Abstract
The connectivity and information pathways of visual cortex are well studied, as are observed physiological phenomena, yet a cohesive model for explaining visual cortex processes remains an open problem. For a comprehensive understanding, we need to build models of the visual cortex that are capable of robust real-world performance, while also being able to explain psychophysical and physiological observations. To this end, we demonstrate how the Recursive Cortical Network (George et al., 2017) can be used as a computational model to reproduce and explain subjective contours, neon color spreading, occlusion vs. deletion, and the border-ownership competition phenomena observed in the visual cortex.
Footnotes
{alex{at}vicarious.com, swaroop{at}vicarious.com, miguel{at}vicarious.com, wolfgang{at}vicarious.com, dileep{at}vicarious.com}