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Abstract 

Motivation: Quality of gene expression analyses using de novo assembled transcripts in species 

experienced recent polyploidization is yet unexplored.  

Results: Five plant species with various polyploidy history were used for differential gene 

expression (DGE) analyses. DGE analyses using putative genes inferred by Trinity performed 

similar to or better than Corset and Grouper in precision, but lower in sensitivity. In species that 

lack polyploidy event in the past few million years, DGE analyses using de novo assembled 

transcriptome identified 50–76% of the differentially expressed genes recovered by mapping 

reads to the reference genes. However, in species with more recent polyploidy event, the 

percentage decreased to 7–30%. In addition, 7–89% of differentially expressed genes from de 

novo assembly are contaminations. Gene co-expression network analyses using de novo 

assemblies vs. mapping to the reference genes recovered the same module that significantly 

correlated with treatment in one of the five species tested. 

Availability and Implementation: Commands and scripts used in this study are available at 

https://bitbucket.org/lychen83/chen_et_al_2018_benchmark_dge/; Analysis files are available at 

Dryad doi: XXXXXX. 

Contact: lychen83@qq.com 

Supplementary information: Supplementary data are available at Bioinformatics online 

 

1 Background 

With decreasing sequencing cost, de novo assembled transcriptomes have been increasingly used 

for exploring gene space and gene expression in diverse species without reference genome 

(Misof et al., 2014; Heyduk et al. 2018). This approach has been especially valuable in plants, 
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where genome sizes are relatively large compared to fungi or animals. Because of active 

development of sequencing platforms and de novo assembly tools, de novo assembled 

transcriptomes can recover up to 75% of genes in plant genomes (Honaas et al., 2016) and 78% 

in animals (Carruthers et al., 2018). The improved coverage and accuracy make downstream 

analyses, such as differential gene expression, phylotranscriptomics, and gene co-expression 

networks possible based on de novo transcriptome assemblies.  

Despite the improvements, key issues still remain. These include clustering assembled 

transcripts into putative genes, removing redundant transcripts that are often assembly artifacts, 

and obtaining a representative transcript for each putative gene. These steps are important 

because differential gene expression (DGE) analysis is more accurate and interpretable than 

differential transcript expression (DTE) analysis (Soneson et al., 2015; Davidson and Oshlack, 

2014). Several strategies have been proposed to cluster assembled transcripts to putative genes. 

De novo transcriptome assemblers such as Trinity (Grabherr et al., 2011) and Oases (Schulz et 

al., 2012) cluster transcripts into putative genes based on de Bruijn graph structure during 

assembly. On the other hand, assembler-independent clustering approaches, such as CD-HIT-

EST (Li and Godzik, 2006), Corset (Davidson and Oshlack, 2014) and Grouper (Malik et al., 

2018) allow transcripts from any source to be clustered after the assembly stage. Previous 

benchmark studies comparing transcript clustering methods yielded contradictory results. For 

example, the performances of CD-HIT-EST and Corset in Davidson and Oshlack (2014) and 

Srivastava et al. (2016).  

In addition to the conflicting results, most benchmark studies of DGE analysis using de 

novo assembled transcriptome used data from animals and fungi with only a few using plants 

(e.g. Wang and Gribskov, 2017; Malik et al., 2018). In addition, previous studies have avoided 
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species with recent polyploidy history. Recent comparative genomic and transcriptomic analyses 

have revealed occurrence of many ancient and more recent whole genome duplication events in 

insects (Li et al. 2018), vertebrates (Berthelot et al. 2014), fungi (Marcet-Houben and Gabaldón, 

2015), and much more frequently in plants (Lee et al., 2017). The timing of the last round of 

polyploidization can impact de novo transcriptome assembly and any downstream analysis 

(Nakasugi et al., 2014). However, to what extent the impact remains to be quantified. 

