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2	
	

ABSTRACT 29	

Global environmental changes strongly impact wild and domesticated species biology and their 30	
associated ecosystem services. For crops, global warming has led to significant changes in terms of 31	
phenology and/or yield. To respond to the agricultural challenges of this century, there is a strong 32	
need for harnessing the genetic variability of crops and adapting them to new conditions. Gene 33	
flow, from either the same species or a different species, may be an immediate primary source to 34	
widen genetic diversity and adaptions to various environments. When the incorporation of a foreign 35	
variant leads to an increase of the fitness of the recipient pool, it is referred to as “adaptive 36	
introgression”. Crop species are excellent case studies of this phenomenon since their genetic 37	
variability has been considerably reduced over space and time but most of them continue 38	
exchanging genetic material with their wild relatives. In this paper, we review studies of adaptive 39	
introgression, presenting methodological approaches and challenges to detecting it. We pay 40	
particular attention to the potential of this evolutionary mechanism for the adaptation of crops. 41	
Furthermore, we discuss the importance of farmers’ knowledge and practices in shaping wild-to-42	
crop gene flow. Finally, we argue that screening the wild introgression already existing in the 43	
cultivated gene pool may be an effective strategy for uncovering wild diversity relevant for crop 44	
adaptation to current environmental changes and for informing new breeding directions. 45	
  46	
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1. Introduction 47	

