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Abstract 9

As multi-individual genome-wide population-scale data is becoming available, more-complex 10

modeling strategies are needed to quantify the patterns of nucleotide usage and associated 11

mechanisms of evolution. Recently, the multivariate neutral Moran model was proposed. 12

However, it was shown insufficient to explain the distribution of alleles in great apes. Here, we 13

proposed a new model that includes allelic selection. Our theoretical results constitute the 14

basis of a new Bayesian framework to estimate mutation rates and selection coefficients from 15

population data, which was employed to quantify the patterns of genome-wide GC-biased gene 16

conversion in great apes. Importantly, we showed that great apes have patterns of allelic 17

selection that vary in intensity, a feature that we correlated with the great apes’ distinct 18

demographies. We also demonstrate that the AT/GC toggling effect decreases the probability 19

of a substitution, which promotes more polymorphisms in the base composition of great ape 20

genomes. We assessed the impact of CG-bias in molecular analysis and we found that mutation 21

rates and genetic distances are estimated under bias when gBGC is not properly accounted. 22

Our results stress the need for gBGC-aware models in population genetics and phylogenetics. 23

Keywords: Moran model, boundary mutations, allelic selection, great apes, GC-bias, gBGC 24
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1 Introduction 25

The field of molecular population genetics is currently been revolutionized by progress in data 26

acquisition. New challenges are emerging as new lines of inquiry posed by increasingly large 27

population-scale sequence data (Casillas and Barbadilla, 2017). Mathematical theory 28

describing population dynamics has been dormant since the early days of population genetics 29

(e.g. Fisher (1930); Wright (1931); Moran (1958); Kimura (1964)), but now that data is 30

available to perform statistical inference, many models have been revisited. Recently the 31

multivariate Moran model with boundary mutations was developed and applied to exome-wide 32

allele frequency data from great ape populations. However, drift and mutation are not fully 33

sufficient to explain the observed allele counts (Schrempf and Hobolth, 2017). It was 34

hypothesized that other forces, such as directional selection and GC-biased gene conversion 35

(gBGC), may also play a role in shaping the distribution of alleles in great apes. 36

Directional selection and gBGC have different causes but similar signatures: under directional 37

selection, the advantageous allele increases as a consequence of differences in survival and 38

reproduction among different phenotypes; under gBGC, the GC alleles are systematically 39

preferred. gBGC is a recombination-associated segregation bias that favors GC-alleles (or 40

strong alleles, hereafter) over AT-alleles (or weak alleles, hereafter) during the repair of 41

mismatches that occur within heteroduplex DNA during meiotic recombination (Marais, 42

2003). The process of gBGC was studied in several recent publications (e.g. Webster et al. 43

(2006); Escobar et al. (2011); Pessia et al. (2012); Serres-Giardi et al. (2012); Galtier et al. 44

(2018)), but its impact was mainly studied in mammalian genomes (Duret and Galtier, 2009; 45

Romiguier et al., 2010). Apart from some studies in human populations (Katzman et al., 2011; 46

Glémin et al., 2015), a population-level perspective of the intensity and diversity of patterns of 47

gBGC among closely related populations is still lacking. 48

Several questions remain open regarding the tempo and mode of gBGC evolution. The effect 49

of demography on gBGC is still controversial. While theory and some empirical studies 50

advocate a positive relationship between the effective population size and the intensity of 51

gBGC (Nagylaki, 1983; Glémin et al., 2015), Galtier et al. (2018) failed to detect such 52

relationship. Another aspect that is not completely understood is the impact of GC-bias on 53

the base composition of genomes (Phillips et al., 2004; Romiguier et al., 2013). In particular, 54

the individual and joint effect of gBGC and mutations shaping the substitution process 55

remains elusive. Here, we address these questions by revisiting the great ape data 56

(Prado-Martinez et al., 2013) with a Moran model that accounts for allelic selection, which in 57

principle may be able to capture both, episodes of directional selection and gBGC. 58
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The Moran model (Moran, 1958) has a central position describing populations’ evolution: it 59

models the dynamics of allele frequency changes in a finite haploid population. Recently, an 60

approximate solution for the multivariate Moran model with boundary mutations (i.e. low 61

mutation rates) was derived (Schrempf and Hobolth, 2017). In particular, the stationary 62

distribution was shown useful to infer population parameters from allele frequency data (De 63

Maio et al., 2015; Schrempf et al., 2016; Schrempf and Hobolth, 2017). Here, we present the 64

Moran model with boundary mutations and allelic selection, derive the stationary distribution, 65

and we build a Bayesian framework to estimate population parameters (base composition, 66

mutation rates, and selection coefficients) from population data. 67

Furthermore, our application to great apes shows that most great apes have patterns of 68