With the further decrease in costs for transcriptome sequencing, gene co-expression 

network analysis has been gaining popularity in the past few years. The analysis was used to 

identify genes associated with traits such as disease, metabolites, and stress response (Loraine, 

2009; Garcia et al., 2017). With a few exceptions (e.g. Heyduk et al., 2018; Roberts and Roalson, 

2017), the analysis was limited to species with the reference genomes available. The reliability of 

carrying out such co-expression analysis using de novo transcriptome assemblies has never been 

evaluated, limiting our ability to dissect the genetic basis of complex traits in diverse organisms 

without reference genomes. 

Using two species with ancient polyploidy events only, and three with more recent 

polyploidy events, here we evaluate three important issues in downstream analyses of de novo 

assembled transcripts: 1) performance of methods for clustering transcripts into putative genes; 2) 

performance of DGE analyses in polyploid species; and 3) whether gene co-expression networks 

recovered from de novo assemblies are comparable with those recovered from reference-based 

analysis. 
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2 Materials and Methods  

2.1 Data and de novo transcriptome assembly 

In this study we chose five plant species that 1) each has a well-annotated reference genome; 2) 

each has at least 12 publicly available RNA-seq datasets; 3) each data point has at least three 

biological replicates for differential expression analysis; and 4) vary in age of the last polyploidy 

event (Table 1). In total, five species were selected. Both Arabidopsis (Arabidopsis thaliana) and 

grape (Vitis vinifera) are ancient polyploids, with the most recent polyploidy events being 65.5 

and 118 million years ago respectively (Ma; Beilstein et al., 2010; Forest and Chase, 2009; Lee 

et al., 2012). Maize (Zea mays), on the other hand, experienced a more recent polyploidy event 

at 4.8−15.4 Ma (Blanc and Wolfe, 2004; Swigoňová et al., 2004). Rapeseed (Brassica napus) is 

an allotetraploid with the split between the two parental genomes at approximately 2.5 Ma (Arias 

et al., 2014). The common wheat (Triticum aestivum) is an allohexaploid with the split between 

parental genomes at approximately 2 Ma (Middleton et al., 2014). See Supplementary Table S1 

for additional details 

Table 1. Summary of species, RNA-seq datasets, and reference genomes used in this study.  

 

Gb = Gigabase. Ma = Million years ago.  

* Used for evaluating clustering and differential expression analyses but not for gene co-

expression network analyses due to a limited number of treatments. 

** Only used for evaluating gene co-expression network analyses. 
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Non-redundant transcripts (referred to “primary transcripts” in Phytozome), which do not 

include splice variants, were used as “reference genes” for benchmark analyses. To verify the 

polyploidy history for each species, we visualized the distribution of synonymous substitutions 

(Ks) for within-species paralog pairs using reference genes with the script ks_plots.py (Yang et 

al., 2015). Default parameters were used for all analyses throughout this study unless noted 

otherwise. Random sequencing errors were corrected using Rcorrector v.1.0.2 (Song and Florea, 

2015). Sequencing adaptors and low-quality bases were trimmed with Trimmomatic v.0.36 

(Bolger et al., 2014) (TruSeq_adapters:2:30:10 SLIDINGWINDOW:4:15 LEADING:5 

TRAILING:4 MINLEN:80). De novo transcriptome assembly for grape was carried out using 

Trinity v.2.6.5 (Grabherr et al., 2011). The remaining species were assembled by Trinity v.2.6.6 

with minor updates including python-3 compatibility and update to R command execution. 

Given that decontamination and filtering non-coding sequences did not improve DGE 

analyses (Supplementary Methods and Supplementary Table S2 and Fig. S1), these procedures 

were not carried out in remaining species. 

2.2 Clustering transcripts into putative genes 

In this study, “clustering” refers to grouping de novo assembled transcripts that are likely to 

belong to the same gene (Malik et al., 2018). We used four strategies for clustering, Trinity, CD-

HIT-EST, Corset, and Grouper. Trinity cluster information was directly extracted from sequence 

identifiers of assembled transcripts. CD-HIT-EST clusters transcripts by overall similarity. 