The fate of wild and domesticated species and their associated ecosystem services is increasingly 48	
depending on global environmental changes, as climate warming, nitrogen cycle alteration or land 49	
use (Perring et al., 2015; Shibata et al., 2015; Walther et al., 2002). For instance, modifications of 50	
temperature and rainfall regimes have been shown to directly impact on plant phenology or 51	
distribution within these past decades. A meta-analysis including nearly 1600 species showed that 52	
41% of them had experienced phenological advancement and northward range movement 53	
(Parmesan and Yohe, 2003). In a mountain area, Crimmins et al. (2011) documented downward 54	
elevation shifts driven by water deficits in 64 plant species. Forest inventories across the eastern 55	
USA revealed direct effects of climate on forest biomass, through changes in tree species 56	
composition towards species more drought-tolerant, but slower growing. Climate effects have also 57	
been reported on major crop species. Global maize and wheat yield has declined by 4-6% since the 58	
early 1980s (Lobell et al., 2011). Earlier flowering and changes in genetic composition have been 59	
recorded in the staple African cereal pearl millet (Vigouroux et al., 2011). Reduced flowering time 60	
and loss of genetic diversity in response to increasing temperatures have also been observed in wild 61	
wheat and barley over less than 30 years (Nevo, 2012). Future climate scenarios foresee an 62	
acceleration of the rise in temperature and an increase in hydrological variability (IPCC, 2014), 63	
which are probably the prelude to further dramatic consequences for species biology. 64	
 65	
Phenotypic plasticity and dispersal (through seeds and pollen) can be very rapid responses to 66	
change, but it is less clear whether adaptation, the evolution of genetic traits making organisms 67	
better fitted to survive and reproduce in their environment, could also play a significant role in this 68	
process. The ability to adapt to new conditions depends on the rate of environmental change (Loarie 69	
et al., 2009) and on the genetic variability available (Doi et al., 2010; Hoffmann et al., 2017). The 70	
genetic diversity of a population relies either on standing genetic variation or on new genetic 71	
variants. On short time scales, the mutation rate may be too low. Moreover, standing genetic 72	
variation may be limited, especially for populations whose genetic diversity has been reduced by 73	
demographic bottlenecks, as many domesticated species (Glémin and Bataillon, 2009). However, 74	
new variants could arise from gene flow, in numbers up to two or three orders of magnitude more 75	
than that introduced by mutation (Grant and Grant, 1994). Thus, gene flow, either from the same 76	
species or a different species, may amount to an immediate primary source of functional alleles 77	
(Ellstrand, 2014). If a foreign functional variant increases the fitness of the recipient pool, it 78	
increases in frequency across generations, a phenomenon referred to as “adaptive introgression” 79	
(Anderson, 1949; Rieseberg and Wendel, 1993). 80	
 81	
Prior to any possible “adaptive introgression”, hybridization/gene flow events need to take place. 82	
However, the fate of hybrids is uncertain. Hybrids are usually selected against in parental habitats 83	
(Baack et al., 2015) because they show reduced fertility and viability (Lowry et al., 2008). This 84	
process might be due to genetic incompatibilities and/or the break-up of epistatic co-adapted gene 85	
complexes (Barton and Hewitt, 1985; Hewitt, 1988). Yet, when species are not too divergent and 86	
isolating barriers are incomplete (Coyne and Orr, 2004), hybridization can lead to the introgression 87	
of advantageous alleles (Barton and Bengtsson, 1986). Compared to neutral introgression, which 88	
could be lost by drift across generations, adaptive introgression would be maintained and may 89	
eventually give rise to fixation (Figure 1). Interestingly, hybridization has the potential to introduce 90	
large sets of new alleles simultaneously at multiple unlinked loci, allowing adaptation even for 91	
polygenic traits (Abbott et al., 2013; Mallet, 2007), thus playing a key role in species evolution (e.g. 92	
Arnold and Kunte, 2017; Arnold and Martin, 2009; Hedrick, 2013).  93	
 94	
In the context of species conservation and management a large body of literature discuss how gene 95	
flow could also be associated with negative effects. Undesirable consequences of gene flow are 96	
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associated with the risks of invasiveness (Ellstrand and Schierenbeck, 2000; Whitney et al., 2006), 97	
transgene escape (Ellstrand et al., 2013 and references therein), or genetic erosion of native 98	
populations (Wolf et al., 2001). Little attention has been paid to the potential of managed gene flow 99	
to increase genetic variation for species rescue (Hedrick, 2009) and adaptation (Aitken and 100	
Whitlock, 2013). Up to now, the potential of adaptive introgression as a source of adaptation to on-101	
going global changes for domesticated species has been overlooked. 102	
 103	
In this paper, we review studies of adaptive introgression, paying particular attention to the potential 104	
of this evolutionary mechanism for the adaptation of crops. By the term ‘introgression’ we mean the 105	
consequence of gene flow, at both the interspecific and the intraspecific level, i.e. independently of 106	
the taxonomic classification of the gene pools exchanging genetic material. We focus on sexually 107	
reproductive organisms; and we did not directly discuss horizontal gene transfer (reviewed in 108	
Arnold and Kunte, 2017). Within this framework, we report on 34 case studies addressing adaptive 109	
introgression (Table 1). After discussing methodological approaches and challenges to detecting 110	
adaptive introgression, we focus on gene flow in crops and the importance of farmer practices in 111	
shaping wild-to-crop gene flow. 112	
 113	
2. Empirical evidence of adaptive introgression  114	
 115	
Despite the occurrence of hybridization in nature, involving 25% of plants and 11% of animals 116	
(Mallet, 2005), relatively little evidence supports the fact that gene flow leads to enhanced fitness, 117	
i.e. adaptive introgression.  This may be because investigating the fitness of adaptive introgression 118	
is intrinsically difficult. For example, demonstrations of adaptive introgression in Helianthus were 119	
based on crossing and backcrossing to experimentally reproduce introgression and demonstrate 120	
enhanced fitness in the recipient taxon (Whitney et al., 2006, 2010). With high-throughput 121	
sequencing technologies, we can instead search for selection signatures on the introgressed variant 122	
in the recipient genomes (e.g. Arnold et al., 2016; Racimo et al., 2015). An increasing number of 123	
publications involving large-scale genetic data are accumulating in this field (Table 1). Those 124	
studies reveal or confirm instances of adaptive introgression in many kinds of organisms, including 125	
domesticated species (e.g. Anderson et al., 2009; Hufford et al., 2013; Kovach et al., 2009; Miao et 126	
al., 2016; Rochus et al., 2017). It also appears that different abiotic and biotic selective pressures 127	
drive the introgression of adaptive traits, with evolutionary consequences spanning different spatial 128	
and temporal scales.  129	
 130	
Recent striking studies report ancient adaptive introgression events in animals or humans. Up to 5% 131	
of the modern human genome might be of introgressed origin from archaic hominins (e.g. Green et 132	
al., 2010; Hsieh et al., 2016; Reich et al., 2009; Sankararaman et al., 2014). Introgressed loci from 133	
Neanderthals or Denisovans appear to be linked to skin colour phenotypes (Vernot and Akey, 134	
2014), immune responses (Abi-Rached et al., 2011) and hypoxia adaptation to high altitudes 135	
(Huerta-Sánchez et al., 2014). In animals, Tibetan Mastiff dogs were also found to have received a 136	
genomic region encompassing two genes linked to hypoxia adaptation (the EPAS1 and the HBB 137	
genes) from the local populations of grey wolf (Miao et al., 2016; Zhang et al., 2014). On the other 138	
hand, the American grey wolf inherited an adaptive allele for coat pigmentation from past 139	
hybridization with domestic dogs (Anderson et al., 2009). In Chinese and European pigs, gene flow 140	
would seem to date from the Pleistocene era, when northern Chinese and European breeds would 141	
appear to have acquired a large adaptive genomic region from a Sus species that is now extinct (Ai 142	
et al., 2015). 143	
 144	
Adaptive introgression can also take place on a much shorter evolutionary time scale. For instance, 145	
the acquisition of pesticide resistance through genetic exchange can be achieved in a few decades, 146	
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as observed in insects (Lynd et al., 2010; Weetman et al., 2010) and rodents (Liu et al., 2015; Song 147	
et al., 2011). A mutation in the voltage-gated sodium channel gene (kdr) provides strong resistance 148	
to pyrethroid and dichlorodiphenyltrichloroethane (DDT) in the mosquito Anopheles gambiae, one 149	
