24 (i.e. 4.17%). (2) The rate of correct responding also 

reflects the quantity of information held in WM, but is more refined than accuracy alone, as it 

allows accounting for small errors in subjects’ ability to identify the correct response location. 

It was defined as the proportion of trials within ± 2 positions of the correct response location 

(i.e., ± 30°), leading to a chance-level of 5/24 (i.e., 20.83%). (3) As an estimate of the precision 
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of WM representations, we computed the standard deviation of that part of the distribution of 

participants’ spatial responses that corresponded to genuine WM (as opposed to random 

guessing within the region of correct responding; Trübutschek et al., 2017). Only subjects with 

sufficient blindsight (i.e., p < .05 in a χ2-test against chance) when collapsing across all 

experimental conditions were included in this analysis. 

MEG acquisition, preprocessing, and decomposition 

 We installed participants inside an electromagnetically shielded room and recorded their 

brain activity continuously during the WM paradigm with a 306-channel, whole-head 

magnetometer by Elekta Neuromag® (Helsinki, Finnland). MEG sensors were arranged in 102 

triplets, comprised of one magnetometer and two orthogonal planar gradiometers, and MEG 

signals were acquired at a sampling rate of 1000 Hz with a hardware bandpass filter between 

0.1 and 330 Hz. To allow for offline rejection of artifacts induced by eye movements and 

heartbeat, we monitored these bodily functions with vertical and horizontal electro-oculograms 

(EOGs) and electrocardiograms (ECGs). Subjects’ head position inside the MEG helmet was 

inferred at the beginning of each run with an isotrack Polhemus Inc. system from the location 

of four coils placed over frontal and mastoïdian skull areas.  

 We adapted Marti and colleagues’ (2015) preprocessing pipeline. First, we identified 

bad MEG channels visually in the raw signal and then employed MaxFilter software 

(ElektaNeuromag®, Helsinki, Finland) to (1) compensate for head movements between 

experimental blocks by realigning all data to the head position of the first run and (2) apply the 

signal space separation algorithm (Taulu et al., 2004) to suppress magnetic interference from 

outside the sensor helmet and interpolate bad channels. We then switched to Fieldtrip for further 

preprocessing (Oostenveld et al., 2011). Continuous data were first epoched with respect to 

target onset (i.e, -0.5 to 3.5 s). The resulting trials were downsampled to 250 Hz, and any 

artifacted epoch removed by means of a semi-automatic procedure: We visually inspected 

scatter plots of the trial-wise variance of the MEG signals across all sensors to identify and 

reject contaminated epochs. In a last step, we performed independent component analysis (ICA) 

separately for each channel type to remove any residual artifacts related to eye movements or 

cardiac activity: Topographies of the first 30 components were displayed for visual inspection, 

their time courses correlated with the EOG/ECG signals, and contaminated components 

subtracted from the MEG data. 

 Depending on the nature of the subsequent investigation, further preprocessing steps 

then diverged. For any univariate analysis based on evoked responses (i.e., ERFs), we only low-

pass filtered the MEG signal at 30 Hz. However, to extract the spectral component of our data, 

we relied on unfiltered epochs: Power estimates between 1 and 99 Hz (in 2 Hz steps) were 

obtained by convolving overlapping segments of the data with a frequency-independent Hann 

taper (window size: 500 ms, step size: 20 ms). Multivariate analysis required additional 

downsampling of the signal to 125 Hz. After all necessary transformations and decompositions, 

we applied a baseline correction prior to any analysis between -200 and 0 ms. 
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Estimating chance-free brain activity for unseen correct trials 

 To account for chance-responding on unseen correct trials, we employed a strategy 

developed by Lamy and colleagues (2009) and first calculated the proportion of unseen correct 

trials correctly responded to by chance separately for each subject: 

(1) PUC = ((1 -  r) / (19/24)) * (5/24),  

where PUC = %UnseenCorrectChance and r = rate of correct responding. 