GC-bias consistent with gBGC. Our results suggest further that demography has a major role 69

in determining the intensity of gBGC among great apes, as the intensity of allelic selection 70

among the great ape populations significantly correlates with their effective population size. 71

We also show that not accounting for GC-bias may considerably distort the reconstructed 72

evolutionary process, as mutation and substitution rates are estimated under bias. 73

2 Methods 74

2.1 The multivariate Moran model with allelic selection 75

We define the multivariate Moran model with boundary mutations and allelic selection 76

following the terminology proposed by Vogl and Bergman (2015) and Schrempf and Hobolth 77

(2017). 78

Consider a haploid population of N individuals and a single locus with K alleles: i and j are 79

two possible alleles. The evolution of this population in the course of time is described by a 80

continuous-time Markov chain with a discrete character-space defined by N and K, each of 81

which represents a specific assortment of alleles. Two types of states can be defined: if all the 82

individuals in a populations have the same allele, the population is monomorphic {i}, i.e. the 83

N individuals have the allele i; differently, if two alleles are present in the population, the 84

population is polymorphic {ni, (N − n)j}, meaning that n individuals have the allele i and 85

(N − n) have the allele j. 86

The trajectory of alleles is defined based on the rate matrix Q. Time was accelerated by a 87

factor of N , and therefore instead of describing the Moran dynamics in terms of Moran events 88

(Moran, 1958), we developed a continuous version in which the time is measured in coalescent 89

time. 90
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Drift is defined according to the neutral Moran model: the transition rates of the allelic 91

frequency shifts, only depend on the allele frequency and are therefore equal regardless the 92

allele increases or decreases in the population (Durrett, 2008). 93

q{ni,(N−n)j}→{(n+1)i,(N−n−1)j} = q{ni,(N−n)j}→{(n−1)i,(N−n+1)j} =
n(N − n)

N
(1)

We accommodated mutation and selection in the framework of the neutral Moran model by 94

assuming them to be decoupled (Baake and Bialowons, 2008; Etheridge et al., 2010). 95

Mutation is incorporated based on a boundary mutation model, in which mutations only occur 96

in the boundary states. The boundary mutations assumption is met if the mutation rates µij 97

are small (and N is not too large); more specifically, Schrempf et al. (2016) established that 98

Nµij should be lower than 0.1, by comparing the expectations of the diffusion equation with 99

the polymorphic diversity under the Moran model. In fact, most eukaryotes fulfill this 100

condition (Lynch et al., 2016). Another assumption of our boundary mutation model is that 101

the polymorphic states can only be biallelic. However, this assumption is not a significant 102

constraint as tri-or-more allelic sites are rare for low mutation rates. 103

We employed the strategy used by Burden and Tang (2016) and separated our model into a 104

time-reversible and a flux part. We wrote the mutation rates as the entries of a specific 105

mutation model, the general time-reversible model (GTR) (Tavaré, 1986): µij = ρijπj , where ρ 106

represents the exchangeabilities between any two alleles and π the allele base composition 107

(rate matrix (2)). Here, we restricted ourselves to the GTR, as this model simplifies obtaining 108

formal results (Burden and Tang, 2016). Because π has K − 1 free parameters and ρ includes 109

the exchangeabilities for all the possible pairwise combinations of K alleles, we ended up 110

having K(K + 1)/2− 1 free parameters in the GTR-based boundary mutation model. 111

We modeled allelic selection by defining K − 1 relative selection coefficients σ: an arbitrary 112

selection coefficient is fixed to 0. Defining the fitness as the probability that an offspring of 113

allele i is replaced with probability 1 + σi (Durrett, 2008), we can formulate the component of 114

allelic selection alongside with drift, and thus among the polymorphic states (rate matrix (2)). 115

Altogether, the instantaneous rate matrix Q of the multivariate Moran model with boundary 116

mutations and allelic selection can be defined as: 117

q{ui,(N−u)j}→{vi,(N−v)j} =


µij = ρijπj u = N, v = N − 1
µji = ρijπi u = 0, v = 1
n
N (N − n)(1 + σi) u = n, v = n+ 1, 0 < n < N
n
N (N − n)(1 + σj) u = n, v = n− 1, 0 < n < N
0 |u− v| > 1

, (2)
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where u and v represent a frequency change in the allele counts (though N remains constant). 118