of the vectors of malaria in sub-Saharan Africa. The resistance allele was transferred from A. 150	
gambiae sensu stricto (S form) to a conspecific A. coluzzi (M form) (Weill et al., 2000) and its 151	
frequency has greatly increased in A. coluzzi populations over the past two decades (Lynd et al., 152	
2010; Norris et al., 2015). Selection tests and demographic simulations suggest this increase has 153	
been driven by selection (Lynd et al., 2010; Weetman et al., 2010). Another recent example of 154	
adaptive introgression in plants has been discovered in a population of Arabidopsis arenosa (Arnold 155	
et al., 2016) using genome scans. Several genomic signatures of selection associated with 156	
adaptation to serpentine soils were found to be of introgressed origin from a different species, A. 157	
lyrata. The uncontrolled escape of agricultural adaptations (e.g. resistance to biotic and abiotic 158	
stressors, often achieved with transgenes) from fields to wild populations, through weedy forms, is 159	
another well-known case of rapid adaptive introgression. This causes substantial yield losses and 160	
requires strong economic efforts in managing cultivated and wild species (e.g. Ellstrand et al., 2013; 161	
Hooftman et al., 2007; Rose et al., 2009; Uwimana et al., 2012).  162	
 163	
 164	
3. Characterizing adaptive introgression with genetic data 165	
 166	
To infer adaptive introgression, it is necessary to demonstrate 1) the introgression, by showing the 167	
foreign origin of the genetic variant and its persistence in the recipient pool (i.e. should be found in 168	
backcrossed generations), and 2) its adaptive value, by identifying selection footprints on the 169	
introgressed fragment and (if possible) its fitness value. Genomic studies of adaptive introgression 170	
seek to aim at gathering these three lines of evidence. Because of multiples factors (migration rate, 171	
number of generations since introgression, intensity of selection) affecting the introgression process 172	
and its interaction with selection, a variety of genomic patterns can be observed in the recipient 173	
population (Figure 1). As these are complex patterns, there is no unique approach to detecting 174	
signatures of adaptive introgression (Table 1). Below, we detail some of the most common 175	
approaches used to detect introgression and to prove the action of selection (cf. Table 1).  176	
 177	
3.1 Detection of introgression  178	
 179	
The aim of detecting introgression is to identify populations and individuals of admixed origin and 180	
quantify rates of gene flow, but also to find the traits or the genomic regions that have crossed 181	
isolation barriers. Availability of whole genome data maximizes the chances of detecting 182	
introgression even when it is rare in the genome (Hufford et al., 2013; Racimo et al., 2015; Rochus 183	
et al., 2017; Schaefer et al., 2016). In the following sections, we describe approaches used to detect 184	
introgression with genetic data, bearing in mind that none of them provides absolute proof of 185	
introgression and that the best strategy is to gather evidence in different ways.  186	
 187	
The ability to detect introgression increases with the divergence between the hybridizing taxa. For 188	
higher divergent taxa, we have more markers fixed between species or with large allele frequency 189	
differences. These “diagnostic alleles” allow easy identification of the ancestry of a genomic 190	
fragment in the recipient population (e.g. Gittelman et al., 2016; Kim et al., 2008; Kovach et al., 191	
2009; Norris et al., 2015; Smith et al., 2004). However, even with slight differences in allele 192	
frequencies, genetic clustering methods can be used to identify introgression. A variety of 193	
approaches are available, such as multivariate analyses (e.g. Frichot et al., 2014; Jombart et al., 194	
2009) or Bayesian algorithms (e.g. Alexander et al., 2009; Anderson and Thompson, 2002; 195	
Pritchard et al., 2000) (Figure 2a). The power of these global ancestry methods to detect gene flow 196	
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comes from the use of multiple independent (i.e. not physically linked) polymorphic markers. These 197	
methods can be applied both genome-wide (Gagnaire et al., 2009; e.g. Rochus et al., 2017) and to 198	
single genomic regions. Window-based analyses of ancestry along the maize genome were 199	
successfully used to identify introgressed fragments from the wild progenitor teosinte (Hufford et 200	
al., 2013).  201	
 202	
When higher density molecular markers are available, other recent methods are able to assign an 203	
ancestry probability to each polymorphic variant (Racimo et al., 2015; Schaefer et al., 2016). These 204	
local ancestry methods use probabilistic approaches, such as Hidden Markov Models (e.g. Reich et 205	
al., 2012), or Conditional Random Fields (e.g. Sankararaman et al., 2014) to infer the ancestry state 206	
of each site, taking into account the information of physically close positions. As physical linkage 207	
disequilibrium patterns dilute with generations, these approaches are less efficient for the detection 208	
of ancient introgression, compared to global ancestry methods. While some implementations 209	
require phased data (e.g. Song and Hein, 2005) or training data (e.g. Sankararaman et al., 2014), 210	
more recent developments have overcome these constraints (e.g. Guan, 2014). So far, such 211	
approaches have been mainly applied to model species (e.g. Staubach et al., 2012 on Mus musculus; 212	
Turissini and Matute, 2017 on Drosophila; Zhou et al., 2016 on humans), but the increasing 213	
availability of whole genome data will soon make them suitable for other study systems.  214	
 215	
The approaches described above help to quantify the amount of shared diversity between genetic 216	
pools. Shared variants between populations may be the result of different processes other than 217	
introgression: the retention of ancestral polymorphic alleles by chance (referred to as Incomplete 218	
Lineage Sorting, ILS, Figure 3), balancing selection or convergence (see Hedrick, 2013 for a 219	
comparison). For lower divergence times (as for wild-crop complexes), the probability that the two 220	
related groups have conserved ancestral polymorphism is higher. Thus, in most cases, the main 221	
challenge to detecting introgression is to distinguish it from ancestral shared polymorphism. 222	
Tracking the absence of the introgressed variants in ancient samples of the recipient pool would be 223	
an efficient way of excluding shared ancestral polymorphism. However, historical samples are 224	
difficult to obtain for most biological systems, so different methods have been developed to search 225	
for specific signatures on the genome that help to differentiate between introgressed fragments and 226	
inherited ancestral fragments.  227	
 228	
Coalescent samplers have been widely used to test for gene flow versus ILS using maximum 229	
likelihood or Bayesian models (Pinho and Hey, 2010). However, they are not straightforwardly 230	
applied to all study systems, because they require a strong computation effort and are not easy to 231	
transpose to a genome-wide scale. An alternative, simpler strategy takes advantage of the 232	
expectations associated with phylogenetic relationships between individuals or populations (Figure 233	
3). Given a genealogical tree describing the history of divergence between taxa or populations, a 234	
precise amount of shared variation between branches is expected because of drift and ILS. A 235	
significant excess of shared variation instead may be indicative of gene flow (Kulathinal et al., 236	
2009; Patterson et al., 2012; Peter, 2016). A number of statistics have been developed to test for the 237	
excess of shared polymorphism. The most used are the D-statistic (or ABBA-BABA test, Durand et 238	
al., 2011; Green et al., 2010) and the f3 and f4 statistics (globally referred to as f-statistics, Reich et 239	
al., 2009, 2012). These statistics were initially applied to human populations and have proven to be 240	
useful in other study systems, e.g. to detect the introgression of adaptation to serpentine soils in 241	
Arabidopsis species (Arnold et al., 2016). In general, the power of these tests to detect admixed 242	
genomes or populations is greater when applied to genome-wide data (see Patterson et al., 2012 for 243	
a review; Peter, 2016), but most recent statistics can be applied to small genomic regions, e.g. fD 244	
(Martin et al., 2015; Racimo et al., 2017).  245	
 246	
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Other approaches take advantage of haplotype characteristics to distinguish between introgression 247	
and ILS. As recombination breaks apart haplotypes over generations, introgressed haplotypes 248	
should be longer than haplotypes due to ILS and should exhibit higher levels of linkage 249	
disequilibrium (see figure 1 from Racimo et al., 2015). If admixture occurred recently compared to 250	
the divergence between populations, these features can be exploited to detect introgressed tracts. A 251	
test of significance can be associated by performing coalescent simulations of specific demographic 252	
scenarios (setting values of divergence times, recombination rates, population structure or selection 253	