We then estimated brain activity on the unseen correct trials reflecting chance-free responding, 

operating under the assumption that the actual observed amplitude A was a linear combination 

of genuine blindsight and random guessing: 

(2) A(UnseenCorrectObserved) = PUC * A(%UnseenCorrectChance) + (1 - PUC) * 

A(%UnseenCorrectChanceFree) 

(3) A(UnseenCorrectChanceFree) = [A(UnseenCorrectObserved) - PUC * 

A(%UnseenIncorrectObserved)] / (1 - PUC), 

assuming that A(UnseenCorrectChance) = A(%UnseenIncorrectObserved). 

Similarly, we then reverted the process, mixing activity from seen trials with that from unseen 

incorrect trials, to obtain an estimate of what brain activity might have looked like under the 

miscategorization hypothesis. 

(4) A(UnseenCorrectMiscategorized) = (1 - PUC)  * A(SeenObserved) + PUC * 

A(%UnseenIncorrectObserved). 

Source reconstruction 

 Structural magnetic resonance (MR) scans were available for 29 of our 30 subjects, 

having been acquired as part of previous experiments from our lab with a 3D T1-weighted 

spoiled gradient recalled pulse sequence (voxel size: 1 * 1 * 1 mm; repetition time [TR]: 2,300 

ms; echo time [TE]: 2.98 ms; field of view [FOV]: 256 * 240 * 176 mm; 160 slices). To identify 

the anatomical locations of the MEG signals in these participants, we first segmented subjects’ 

T1 images into gray/white matter using FreeSurfer (https://surfer.nmr.mgh.harvard.edu/) and 

then reconstructed the cortical, scalp, and head surfaces in Brainstorm (Tadel et al., 2011). Co-

registration between the anatomical scans and the MEG data was based on participants’ head 

position in the MEG helmet, recorded and tracked throughout the entire experiment. Subject-

specific forward models relied on analytical models with overlapping spheres. Separately for 

each condition and participant, we modeled neuronal current sources with a constrained 

weighted minimum-norm current estimate (wMNE; depth-weighting factor: 0.5). Noise 

covariance matrices were computed from ~5 min-long empty-room recordings, measured 

immediately after each individual subject. Prior to group analysis, single-trial source estimates 

were either (1) averaged within each subject and condition, transformed into z-scores relative 

to our pre-stimulus baseline (-0.2 – 0 s), rectified, and spatially smoothed over 5 mm, or (2), in 

the case of time-frequency decompositions, transformed into average power in the alpha (8 – 

12 Hz) and low (13 – 20 Hz) as well as high beta (20 – 27 Hz) bands with complex Morlet 

wavelets (Brainstorm default parameters). We then computed the contrasts of interests and 
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projected the resulting participant-specific source estimates on a generic brain model built from 

the standard template of the Montreal Neurological Institute (MNI). Group averages for spatial 

clusters of at least 50 vertices and thresholded at 50% of the maximum amplitude are shown 

for each time window under consideration (cortex smoothed at 60%). 

Multivariate pattern analysis (MVPA) 

 In this set of analyses, we aimed at predicting the identity and/or value of a specific 

categorical (i.e., visibility, accuracy) or circular (i.e., target, pre-rotation, or response location) 

variable (y) from single-trial brain activity (X) separately for each participant and time point. 

Relying on the Scikit-Learn package (Pedregosa et al., 2011) for MNE 0.15 (Gramfort, 2013; 

Gramfort et al., 2014), we therefore adapted the pipeline developed by King and colleagues 

(2016) to (1) fit a linear estimator w to a training subset of X (Xtrain) to isolate the topographical 

patterns best differentiating our experimental conditions, (2) predict an estimate of y (ŷ) from a 

test set (Xtest), and (3) compare the resulting predictions to the true value of y either for the entire 

set of labels (score(y, ŷ)) or a specific subset (subscore(y, ŷ)).  