Assembled transcripts were clustered using CD-HIT-EST v.4.7 (Li and Godzik, 2006). For 

Corset (Davidson and Oshlack, 2014), reads from each sample were first mapped to assembled 

transcripts using “pseudo-alignment” method Salmon v.0.91 (Patro et al., 2017). Fragment 

equivalence classes generated by Salmon were used as input for Corset v.1.07. Corset groups all 
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transcripts that share one or more reads into a super-cluster, and then use a hierarchical clustering 

algorithm to separate each super-cluster to clusters according to expression level. By doing so 

Corset is capable of teasing apart transcripts from different genes and chimeric transcripts 

(Davidson and Oshlack, 2014). Default parameters of Corset were first used. To prevent 

transcripts within a gene with differential transcript usage from splitting into different clusters, 

the parameter '-D 99999999999' was used. By default, Corset ignores transcripts with less than 

ten reads mapped. We applied the parameter ‘-m 0’ to keep all transcripts. In order to explore the 

potential effect of different alignment tools, alignment method Bowtie v.2.3.4.1 (Langmead and 

Salzberg, 2012) was also used Corset in Arabidopsis. Since Salmon produced comparable 

mapping results to Bowtie2 and is more time and memory efficient (Teng et al., 2016), we 

carried out the read mapping only with Salmon for the remaining four species. Finally, the fourth 

strategy uses fragment equivalence classes from Salmon as input for clustering with Grouper 

v.0.1.1 (Malik et al., 2018). Grouper is similar to Corset except that the former uses the Markov 

cluster algorithm while the latter uses a hierarchical clustering algorithm. 

2.3 Evaluating clustering methods 

To determine the correspondence between assembled transcripts and reference genes, transcripts 

were aligned to reference genes using BLAT v.35 (Kent, 2002). Hits with match length ≥200 bp 

and identity ≥ 98% were considered as positive matches. In cases when a transcript had multiple 

positive matches, the gene with the longest match was kept.  

We evaluated three aspects of the performance of clustering methods. First, we estimated 

total gene coverage. The longest transcript for each cluster was chosen as the representative 

transcript. Total gene coverage (number of reference genes with at least one positive match / 
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total number of reference genes) was calculated after removing chimeric transcripts following 

Yang and Smith (2013). 

Next, we evaluated precision, recall, and correct clusters of clustering de novo transcripts. 

Any two transcripts in the same cluster that each had a positive match to reference genes were 

evaluated for whether they were correctly placed in the same cluster (true positive, TP), correctly 

separated in different clusters (true negative, TN), incorrectly placed in the same cluster (false 

positive, FP), or incorrectly separated in different clusters (false negative, FN; Davidson and 

Oshlack, 2014). Precision = TPs / (TPs + FPs), recall = TPs / (TPs + FNs) (Davidson and 

Oshlack, 2014). F-score, which balances the precision and recall was calculated by 2 × precision 

× recall / (precision + recall) (van Rijsbergen, 1979). In addition, the number of correct clusters 

was calculated for each species. For a cluster to be “correct”, we required all de novo assembled 

transcripts in the cluster best matched to the same reference gene, and the cluster must include all 

transcripts that were best matched to the reference gene. Transcripts failed the above BLAT filter 

were ignored. Therefore, if none of the assembled transcripts within a cluster had a positive 

match to any reference gene, the cluster was ignored for evaluating performance of clustering.  

Last, the impact of clustering approaches in differential expression analyses was 

evaluated by either picking the longest transcript within a cluster to represent a putative gene for 

read mapping, or summarizing all reads mapped to all transcripts in a cluster. Each cluster was 

matched to its corresponding reference gene according to the best match by the majority of its 

transcripts with the same filter as above. When an equal number of transcripts within a cluster 

matched to multiple reference genes, the gene with the longest aligned length was selected. In 

addition to DGE analyses at the gene level, DTE analyses were carried out by mapping reads to 

all transcripts from de novo assembly without taking clusters into consideration. For both 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/380063doi: bioRxiv preprint 

https://doi.org/10.1101/380063
http://creativecommons.org/licenses/by/4.0/


 
 

9

strategies, Salmon was used to quantify expression level. In addition, RSEM v.1.3 (Li and 

Dewey, 2011) with STAR v.2.5.3 (Dobin et al., 2013) were used to quantify expression level in 

grape to explore potential biases from mapping software packages.  