adapted to the case in hand) to obtain the expectations for haplotype length statistics in the absence 254	
of gene flow. Haplotype length analyses led to the identification of candidate introgressed tracts and 255	
estimation of the age of the last introgression event in humans (Racimo et al., 2015) and dogs (Miao 256	
et al., 2016). A recently developed statistic, S*, uses linkage disequilibrium information to detect 257	
introgressed haplotypes when no information about the donor is available. S* is designed to identify 258	
divergent haplotypes whose variants are in strong linkage disequilibrium and are not found in a 259	
non-admixed reference population. S* increases as the number of linked SNPs and the distance 260	
between them increases (Vernot et al., 2016). This statistic helped to reveal the introgressed origin 261	
of the EPAS1 gene in Tibetans, before the identification of the Denisovan donor (Huerta-Sánchez et 262	
al., 2014). 263	
 264	
3.2 Detection of selection  265	
 266	
To prove adaptive introgression, the action of selection has to be demonstrated on the introgressed 267	
variant. A number of reviews address methods and tools for detecting selection with molecular data 268	
(e.g. Bank et al., 2014; Pavlidis and Alachiotis, 2017). In practice, most of the available approaches 269	
are more sensitive to signatures of strong positive selection (i.e. selective sweeps, Smith and Haigh, 270	
1974). For regions under strong positive selection, expectations are lower diversity, higher linkage 271	
disequilibrium and specific distortions of the allele frequency spectrum compared to the genome-272	
wide patterns.  273	
 274	
In within-population analyses, local patterns of lower genome diversity (Figure 2b) and shifts of the 275	
allele frequency spectrum toward an excess of low frequency alleles are often informative for 276	
detecting positive selection. For instance, polymorphism summary statistics, such as π (nucleotide 277	
expected heterozygosity) and Tajima’s D, have helped to discover and characterize introgressed loci 278	
involved in serpentine adaptation of Arabidopsis arenosa (Arnold et al., 2016) and in the pesticide 279	
resistance of mosquitoes (Norris et al., 2015) and mice (Song et al., 2011). Advanced methods for 280	
genomic scans of positive selection are the Composite Likelihood Ratio test approaches (reviewed 281	
in Pavlidis and Alachiotis, 2017). These tests compare the probability of the observed local site 282	
frequency spectrum under a model of selection with the probability of observing the data under the 283	
standard neutral model. The neutral expectations can be inferred by genome-wide observed patterns 284	
or by specific simulated demographic scenarios (e.g. Liu et al., 2015; Quach et al., 2016; Staubach 285	
et al., 2012).  286	
 287	
Haplotypic information is also extremely useful for identifying almost fixed or very recently fixed 288	
selective sweeps. The frequency of the introgressed haplotype in the recipient population can serve 289	
for identifying selection. This interpretation is based on the assumption that introgressed regions 290	
under selection should be at higher frequencies in the population relatively to the rest of the genome 291	
(e.g. Vernot et al., 2016). The extent of linkage disequilibrium generated on the sides of a beneficial 292	
mutation (or the haplotype size) is another signature captured by a number of tests for selection 293	
(Crisci et al., 2012). The BADH2 gene, responsible for the much-appreciated characteristic 294	
fragrance of some Asian rice varieties, provides a nice example of adaptive introgression detected 295	
by haplotype analysis. This gene only shows strong signatures of selection in fragrant accessions, as 296	
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revealed by a dramatic reduction in diversity (π) and a large block of linkage disequilibrium in 297	
regions flanking the functional mutation. The selected fragrant allele is likely to have originated 298	
after domestication in the genetic background of the japonica varietal group and to have been 299	
transferred to the indica variety by introgression (Kovach et al., 2009).  300	
 301	
Extreme differentiation between populations in specific genomic regions can also be interpreted as 302	
a signature of selection subtending local adaptation. For introgressed alleles adaptive in the 303	
recipient population, higher differentiation can be expected between the recipient and another non-304	
admixed population (e.g. Ai et al., 2015). In addition, recipient-donor differentiation will be lower 305	
for introgressed regions compared to the rest of the genome (Figure 2b). Thus, comparisons of 306	
pairwise differentiation values between different populations (i.e. donor, recipient and “reference” 307	
non-admixed population) may help to disentangle instances of adaptive introgression (e.g. Arnold et 308	
al., 2016; Enciso-Romero et al., 2017; Racimo et al., 2017). A number of differentiation/divergence 309	
statistics with different properties are available (e.g. Cruickshank and Hahn, 2014). Among them, 310	
estimators of FST (Wright, 1931) are the most commonly used for detecting selection (e.g. Arnold et 311	
al., 2016; Gagnaire et al., 2009; Gittelman et al., 2016).  312	
  313	
It should be noted, however, that inferring separately introgression and selection might not be the 314	
best approach to detect adaptive introgression, as expected genetic patterns are not necessarily the 315	
same. For example, we do not necessarily expect a reduction of diversity in an introgressed region 316	
under positive selection. In fact, it has been shown by simulations that admixture can increase 317	
diversity blowing the diversity loss due to selection (Racimo et al., 2017). Recent investigations 318	
into the joint dynamics of introgression and positive selection have opened promising avenues for 319	
the analysis of genetic data in quest of adaptive introgression instances (Racimo et al., 2017). These 320	
authors proposed new statistics informative to identify candidates to adaptive introgression and 321	
based to the number and frequency of alleles shared by the donor and the recipient populations (but 322	
absent or nearly absent in non-introgressed reference populations). Such “unique shared alleles” 323	
should be numerous and at high frequency in genomic regions interested by adaptive introgression 324	
(Figure 3c). The proposed statistics resuming these patterns, Q95 and U, have proven successful to 325	
retrieve several known regions of archaic adaptive introgression from Neanderthals and Denisovans 326	
in modern human genome (Racimo et al., 2017). However, these statistics are not straightforwardly 327	
applicable to any study system. Specific demographic simulations are necessary to assess their 328	
expected value in absence of adaptive introgression.  329	
 330	
Different types of selection other than selective sweeps may generate genetic patterns that are more 331	
difficult to distinguish from non-selective processes with the approaches described above. 332	
Balancing selection on an introgressed locus, for instance, might go undetected because it would 333	
maintain several variants at intermediate frequency within the recipient population. Such a pattern 334	
can be interpreted as the result of migration-drift equilibrium, unless a direct link has been 335	
established between the locus and a phenotypic trait. Examples of adaptive introgression driven by 336	
balancing selection are the incompatibility locus in Arabidopsis (Castric et al., 2008), skin colour 337	
change in wolves (Anderson et al., 2009; von Holdt et al., 2016) and the HLA locus in humans 338	
(Abi-Rached et al., 2011). Soft-sweeps, fixation of a beneficial allele starting from multiple copies 339	
of it in the population (Hermisson and Pennings, 2005), could also interest introgressed regions. 340	
Typically, when the migration rate is high, the same beneficial allele can enter the recipient 341	
population associated with different genetic backgrounds. This kind of positive selection signature 342	
is difficult to detect because diversity and site frequency spectrum patterns do not change 343	
dramatically as in hard selective sweeps (Hermisson and Pennings, 2017). 344	
 345	
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It should be noted also that inferences of selection based on molecular data only give indirect 346	
evidence of the adaptive value of introgressions, particularly when they target genomic regions with 347	
an unknown contribution to fitness-related traits (e.g. Gagnaire et al., 2009). However, detecting 348	
selection in genic regions linked to specific functions or phenotypes (shown by phenotype-genotype 349	
association analysis for instance) greatly helps the interpretation in terms of adaptation (e.g. 350	
Hufford et al., 2013; Racimo et al., 2015; Rochus et al., 2017). Ultimately, one direct validation of 351	
the adaptive role of introgression is to demonstrate the fitness advantage of the introgressed allele or 352	
trait for the recipient population (e.g. Martin et al., 2006; Whitney et al., 2006, 2010, 2015; Figure 353	
4). However, field studies involving phenotypic exploration can be time-consuming and difficult to 354	
implement for most species. 355	
 356	