 Here, two main classes of estimators were used: A linear support vector machine (SVM) 

was employed in the case of categorical, and a combination of two ridge regressions in the case 

of circular data. Whereas the former was set to generate a continuous output in the form of the 

distance between the hyperplane (w) and the respective sample of y, the latter first separately 

fit the sine (sin(y)) and cosine (cos(y)) of the spatial position in question and then estimated an 

angle from the arctangent of the individual predictions (ŷ = arctan2(ŷsin, ŷcos)). To increase the 

number of instances available for each circular label, we averaged neighboring spatial locations 

(effectively reducing the number of positions from 24 to 12). Prior to model fitting, all channel-

time features (X) were z-score normalized, and, for any analysis involving SVMs, a weighting 

procedure applied to counteract the effects of potential class imbalances. All other model 

parameters were left with their Scikit-Learn default values.  

 To avoid overfitting, we embedded this sequence of analysis steps in a 5-fold, stratified 

cross-validation procedure: For non-independent training and test sets, estimators were 

iteratively fitted on 4/5th of the data (Xtrain) and generated predictions for the remaining 1/5th 

(Xtest). By contrast, when generalizing from one task to the other (i.e., no-rotation to rotation 

condition), estimators from each training set were directly applied to the entire test set and the 

respective predictions averaged. Within the same cross-validation loop, we also evaluated time 

generalization (King and Dehaene, 2014): Each estimator was first trained at time t and then 

tested at all other time points, resulting in a square matrix of training time x testing time. As 

such, this temporal generalization analysis permits an interrogation of the durability and 

stability of patterns of brain activity.  

 We summarized within-participant, across-trial decoding performance of categorical 

data with the area under the curve (AUC), presenting an unbiased measure of the true-positive 

rate as a function of the false-positive rate (range: 0 – 1; chance = 0.5). Two different summary 

statistics were used for circular decoding: (1) For non-directional analyses, the mean absolute 

difference between the predicted (ŷ) and actual angle (y) across all trials was first computed 
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(range: 0 – π; chance = 
𝜋

2
), and this “error metric” was then transformed into an “accuracy score” 

(range: -
𝜋

2
 to 

𝜋

2
; chance = 0). (2) In contrast, the probability distribution of the signed difference 

between ŷ and an actual location was retained for directional analysis (i.e., tracking the rotation 

itself). The resulting, continuous angular distance estimates were then assigned to 1 of 24 evenly 

spaced bins (discontinuous; range: [-π, : π/24 : π]) and the probability of a given estimate falling 

within the range of a given bin was calculated across trials. 

Statistical analysis 

 All statistics reported in the text refer to group-level analyses. In the case of ERF and 

frequency data, we (1) performed cluster-based, non-parametric t-tests with 1,000 Monte Carlo 

permutations to identify significant spatio-temporal differences between experimental 

conditions, while simultaneously correcting for multiple comparisons (Maris and Oostenveld, 

2007), and (2) additionally present uncorrected outcomes of non-parametric signed-rank tests 

for follow-up analyses of amplitude/power differences in time courses (puncorrected < .05). We 

again relied on the above cluster-based permutation analysis to assess multivariate decoding 

performance (i.e., categorical data: AUC > 0.5; circular data: rad > 0; 5000 permutations). 

Temporal averages over five a-priori time bins, corresponding to an early perceptual period (0.1 

– 0.3 s), the P3b time window (0.3 – 0.6 s), the maintenance period before (0.6 – 1.76 s) and 

after the cue (1.76 – 3.26 s), as well as the response (3.26 – 3.5 s), are also provided. Bonferonni 

correction was applied to these a-priori analyses to correct for multiple comparisons (pcorr < 

.05/5). When appropriate, we present circular statistics and computed Bayesian statistics based 

on two- or one-sided t-tests (r = .707; Rouder et al., 2009). 
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Tables 

Table 1. Summary statistics for long-lasting blindsight effect. 