After read mapping, differential expression analyses were conducted using DESeq2 

v.1.20.0 (Love et al., 2014). Tximport v.1.6.0 (Soneson et al., 2015) was used to import 

expression data from Salmon or RSEM to DESeq2. Given that filtering putative genes with low 

expression level only slightly increased precision and recall, but decreased sensitivity 

(Supplementary Methods and results and Supplementary Fig. S1), outputs derived from DESeq2 

without the filtering were used to evaluate clustering for all five species. |log2FoldChange| ≥ 2 

and p-value ≤ 0.05 were used as the criterion of differential expression. DTE analyses using all 

assembled transcripts were carried out using the same settings. 

Differentially expressed genes using de novo assembly (deDEG) were compared against 

analyses based on mapping to the reference genes. If a deDEG matched to a DEG from 

reference-based analysis (refDEG), it was considered as a TP; if matched to a reference gene that 

was not differentially expressed, as a FP. If a transcript was not a deDEG but a refDEG, it was 

considered as a FN; otherwise, if a transcript was neither a reDEG nor a deDEG, it was 

considered as a TN. We only included assembled transcripts that had a positive match to the 

reference genes for counting the number of TPs, TNs, FPs, and FNs. DESeq2 results were sorted 

by p-values, and the transcript with the lowest p-value was ‘unique’ when more than one 

transcript was matched to a reference gene. Precision, recall and F-score for differential 

expression analyses were calculated using unique true positives (UTPs), unique false positives 

(UFPs) and unique false negatives (UFNs) using the same formulas as for evaluating clustering. 

Sensitivity = UTPs / total positives from reference. Unique true positive rate (UTPR) = UTPs / 
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total unique positives from de novo analysis, unique false positive rate (UFPR) = unique false 

positives (UFPs) / total unique negatives from de novo analysis (Fawcett, 2006). Receiver 

operating characteristic (ROC) curve was plotted by using corresponding UFPR and UTPR with 

34 p-values from 0.0 to 1.0. Area under curve (AUC) was calculated by ∑ (UFPRn − UFPRn−1) × 

(UTPRn + UTPRn−1) / 2. When n = 1, UFPRn−1 and UTPRn−1 = 0. For evaluating DGE results 

recovered from summarizing reads to gene level and DTE results, same formulas were used. 

 To explore the composition of all the deDEGs, we aligned them against their 

corresponding reference genomes and annotations using rnaQUAST v.1.5.1 (Bushmanova et al., 

2016) with BLAT (minimum sequence identity = 90%). The deDEGs did not have any match 

were searched against a local NCBI non-redundant protein sequences database (NR; downloaded 

February 1, 2018) using BLASTX in NCBI blast+ v.2.2.29 (Camacho et al., 2009).  

2.4 Gene co-expression network analysis 

Weighted gene co-expression network analysis was conducted using WGCNA v.1.63 

(Langfelder and Horvath, 2008). Reads were mapped to the longest transcript of each Trinity 

cluster using Salmon (Patro et al., 2017). Transcripts per million (TPM) from Salmon were used 

as input for WGCNA. The function goodSamplesGenes in WGCNA was used to detect genes 

and samples with elevated numbers of missing values. Samples for each species were clustered 

using the function hclust. The resulting dendrograms were visualized and outlier samples were 

removed. Gene network for each species was constructed using the function blockwiseModules. 