4. Gene flow in crops: challenges and opportunities  357	
 358	
The domestication process often involves dispersion across long distances and different 359	
environmental conditions, combined with intense selection. Under such a process, multiple 360	
opportunities arise for gene flow with locally adapted cultivated or wild forms (Allaby et al., 2008; 361	
Meyer and Purugganan, 2013). In addition, among domestication characters, genetic divergence 362	
between domesticated and wild relatives is often low and the reproductive barriers narrow (e.g. 363	
Dempewolf et al., 2012). These characteristics make domesticated species likely carriers of 364	
adaptive introgression. 365	
 366	
Thanks to the analysis of genome-wide data, the importance of gene flow in shaping today’s 367	
diversity of domesticated species is becoming evident, particularly in crops. The evolution of two 368	
major cereals, rice and barley, fits a domestication history with frequent gene flow events. In rice, 369	
complex introgressive hybridizations have shuffled the genome of Asian rice, leading to the current 370	
main groups O. sativa japonica and O. s. indica. Surveys indicate that O. s. indica had acquired 371	
major domestication alleles through gene flow from O. s. japonica into the wild progenitor O. 372	
rufipogon, or into putative proto-indica populations (Choi et al., 2017). White pigmentation, 373	
aromatic fragrance and glutinous starch are some of the phenotypic traits involved in allele transfers 374	
driven by strong directional selection (Huang et al., 2012; Kovach et al., 2009; Olsen and 375	
Purugganan, 2002). In barley, the genome of domesticated forms appears to be a mosaic of 376	
fragments originating from different cultivated and wild populations across the Fertile Crescent 377	
(Pankin and von Korff, 2017; Poets et al., 2015). Introgression from local wild relatives has also 378	
been shown in grapes (Myles et al. 2011), apples (Cornille et al., 2012) and olives (Diez et al., 379	
2015). Similarly, gene flow events have occurred in domesticated animals. For instance, Rochus et 380	
al. (2017) analyzed the diversity of French sheep breeds to find that one mutation in a genomic 381	
region related to milk production and growth originated in a southern breed and was introgressed 382	
and selected for in northern breeds.  383	
 384	
While adaptive introgression of agronomic traits between different breeds or cultivars may occur 385	
relatively easily under similar human selective pressures, the transfer of beneficial traits from wild 386	
relatives seems more difficult, since selection in natural environments usually goes in the opposite 387	
direction from selection in agricultural environments. Crop-wild admixed plants (weeds) may tend 388	
to be phenotypically intermediate and thus to have unwanted wild-type traits (e.g. asynchrony of 389	
phenology changes, multiple branching, seed shattering, noxious or unpalatable compounds). To 390	
understand how wild alleles can enter the crop gene pool by spontaneous gene flow, Jarvis and 391	
Hodgkin (1999) point to the necessity of understanding how farmers’ taxonomy and practices (i.e. 392	
seed management, weeding, etc.) are applied to the new phenotypic variations resulting from 393	
hybridization. Barnaud et al. (2009) investigated criteria used by farmers to characterize 394	
morphotypes of domesticated and weedy sorghum. While strong counter-selection was performed 395	
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against weedy types, they found that progenies of weedy types could be misidentified as cultivated 396	
forms, thus favoring wild-to-crop introgression. For pearl millet, it has been suggested that 397	
incomplete weeding and singling allow hybridization and introgression to occur freely and 398	
extensively (Couturon et al., 1997; Robert et al., 2003, Mariac et al. 2006), favoring the 399	
maintenance of wild genetic material in the cultivated gene pool. In addition, weedy types can play 400	
an important role for food security. In many cases, weedy types are early maturing plants and they 401	
are used under harsh conditions or between main harvests. In Sudan, farmers recognize a crop-wild 402	
hybrid of sorghum, which is allowed to grow and is selectively harvested in bad years (Ejeta and 403	
Grenier, 2005). Hybrids can be harvested during periods of scarcity in the case of pearl millet too 404	
(Couturon et al., 2003; Mariac et al., 2006) or in common bean (de la Cruz et al., 2005; Zizumbo-405	
Villarreal et al., 2005). Some studies have also documented farmers practicing conscious directional 406	
selection towards evolution and changes of cultivated phenotypes by using the diversity available in 407	
the wild relatives. For instance, in Benin, farmers voluntarily grow wild and hybrid yams 408	
(Dioscorea spp.) in their fields to increase diversity (Scarcelli et al., 2006).   409	
 410	
All in all, this demonstrates how farmer practices can maintain and, in some cases, actively favor 411	
wild-to-crop introgression. This can be particularly important for crop adaptation, since the trade-off 412	
of strong human selection for certain traits has been the loss of diversity for other important adaptive 413	
traits (e.g. Zheng et al., 2008). Notably, traits involved in climate and soil adaptation, or resistance to 414	
pests and diseases, display much greater diversity in wild species than in domesticated species 415	
(Dempewolf et al., 2017; Guarino and Lobell, 2011; Hajjar and Hodgkin, 2007). Therefore, favoring 416	
introgression from wild relatives may be an indirect way for farmers to introduce lost or new 417	
adaptations. A compelling example of the potential adaptive outcome of wild-to-crop introgression is 418	
the adaptation to altitude acquired by highland maize landraces. Maize was domesticated from low 419	
altitude wild populations of teosinte (Zea mais ssp.parviglumis) and colonized high altitude 420	
environments (Matsuoka et al., 2002) where a different wild relative is found (Z. m. mexicana). 421	
Hufford et al. (2013) performed genomic scans on Mexican sympatric populations of maize and 422	
mexicana and found nine genomic regions of introgression of mexicana into maize landraces.  These 423	
regions, related to adaptive traits, such as the quantity of leaf macrohairs and pigmentation intensity, 424	
could have helped maize to adapt to high altitude (Hufford et al., 2013). Recent study suggested that 425	
wild-to-crop gene flow significantly genetic diversity and possibly lead to introgressions of local 426	
adaptation in pearl millet, a major staple African crops (Burgarella et al., in press). 427	
 428	
The transferal of wild traits into a cultivated genetic background through classic breeding programs 429	
has so far been limited to a narrow range of traits (Warschefsky et al., 2014), e.g. disease resistance in 430	
cassava (Bredeson et al., 2016) and tomatoes (Lin et al., 2014). One main difficulty for conventional 431	
breeding in introgressing wild genes into cultivated gene pools is that wild diversity is mostly 432	
unexplored and desirable characters have still to be identified. Furthermore, wild species have many 433	
traits associated with poor agronomic performance (e.g. low yields, seed shattering, small seed or 434	
fruit size). Thus, several backcrosses are necessary to dilute the unwanted diversity associated with 435	
wild introgression (Dempewolf et al., 2017) or to produce specifically design lines in which small 436	
regions of the wild relative are introduced (e.g. Fonceka et al., 2012). We argue that screening the 437	
wild introgression already existing in the cultivated gene pool thanks to natural gene flow may be an 438	
effective strategy to uncover wild diversity relevant for crop adaptation to environmental changes and 439	
to inform new breeding directions. Therefore, research efforts should be devoted to quantifying and 440	
characterizing the extent of such spontaneous wild-to-crop introgression. Two main challenges are 441	
associated with this approach. First one will need to have access to wild “pure” genetic resources, 442	
which highlight the crucial need of wild relative conservation programs. Second, identification of 443	
adaptive introgression in crops might be more challenging because of the low genetic divergence 444	
usually observed between crop species and their wild relatives (as exposed in paragraph 3). However, 445	
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interest in the study of adaptive introgression, notably in humans, means the field is moving fast 446	
towards new analytical approaches designed to identify specific features in genomes (e.g. Racimo et 447	
al., 2017). Of course, the validation of adaptive introgression detected via molecular data should be 448	
validated with classic experiments (Figure 4) to measure the strength of selection in the field and to 449	
assess the biological function of the introgressed alleles (Suarez-Gonzalez et al., 2018; Whitney et al., 450	
2006). Given their adaptation to human-controlled environments, this step seems easier to accomplish 451	
in most crops than in wild species.    452	
 453	
Regarding the introduction or re-introduction of adaptive variation, it might be wondered to what 454	
extent introgression from wild relatives can affect the whole crop genome. Recent studies have 455	
suggested that introgression can be favored at genome-wide level when it reduces the genetic load 456	
of the recipient species (Sankararaman et al., 2014; Wang et al., 2017). Genetic load refers to the 457	
genome-wide accumulation of weakly deleterious alleles that reduces its fitness (Crow, 1958). 458	
Given the repeated selection rounds associated with the domestication process, crop species 459	
experience a reduction in the effective population size and in effective recombination, which in turn 460	
reduces the efficacy of purifying selection in removing deleterious alleles and increases the effect of 461	
hitchhiking selection (i.e. deleterious variants increase in frequency because they are linked to 462	
selected beneficial alleles). Inbreeding, which is commonly practiced to fix traits of interest, also 463	
slightly contributes to fixing deleterious alleles. In crops, a reduction in fitness is expected 464	
compared to the wild progenitor, the so-called ‘cost of domestication’ (Lu et al., 2006). A greater 465	
genetic load than in the wild counterpart was observed in several domesticated species such as rice 466	
(Lu et al., 2006), maize (Wang et al., 2017), sunflower (Renaut and Rieseberg, 2015), dogs 467	
(Marsden et al., 2016) and horses (Schubert et al., 2014). Since wild species are expected to have a 468	
lower genetic load than cultivated species, spontaneous introgression from wild species could be 469	
favored, because it alleviates the domestication cost, even in the absence of strong directional 470	
selection on the introgressed alleles. Recent findings in maize support this expectation, as negative 471	
correlations were observed between wild introgression and genetic load (Wang et al. 2017). 472	
 473	
Despite the potential benefits of wild introgression for crops (i.e. acquisition of specific adaptations 474	
and reduction of genetic load), genomic heterogeneity is expected in terms of permeability to gene 475	
flow. In particular, regions involved in major domestication characters are expected to be under 476	
strong selection, thereby acting as barriers to gene flow (so-called “islands of domestication”, Frantz 477	
et al., 2015). Thus, the probability of introgression along the crop genome largely depends on the 478	
number and distribution of domestication loci. Loci responsible for domestication traits have been 479	
identified in a number of crops (Doebley et al., 2006; Gross and Olsen, 2010; Meyer et al., 2012), but 480	
knowledge is far from complete. Up to now, research on the genetic architecture of domestication 481	
traits indicates that domestication loci are limited to a few genomic regions in most studied species 482	
(Burger et al., 2008; Glémin and Bataillon, 2009) and may not be a major obstacle to introgression in 483	
the rest of the genome. The efficiency of counter-selection would thus depend on the genetic distance 484	
between the introgressed fragment and the domestication genes, which is determined by the extent of 485	
local linkage disequilibrium. According to this expectation, Hufford et al. (2013) identified cold spots 486	
and hotspots of wild introgression in the maize genome. Interestingly, cold spots were significantly 487	
enriched in domestication genes (Hufford et al., 2013). 488	