 

We display the mean (M) and standard error (SE) for accuracy on the unseen trials as a function of experiment and rotation condition. T-statistic 

refers to a one-sample test against chance (i.e., 4.17%). Bold numbers indicate significant above-chance localization performance (one-tailed). df 

= degrees of freedom.  

 

 

Experiment No rotation Combined rotation Clockwise rotation Counter-clockwise rotation 

 M (SE) t(df) p M (SE) t(df) p M (SE) t(df) p M (SE) t(df) p 

Behavior 26.2% (4.6%) 4.8 (22) < .001 14.2% (2.1%) 4.8 (22)  < .001 12.5% (2.2%) 3.7 (22) < .001 16.0% (2.6%) 4.5 (22) < .001 

MEG 15.4% (1.5%) 7.3 (29) < .001 9.2% (1.1%)  4.3 (29) < .001 9.0% (1.3%) 3.8 (29) < .001 9.2% (1.3%) 3.8 (29) < .001 
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Supplementary Figures 

 

Supplementary Figure 1. No signatures of conscious processing on the unseen correct trials. (A) Sequence 

of brain activations (-0.2 – 3.5 s) evoked by non-consciously perceiving the target in both tasks in sensor (top) and 

source space (bottom). Each topography depicts the difference in amplitude between unseen correct and unseen 

incorrect trials averaged over the time window shown (magnetometers only). Sources reflect z-scores of absolute 

difference with respect to a pre-stimulus baseline. (B) Average time courses (-0.2 – 3.5 s) of unseen correct (light 

blue) and unseen incorrect (dark blue) trials in that subset of magnetometers having shown a significant difference 

in amplitude between seen and unseen targets. Black trace reflects brain activity on the unseen correct trials after 

having been corrected for chance-responding. Red time course illustrates what the signal on the unseen correct 

epochs should have looked like, had the miscategorization hypothesis been true. Shaded area denotes standard 

error of the mean (SEM) across subjects. Significant differences between unseen correct and incorrect epochs are 

depicted with the thick, black line (two-tailed Wilcoxon signed-rank test, uncorrected). Vertical dotted lines index 

onset of the target (T), symbolic cue (C), and response (R) screens. For display purposes only, data were lowpass-

filtered at 8 Hz. (C) (Top) Average time course of diagonal decoding of accuracy on the unseen trials (i.e., unseen 

correct vs. unseen incorrect). Horizontal, dotted line represents chance level at 50%. (Bottom) Temporal 

generalization matrix of the same accuracy decoder. Each horizontal row in the matrix corresponds to an estimator 

trained at time t and tested on all other time points t’. The diagonal gray line demarks classifiers trained and tested 

on the same time points (i.e., the diagonal estimator shown on top). In both plots, vertical lines mark onset of the 

target (T), symbolic cue (C), and response (R) screens. Only for display purposes, data were smoothed with a 

moving average of 5 samples (i.e., 40 ms). AUC = area under the curve.  
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Supplementary Figure 2. Conscious perception entails similar neural dynamics in both tasks. Temporal 

generalization matrices (bottom) for decoding of visibility category (i.e., seen vs. unseen) as a function of training 

and testing task (i.e., no rotation vs. rotation). In each panel, a classifier was trained at every time sample (y-axis) 

and tested on all other time points (x-axis). The diagonal gray line demarks classifiers trained and tested on the 

same time sample. Event markers (i.e., vertical/horizontal lines) denote onset of the target (T), cue (C), and 

response (R) screens. Time courses of diagonal decoding are shown on top. Black outlines in matrix plots and 

thick lines/shaded areas in time courses show periods of significant decoding (cluster-based permutation test, two-

tailed except for diagonal). For display purposes, data were smoothed using a moving average with a window of 

5 samples (i.e., 40 ms). AUC = area under the curve. 
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Supplementary Figure 3. Comparing visibility to accuracy decoder. Each panel displays the generalization 

matrix (bottom) and time course of diagonal decoding (top) of a specific visibility or accuracy estimator. 