Minimum module size was set to 30. Treatment information was used as trait data 

(Supplementary Table S1) except wheat, in which the spike complexity data were used as traits 

(Wang et al., 2017). Hub genes were identified with kME >0.9. Modules represented by hub 

genes were correlated with traits, and the P-value was calculated using the function 
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corPvalueStudent. Correlation value ≥0.8 and p-value ≤0.05 were treated as significantly 

correlated. Gene co-expression network analyses were also conducted by mapping to reference 

genes with the same settings. Hub genes from modules recovered from de novo assemblies were 

compared to those from reference genes by BLAT searches. The reference module that contains 

the highest number of genes matched to a de novo module was identified.  

 

3 Results and discussion 

In this study, we tested four strategies of clustering assembled transcripts into putative gene, and 

quantified the performance of these strategies in downstream differential expression analyses. 

We found a consistent trend that when genomes become more complex, the performance of both 

clustering and differential expression analyses become worse, despite datasets from the five 

species were generated using different versions of Illumina HiSeq platforms and the treatments 

and sequencing depths are different. We also found that due to the tendency of Trinity to over 

clustering compared to both Corset and Grouper, clusters produced by Trinity have higher 

precision but lower sensitivity in downstream DGE analyses. CD-HIT-EST, on the other hand, 

performed the worst in all aspects. Co-expression network analysis using assembled transcripts 

recovered similar results compared to reference-based analysis in Arabidopsis, but not in any 

remaining species. 

3.1 De novo transcriptome assembly recovered half to two-thirds of genes in the reference 

genome 

De novo transcriptome assembly using Trinity recovered 63,557, 271,810, 230,920, 318,046 and 

353,181 transcripts for Arabidopsis, grape, maize, rapeseed, and wheat respectively. Of them, 

1.2–8.3% were chimeric. After removing chimeric transcripts, de novo assembly recovered 
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64.1%, 66.5%, 45.8%, 46.6% and 47.4% of genes in the reference genome (Supplementary 

Table S3). When using the longest transcript in each cluster as representative, reference gene 

coverage decreased by approximately 5–10% in Arabidopsis and grape (Supplementary Table 

S3). The reference coverage decreased even more, by 10–20% in maize, rapeseed, and wheat, all 

of which are recent polyploids.  

Ks plots confirmed that both Arabidopsis and grape lack any recent polyploidy event, 

whereas maize, rapeseed, and wheat had recent polyploidy events, with the most recent Ks peaks 

at 0.2 or lower (Supplementary Fig. S2).  

3.2 Grouper and Corset slightly outperformed Trinity in clustering transcripts into 

putative genes, and CD-HIT-EST performed the worst among the four.  

Among the four clustering strategies, CD-HIT-EST recovered the highest numbers of clusters. 

However, it recovered the fewest number and the lowest proportion of correct clusters (Fig. 1 

and Supplementary Table S3). Corset and/or Grouper produced higher numbers of correct 

clusters than Trinity in all five species except grape. The proportion of correct clusters was the 

highest in Arabidopsis, accounting for 51–59% of the evaluated clusters when using Trinity, 

Corset or Grouper. The proportion decreased to 35–50% in grape and further decreased to 

approximately 22% in maize, rapeseed, and wheat (Fig. 1 and Supplementary Table S3). 
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Figure 1. Performance of clustering methods. (a) Number and percentage (above the bars) of 

correct clusters. (b) Evaluating clustering by pairwise combinations of all transcripts in a given 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/380063doi: bioRxiv preprint 

https://doi.org/10.1101/380063
http://creativecommons.org/licenses/by/4.0/


 
 

14 

cluster. Sequence identity thresholds of 0.9 and 0.8 were used for the CD-HIT-EST analyses in 

grape only. 