 489	

5. Conclusion and prospects 490	
 491	
Today’s access to both phenotypic and genomic information provides the opportunity to further 492	
investigate the role and mechanism of adaptive introgression in crops. From an applied point of 493	
view, it can be a fair source of adaptation to be exploited in breeding programs. Along human 494	
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migrations, crops had the opportunity to exchange with multiple wild populations. These exchanges 495	
might have resulted in the introgression of local adaptations that have already passed the 496	
reproductive and the “agronomic” barriers. Identifying such local adaptive introgression, combined 497	
with complementary tools (e.g. climatic modeling), could be an efficient way of adapting crops to 498	
the predicted new environmental conditions. We therefore think there is a need to emphasize the 499	
importance of conserving wild genetic resources and jointly investigating wild and crops relatives. 500	
This research will also allow advances on key questions with broader prospects, such as 501	
introgression rates and genome permeability (Hufford et al., 2013; Scascitelli et al., 2010). Genomic 502	
scan approaches could be complemented by the development of recombinant inbred line (RILs) 503	
wild-crop hybrid populations (e.g. Fonceka et al., 2012; Nice et al., 2016). Such pre-breeding 504	
material can be exchanged and tested in different environments, which would also help to answer 505	
the other side of the coin, the risk of transgene escapes in the case of crop-to-wild gene flow. 506	
 507	