Horizontal, dotted line in time course represents chance level at 50%. Each horizontal row in the matrix 

corresponds to an estimator trained at time t and tested on all other time points t’. The diagonal gray line demarks 

classifiers trained and tested on the same time points (i.e., the diagonal estimator shown on top). In both plots, 

vertical lines mark onset of the target (T), symbolic cue (C), and response (R) screens. Thick lines/shaded areas as 

well as black outlines denote above-chance decoding as assessed by a cluster-based permutation test (two-tailed, 

with the exception of the diagonal). Only for display purposes, data were smoothed with a moving average of 5 

samples (i.e., 40 ms). AUC = area under the curve.  
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Supplementary Figure 4. Average time courses of alpha, low beta, and high beta power. Time courses of 

average alpha (8 – 12 Hz; A), low beta (13 – 20 Hz; B), and high beta (20 – 27 Hz; C) band activity in a group of 

central sensors as a function of visibility and target presence. Shaded area demarks standard error of the mean 

(SEM) across subjects. Thick lines represents significant difference in power between conditions (red = seen vs. 

unseen; blue = seen vs. target-absent; green = unseen vs. target-absent; two-tailed Wilcoxon signed-rank test across 

subjects, uncorrected). Vertical line demarks onset of target (T) and cue (C) screens. (D-F) Same as in (A-C), 

except for unseen correct and unseen incorrect trials. Color code for significant differences is as follows: red = 

unseen correct vs. unseen incorrect, blue = unseen correct vs. target-absent, green = unseen incorrect vs. target-

absent.   
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Supplementary Figure 5. Tracking a mental rotation on seen and unseen trials in the rotation and no-

rotation task. (A) Time courses of average decoding of target location (top), pre-rotation location (middle) and 

response location (bottom) on seen trials as a function of task (i.e., no rotation vs. rotation). Thick lines and shaded 

areas represent above-chance performance as assessed by a one-tailed cluster-based permutation test. Horizontal 

dotted lines index chance. Event markers denote the onset of the target (T), cue (C), and response (R) screens. For 

illustration purposes, data were smoothed with a moving average of 5 samples (i.e., 40 ms). (B) Same as in (A), 

but for unseen trials.  
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Supplementary Figure 6. Tracking a mental rotation on unseen trials. (A) (Left) Time courses of probability 

density distributions of the angular distance between the estimates of a decoder trained with pre-rotation angle and 

actual pre-rotation location are shown as a function of rotation condition. For display purposes only, data were 

smoothed with a moving average of 12 samples (i.e., 96 ms). Overlaid black line illustrates the evolution of the 

circular mean of the individual distributions (also smoothed). Shaded area reflects circular standard variation 

across subjects. Vertical event markers denote the onset of the target (T), cue (C), and response (R) screens, 

horizontal markers index correct response positions after rotation. (Right) Same as in the left panels, except for 

angular distance between the estimates of a decoder trained with response angle and actual pre-rotation location. 

(B) Circular means of the above distributions as a function of rotation condition and time bin (i.e., E = 100 – 300 

ms, P3b = 300 – 600 ms, D1 = 0.6 – 1.76 s, D2 = 1.76 – 3.26 s, R = 3.26 – 3.5 s). Error bars reflect circular standard 

deviation. Asterisks inside markers denote significant deviation from mean direction of 0 (as assessed by a circular 

equivalent of a one-sample t-test), asterisks on top significant differences in median direction between conditions 

(as assessed by a circular equivalent to the Kruskal-Wallis test; black = clockwise vs. counter-clockwise; blue = 

clockwise vs. no rotation; violet = counter-clockwise vs. no rotation). * p < .05, ** p < .01, *** p < .001.  
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