Among the four clustering methods, Trinity performed the best in recall, whereas CD-

HIT-EST was the worst in recall (Fig. 1b). Grouper is similar or slightly higher in recall but 

lower in precision compared to Corset, consistent with Malik et al. (2018). Corset and Grouper 

had the best balance between precision and recall as shown by F-scores. Given that low recall 

indicates under clustering (splitting transcripts from the same gene to different clusters) and low 

precision indicates over clustering (grouping transcripts from different genes into the same 

cluster; Davidson and Oshlack, 2014), our study shows that Trinity tends to over clustering, 

while Corset, Grouper, and especially CD-HIT-EST tend to under clustering, and the difference 

is increasingly pronounced in more recent polyploids (Fig. 1). 

Among the five species investigated, precision and recall were the highest in Arabidopsis 

with the F score ranging from 0.819 to 0.865 for Trinity, Corset and Grouper, followed by grape 

and maize (Supplementary Table S3). Precision and recall were low in rapeseed and wheat, with 

F scores ranging from 0.498 to 0.567. 

3.3 Clusters generated by Trinity have higher precision but lower sensitivity than those 

from Corset and Grouper in downstream differential gene expression analyses 

Compared to DGE analyses, DTE yielded lower precision, without increasing recall or 

sensitivity (Supplementary Table S4), which is consistent with Davidson and Oshlack (2014). 

The lower precision may come from a low number of UTPs and/or a high number of UFPs. In 

DTE analysis, reads may be ambiguously assigned to multiple transcripts in a gene, leading to 

incorrectly identifying differentially expressed transcripts (Soneson et al., 2015).  
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When representing a gene using the longest transcripts in DGE analysis, Trinity had 

higher precision but lower sensitivity than Corset and Grouper (Supplementary Table S4). Given 

that Trinity tends to over clustering compared to both Corset and Grouper, it produces a smaller 

number of UTPs but a much smaller number of UFPs. For example, in grape, while Corset 

recovered 149 UTPs and 156 UFPs, Trinity recovered 130 UTPs and 70 UFPs. ROC curve 

showed that the AUC value of Trinity was slightly higher than Corset and Grouper, and much 

higher than CD-HIT-EST (Fig. 2c and Supplementary Table S4).  

Alternatively, representing a gene using all transcripts within a cluster by summarizing 

reads to gene level generated slightly different results compared to using the longest transcripts 

as representatives (Supplementary Fig. S3). The two strategies differ in that summation increased 

the recall of Corset and Grouper in grape but decreasing the recall and precision of Trinity in 

rapeseed. This can be explained by Corset and Grouper tend to under clustering, which is similar 

to transcript level analysis. The summation might offset the weakness of under clustering, 

resulted in increasing of recall. On the other hand, Trinity tends to over clustering. The 

summation can result in wrong identification when over clustering, which leads to decrease of 

precision and recall.  

Among the five species, de novo DGE analyses performed the best in Arabidopsis. 

Trinity, Corset and Grouper recovered approximately 74% of the refDEGs of Arabidopsis, and 

FPs accounted for approximately 20% of the deDEGs that could be aligned to reference genes 

(Supplementary Table S4). Performance of de novo DGE analyses in grape is lower than that in 

Arabidopsis. The poorer performance in grape may be attributed to the higher alternative splicing 

rate in grape (30%) compared to Arabidopsis (1.2%; Zhang et al., 2015) and more frequent 
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recent gene duplications in grape as an evident from more paralogs with Ks close to zero 

compared to Arabidopsis (Supplementary Fig. S2).  

DGE analyses performed the worst in rapeseed and wheat, in which Trinity, Corset and 

Grouper recovered 7–30% of the refDEGs, and FPs accounted for >59% of the deDEGs that 

could be aligned to reference genes (Supplementary Table S4). Highly similar homeologs 

produced by the allopolyploidy events led to both low quality of de novo assembly (Gutierrez-

Gonzalez and Garvin, 2017) and clustering (Davidson and Oshlack, 2014). However, we need to 

acknowledge that both rapeseed and wheat have extremely complex genomes. Overall, our 

benchmark study suggested that when the most recent polyploidy event (or split of parental 

lineages in case of allopolyploidy) happened more than a few million years ago, DGE analysis 

using de novo assembled transcriptomes can be reasonably accurate.  