508	
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Table legends 526	
Table 1.  Summary of studies reviewed. Species names for donor and recipient taxa are listed, as 527	
well as the type of data and methods used for 1) detection of the introgression and 2) detection of 528	
the selection. “Genomic data” term include s whole-genome sequences or candidates genes 529	
sequencing. “Genetic data refers to molecular markers such as QTL or SSR. 530	
 531	
 532	
 533	
 534	
Figure legends 535	
 536	
Figure 1. Genomic signature of adaptive introgression. A genomic fragment is transferred from 537	
the donor to the recipient population via gene flow and subsequent backcrosses. If it enhances the 538	
fitness of the recipient population, it experiences positive selection and rises in frequency.  539	
.  540	
Figure 2. Approaches to detect introgression (a, b) and adaptive introgression (c). Regions of 541	
donor origin in the recipient genome can be revealed by performing local ancestry analyses (a) and 542	
comparisons of donor-recipient differentiation levels (b). Introgressed fragments will show a larger 543	
proportion of ancestry in the donor population (a. in black) and lower differentiation (b. arrow) than 544	
non-introgressed recipient genomic regions. Positive selection increases the frequency of the donor 545	
allele and the neutral variants physically linked to it. The result is a local higher number and 546	
frequency of alleles shared by donor and recipient populations and absent in other non-introgressed 547	
populations (c. arrow).  548	
 549	
Figure 3. Hybridization and incomplete lineage sorting (ILS) revealed by molecular 550	
phylogenetics. Top: evolutionary process. The species (or population) tree is represented by the 551	
grey area. The dotted line represents a single gene genealogy. Bottom: Coalescent tree inferred for 552	
the gene. (a) Congruent gene genealogy with species/population tree; (b) ILS: ancestral 553	
polymorphism is maintained before the divergence between A and B, so that B shares the allele T 554	
with C and not with A; (c) Introgression: B receives the allele T from C by gene flow. In the case of 555	
ILS and introgression, the gene genealogy is incongruent with the species/population tree. 556	
 557	
Figure 4. Direct measure of adaptive introgression. Direct evidence of the adaptive value of the 558	
introgressed fragment (black segment) consists in showing that it confers greater fitness to the 559	
recipient genome. This can be achieved by experimental crosses: introgression without positive 560	
selection on the introgressed allele (A) vs adaptive introgression (B). 561	
 562	
 563	
  564	
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Table 1.  Summary of studies reviewed. Species names for donor and recipient taxa are listed, as well as 996	
the type of data and methods used for 1) detection of the introgression and 2) detection of the selection. 997	
“Genomic data” term include s whole-genome sequences or candidates genes sequencing. “Genetic data 998	
refers to molecular markers such as QTL or SSR. 999	
 1000	

Group	 Donor	 Recipient	 Data	
Method	for	
detection	of	
Introgression	

Method	for	
detection	of	
Selection	

Adaptive	trait	 Publication	

Animal	 Anopheles	
gambiae	 A.	coluzzi	 Genomic	

data	
Diagnostic	
alleles	

Haplotype	based	
test;	Test	for	
temporal	
evolution	of	allele	
frequencies	

Pesticide	
resistance	

Lynd	et	al.	
(2010)	

Animal	 Anopheles	
gambiae	 A.	coluzzi	 Genomic	

data	
Diagnostic	
alleles	

Differentiation	
approach;	
Diversity	statistics	

Pesticide	
resistance	

Norris	et	al.	
(2014)	

Animal	 Drosophila	
yakuba	 D.	santomea	

Genomic	
data	
(mtDNA)	

Genes	
genealogy;	
Isolation	with	
Migration	
model	

Coalescent	
simulations	 na	 Llopart	et	al.	

(2014)	

Animal	 Mus	spretus	 M.	m.	
domesticus	

Genomic	
and	
phenotypic	
data	

Genes	
genealogy;	
Hudson-
Kreitman-
Aguade	test	

Differentiation	
approach;	Fitness	
measures	

Pesticide	
resistance	

Song	et	al.	
(2011)	

Animal	 Mus	spretus	 M.	m.	
domesticus	

Genomic	
data	

Genes	
genealogy	 XP-CLR	 Pesticide	

resistance	
Liu	et	al.	
(2015)	

Animal	 Mus	musculus	
musculus	

M.	m.	
domesticus	

Genomic	
data	

Local	ancestry	
inference		

XP-CLR;			
Differentiation	
approach;		
Coalescent	
simulations	

Genetic	disease,	
alpha-amylase	
genes	

Staubach	et	
al.	(2012)	

Animal	 Onchorhynchus	
mykiss	 O.	clarkii	lewisi	 Genomic	data	

Diagnostic	
alleles	

Heterogeneity	test	
of	Long	(1991)	 Fecondity	 Hohenlohe	

et	al.	(2013)	

Animal	
Ambystoma	
tigrinum		
mavortium	

A.	californiense	 Genomic	data		
Diagnostic	
alleles	

Heterogeneity	test	
of	Long	(1991)	 na	 Fitzpatrick	

et	al.	(2009)	

Animal	 Sus	sp.	 Sus	scrofa	
domesticus	

Genomic	
data	

Genes	
genealogy	

Differentiation	
approach	

Highland	
adaptation	

Ai	et	al.	
(2015)	

Animal	 Sus	celebensis	 Sus	scrofa	
domesticus	

Genomic	
data	

Genes	
genealogy;	
Differentiation	
statistics	

Differentiation	
approach	

Aggressive	
behaviour	

Zhu	et	al.	
(2017)	

Animal	 Canis	lupus	
familiaris	 C.	lupus	lupus	 Genomic	

data	
Genes	
genealogy	

Haplotype	based	
test	

Concealment	
during	predation	

Anderson	et	
al.	(2009)	

Animal	 C.	lupus	lupus		 C.	l.	familiaris	 Genomic	
data	 D	statistic	

Haplotype	based	
test;	
Differentiation	
outlier	approach	

Highland	
adaptation	

Miao	et	al.	
(2016)	

Animal	 Ovies	aries		 Ovies	aries$	 Genomic	
data	

Local	ancestry	
inference;	
Populations	
genealogy	

Differentiation	
outlier	approach	 na	 Rochus	et	al.	