In addition to DGE analysis, clustering is also useful for phylogenomic analysis using de 

novo transcriptome assembly. CD-HIT-EST has been widely used to remove redundancy of de 

novo assembly, e.g. Yang and Smith (2014), which will be further used in orthology inference. 

According to our analysis, Trinity, Corset and Grouper all perform much better than CD-HIT-

EST in the number of correct clusters, precision, and recall. When over clustering and 

erroneously removing genes is a concern, Corset or Grouper performs the best among the four 

for downstream phylogenomic analyses, with the proportion of correct clusters being as high as 

58.9% in Arabidopsis.  
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Figure 2. Performance of clustering methods in differential expression analyses. The longest 

transcript in each cluster was used as the representative and used for read mapping. (a) Recall vs 

 

st 
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precision. (b) Sensitivity vs number of unique false positives. (c) Receiver operating 

characteristic (ROC) curve; values in brackets indicates AUC.  

3.4 Removing contaminated DEGs is important for downstream functional analysis 

Among the five species, Arabidopsis had the highest proportion of TPs among all deDGEs 

(64.9%), followed by Grape and maize, which had 27.2% and 32% of TPs respectively (Fig. 3). 

Rapeseed and wheat, however, both had less than 6.6% of TPs. All five species had 1–252 NR-

annotated deDEGs, which were not annotated by genome annotation, but annotated by 

conspecific sequences in NR. This result is consistent with Wang and Gribskov (2017) that de 

novo assembly is beneficial even when a reference genome is available. All five species also 

have 7.3–89.3% of deDEGs as contamination (Fig. 3), especially rapeseed that was infected by a 

fungus.  

 

Figure 3. Composition of deDEGs recovered using longest transcripts within Trinity 

clusters. Sensitivity of DGE analysis was indicated next to species names. Genome-annotated, 

NR-annotated, and NR-contamination refer to deDEGs that cannot be aligned to any reference 

gene with our stringent BLAT matching criteria, but can be aligned to reference genome and 

genes with rnaQUAST, conspecific sequence(s) from the NR database, and sequence(s) of other 

species in NR respectively. Others includes deDEGs that were mis-assembled (e.g. chimeras), 

deDEGs that cannot be aligned to any reference gene or NR, and deDEGs that aligned to 
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reference genes, but DESeq2 results lack p-values. The star in the pie of Arabidopsis indicates 

genome annotated; the star in the pie of rapeseed indicates NR-annotated. 

Although contamination may not affect the sensitivity, recall, and precision of DGE 

analyses (Supplementary results, Supplementary Table S2, and Supplementary Fig. S1), the 

contaminated DEGs may negatively affect the downstream analyses such as Gene Ontology term 

enrichment. Moreover, it is more efficient to remove contamination from the relatively small 

number of DEGs compared to from sequencing reads or all assembled transcripts. Therefore, we 

recommend verifying the source of DEGs before carrying out further analyses. 

3.5 Gene co-expression network analyses using de novo assembly recovered similar results 

as reference-based analysis in Arabidopsis 

Gene co-expression analysis using de novo assembly of Arabidopsis yielded comparable results 

to the analysis using reference genes. In the remaining four species, however, de novo analyses 

either did not identify any module significantly correlated with the treatment or identified a 

different module compared to reference-based analysis. 

One to two samples for each species were removed given that they were outliers in 

sample dendrograms (Supplementary Fig. S4). Co-expression network analysis using de novo 

assembled transcriptomes recovered 61 modules in Arabidopsis. Among them, one module (the 

“de novo module”) was significantly correlated with the treatment (correlation-value = 0.920, 

and p-value = 3.65E-09; Supplementary Table S5). Reference-based analysis recovered 41 

modules, among which one module (the “reference module”) was significantly correlated with 

treatment (correlation-value = 0.903, and p-value = 5.06E-08). The de novo and reference 

modules included 3619 transcripts and 1527 genes respectively. Among the 3619 transcripts, 

3475 corresponded to 3269 reference genes. Of the 3475 transcripts, 1395 corresponded to 1249 
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genes in the reference module, and the remaining 2080 were not in the same reference module 

(Fig. 4). Among the 2080 transcripts, 4 corresponded to genes in two other reference modules 

but account for only 1.8% and 3.8% of those two modules respectively. 

 

Figure 4. Comparison of the de novo module (dashed line) and the reference module (solid 

line), both of which were significantly correlated with treatment in Arabidopsis. Numbers in 

normal font indicate the number of transcripts, and numbers in italic indicate corresponding 

reference genes. The grey area indicates transcripts that do not have any positive match to 

reference genes. 

 In maize, 163 de novo and 85 reference modules were recovered. One de novo module 

was significantly correlated with the treatment (Supplementary Table S5). The module shared 69 

genes with a reference module that included 223 genes. However, this reference module was 

ranked as the second highest in correlation to treatment. In rapeseed, de novo and reference gene-

based analysis each yielded one module significantly correlated with treatment separately. 

However, the de novo module and reference module did not form a module pair in either species. 

In grape and wheat, de novo based analysis yielded one module significantly correlated with 

treatment or traits separately. However, no module was significantly correlated with treatment or 

traits in reference gene-based analysis.  

 

 in 

9 

-

s. 

or 
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In addition to quality of transcript assembling and putative gene clustering, experimental 

design and the number of datasets are important. None of the datasets we used were initially 

designed for co-expression network analysis except the wheat dataset. Among the five species, 

Arabidopsis is the only one with the recovery stage sampled, in addition to the control and three 

additional time points during stress treatment. In co-expression network analysis, a higher 

number of samples and data points usually lead to more robust and refined results, and at least 20 

samples were recommended by WGCNA (Langfelder and Horvath, 2008). However, publicly 

available RNA-seq datasets with sufficient time points and biological replicates are scarce, and 

we were only able to include 12 samples for both grape and maize. We would like to emphasize 

that with proper experimental design (stress with recovery with a sufficient number of time 

points), and genome with low complexity (e.g. polyploidization not too recent), de novo 

assembled transcriptome can potentially recover the correct module.  

 

4 Conclusion 

Our analyses show that unless the polyploidy event is as recent as a few million years ago or less, 

both DGE and co-expression network analyses can be a powerful tool in diverse organisms 

without reference genomes. By benchmarking performance of four clustering approaches in five 

species of different polyploidy history, we demonstrated that CD-HIT-EST is actually not the 

best for clustering while it is heavily used. We would suggest using Trinity clusters and picking 

longest transcripts for DGE analysis if a study aims to obtain fewer but more reliable DEGs; 

using Corset or Grouper clusters and summarizing reads to gene level for DGE analysis if a 

study aims to obtain a broader list of DEGs. Furthermore, we demonstrated the advantage of 

DGE analysis using assembled transcripts in that it is capable of recovering differentially 
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expressed genes that are missing from the reference genome assembly or annotation. On the 

other hand, the prevalence of contamination in DGE results points to the importance of verifying 

the source of transcripts before carrying out functional annotation and interpreting the results. 

Finally, our analyses highlight the importance of experimental design and a sufficient number of 

data points and biological replicates in co-expression network analysis, especially when a 

reference genome is not available. 

 With the improved sequencing power (e.g. Illumina NovaSeq) and long-read 

transcriptome sequencing (e.g. IsoSeq from PacBio, and Nanopore technologies), gene 

expression analysis, both DGE and co-expression network are expected to rapidly expand 

functional genomic research into diverse organisms with new analytical powers. Our benchmark 

analyses provided the bases for continued phylotranscriptomics, DGE, and gene co-expression 

network analyses in diverse organisms without reference genomes. When combined with a 

phylogenetic sampling of gene expression experiments, the power can be further improved 

(Dunn et al., 2018), leading to the discovery of genes and modules underline evolutionary 

novelties in diverse organisms.  
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