(2017)	

Animal	 Anguilla	rostrata	 A.	anguilla	 Genomic	
data	

Local	ancestry	
inference		

Differentiation	
outlier	approach;	
Allele	frequencies	
outlier	test	

na	 Gagnaire	et	
al	(2009)	
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Animal	 Heliconious	
melpomene	 H.	cydno	clade	 Genomic	

data	

Genes	
genealogy;	
Isolation	with	
Migration	
model,	
Linkage	
Desiquilirium	
analysis	

Not	addressed,	but	
trait	previously	
tested	as	under	
natural	selection	

Wing	pattern	 Pardo-Diaz	
et	al.	(2012)	

Animal	 Heliconious	
melpomene	 H.	beskei	 Genomic	

data	

Gene	
genealogy;	D-
statistic	and	f-
statistics	

Not	addressed,	but	
trait	previously	
tested	as	under	
natural	selection	

Wing	pattern	 Zhang	et	al.	
(2016)	

Human	 Homo	s.	
denisovans	 H.	s.	sapiens	 Genomic	

data	
D	statistic,	S*	
statistic	

Differentiation	
outlier	approach	

Highland	
adaptation	

Huerta	
Sanchez	et	
al.	(2014)	

Human	
Homo	s.	

neandertalensis,	
H.	s.	denisovans	

H.	s.	sapiens	

Genomic	
and	
expression	
data	

Diagnostic	
alleles	

McDonald–
Kreitman	test;	
Haplotype	based	
test;	
Differentiation	
outlier	approach	

Immune	
response	

Deschamps	
et	al.	(2016)	

Human	
Homo	

neandertalensis,	
H.	s.	denisovans	

H.	s.	sapiens	

Genomic	
and	
expression	
data	

Differention	
comparisons;	
Haplotype	
length	vs.	ILS	
(Incomplete	
Lineage	
Sorting)	

Differentiation	
outlier	approach;	
Gene	expression;	
Genotype-
Phenotype	
association	

Immune	
response	

Danneman	
et	al.	(2016)	

Human	
Homo	

neandertalensis,	
H.	s.	denisovans	

H.	s.	sapiens	 Genomic	
data	

f	statistics,	
S*statistic	

Coalescent	
simulations		

Immune	
response	and	
metabolism	

Vernot	et	al.	
(2016)	

Human	
Homo	

neandertalensis,	
H.	s.	denisovans	

H.	s.	sapiens	 Genomic	
data	

Diagnostic	
alleles	

Coalescent	
simulations		

Immune	
response,	
defense,	
regulatory	
regions,	
pigmentation	

Gittelman	et	
al.	(2016)	

Human	 Homo	s.	
neandertalensis	 H.	s.	sapiens	 Genomic	

data	
Genes	
genealogy	

Allele	frequencies	
outlier	test	

Immune	
response	

Mendez	et	
al.	(2012)	

Human	 Homo	s.	
neandertalensis	 H.	s.	sapiens	 Genomic	

data	
Diagnostic	
alleles	

Coalescent	
simulations;		
Haplotype	based	
test	

Immune	
response	

Sams	et	al.	
(2016)	

Human	 Homo	s.	
neandertalensis	 H.	s.	sapiens	 Genomic	

data	
Diagnostic	
alleles	

Differentiation	
outlier	approach;	
Haplotype	based	
test;	XP-CLR;	
Coalescent	
simulations	

Immune	
response	

Quach	et	al.	
(2016)	

Human	 H.	s.	sapiens	 H.	s.	sapiens	 Genomic	
data	

	Population	
genealogy;	D	
statistic	and	f	
statistics	

Allele	frequencies	
outlier	test	

Highland	
adaptation	

Jeong	et	al.	
(2014)	

Plant	 Arabidopsis	
lyrata	 A.	arenosa	 Genomic	

data	 f	statistics	 Differentiation	
outlier	approach	

Serpentine	
syndrome	

Arnold	et	al.	
(2016)	

Plant	 Helianthus	debilis	 H.	annuus	 Phenotypic	
data	

Experimental	
hybrid	
populations	

Common	garden	
experiments	-	
Fitness	measures	

Herbivory,	
drought	

Whitney	et	
al.		(2006,	
2010)	

Plant	 Helianthus	debilis	 H.	annuus	
Genomic	
and	
phenotypic	

Experimental	
hybrid	
populations	

Genotype-
Phenotype	
association	-	

Number	of	seeds	
and	pollen	
export	

Whitney	et	
al.	(2015)	
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data	 Fitness	measures	

Plant	 Iris	fulva	 I.	brevicaulis	

Genomic	
and	
phenotypic	
data	

Experimental	
hybrid	
populations	

Genotype-
Phenotype	
association	-	
Fitness	measures	

Flood	tolerance	 Martin	et	al.	
(2006)	

Plant	 Populus	
balsamifera	 P.	trichocarpa	

Genomic,	
expression	
and	
phenotypic	
data	

Local	ancestry	
inference		

Diversity	
statistics;	
Genotype-
Phenotype	
association	

Light	response	
Suarez-
Gonzalez	et	
al.	(2016)	

Plant	 Zea	mays	
mexicana	 Z.	m.	mays	 Genomic	

data	
Local	ancestry	
inference		

Genotype-
Environment	
association	

Highland	
adaptation	

Hufford	et	
al.	(2013)	

Plant	 Oryza	sativa	
japonica	

Oryza	sativa	
indica	

Genomic	
data	

Diagnostic	
alleles	

Haplotype	based	
test	 Fragrance	 Kovach	et	

al.	(2009)	

Plant	 Senecio	squalidus	 S.	vulgaris	 Genomic	
data	

Diagnostic	
alleles	

not	adressed	but	
strongly	suggested	

Flower	
asymmetry	

Kim	et	al.	
(2008)	

Plant	 Arabidopsis	
halleri	 A.	lyrata	 Genomic	

data	

Differentiation	
comparisons;	
Isolation	with	
Migration	
model	

not	adressed	but	
strongly	suggested	

Pistil	self-
incompatibility		

Castric	et	al.	
(2008)	
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