The diagonal elements are defined by the mathematical requirement such that the respective 119

row sum is 0. 120

As the parameters of the population size, mutation rate and selection coefficients are confined, 121

it is possible to scale down them to a value small value N while keeping the overall dynamics 122

unchanged. The virtual population size N becomes a parameter describing the number of bins 123

the allele frequencies can fall into. As a result, we can think of N either as a population size or 124

a discretization scheme. 125

2.2 The stationary distribution 126

The stationary distribution of a Markov process can be obtained by computing the vector p 127

satisfying the condition φQ = 0 (File S1). φ is the normalized stationary vector and has the 128

solution: 129

φx =

{
πi(1 + σi)

N−1k−1 if x = {i}
πiπjρij(1 + σi)

n−1(1 + σj)
N−n−1 N

n(N−n)k
−1 if x = {ni, (N − n)j} . (3)

k is the normalization constant 130

k =
∑
i∈A

πi(1 + σi)
N−1 +

∑
ij∈AC

N−1∑
n=1

πiπjρij(1 + σi)
n−1(1 + σj)

N−n−1 N

n(N − n)
, (4)

where A is the alphabet of the K alleles {a1, . . . , aK}, representing the monomorphic states, 131

and AC all the possible pairwise combinations of A representing the K(K − 1)/2 types of 132

polymorphic states a1a2, a1a3, ..., aK−1aK . 133

2.3 Expected number of Moran events 134

From Q and φ, we can compute the expected number of Moran events (mutations, drift and 135

selection). These are the expected state-changes per unit of time for the multivariate Moran 136

model with selection (File S2) 137

dS(t = 1) = dS =
2

k

∑
ij∈AC

N∑
n=1

πiρijπj(1 + σi)
n−1(1 + σj)

N−n. (5)

The quantity (5) can also be interpreted as the overall rate of the model. The expected 138

number of Moran events for the neutral model can be easily calculated by letting σ → 0. To 139

compare the Moran distance dS with the standard models of evolution, we recalculated the 140

Moran distance to only account for substitutions events d∗S : we corrected dS by the probability 141

of a mutation and a subsequent fixation under the Moran model (File S3) 142

d∗S =
2

k

∑
ij∈AC

πiπjρij(1 + σi)
N (1 + σj)

N∑N
n=1(1 + σj)n(1 + σi)N−n+1

. (6)
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2.4 Bayesian inference with the stationary distribution 143

We can define a likelihood function for the stationary distribution for a set of S independent 144

sites in N individuals by taking the product of p over the number of monomorphic and 145

polymorphic sites: #{i} and #{ni, (N − n)j}, respectively 146

p(x|π,ρ,σ) =
S∏

s=1

p(xs) = k−S
∏
i∈A

[
πi(1 + σi)

N−1]#{i}×
∏

ij∈AC

N−1∏
n=1

[
πiπjρij(1 + σi)

n−1(1 + σj)
N−n−1 N

n(N − n)

]#{ni,(N−n)j}
.

(7)

We employed a Bayesian approach: we define the prior distributions independently, a Dirichlet 147

prior for π and an exponential prior for ρ and σ; a Dirichlet and multiplier proposals were set 148

for the aforementioned parameters with tuning parameters guaranteeing a target acceptance 149

rate of 0.234. We employed the Metropolis-Hastings algorithm (Hastings, 1970) for each 150

conditional posterior in a Markov chain Monte Carlo sequence to obtain random samples from 151

the posterior. The algorithm was coded in the R statistical programing language (R Core 152

Team, 2015): the packages MCMCpack and expm were integrated in our code to obtain samples 153

from the Dirichlet density and to compute the matrix exponential, respectively (Martin et al., 154

2011; Goulet et al., 2017). The R script can be assessed in the GitHub branch 155

pomo-dev/pomo selection. 156

2.5 Polymorphism-aware phylogenetic model 157

The multivariate Moran model can be also referred as a polymorphism-aware phylogenetic 158

model (PoMo) if we set k = 4 alleles (De Maio et al., 2013, 2015; Schrempf et al., 2016), those 159

representing the 4 nucleotide bases. We write A as the alphabet of the 4 nucleotide bases 160

{A,C,G, T} and AC as all the possible pairwise combinations of the four nucleotide bases 161

{AC,AG,AT,CG,CT,GT}. For a population of size N we have 4 + 6(N − 1) possible states, 162

four of which are monomorphic (Figure 1). Applications and results presented in the following 163

pages were obtained using the 4-variate model. 164

2.6 Application: great ape population data 165

The stationary distribution of 4-multivariate model was employed to infer the distribution of 166

allele frequencies, selection coefficients and mutation rates from 4-fold degenerate sites of 167

exome-wide population data from great apes (Prado-Martinez et al., 2013). We used 11 168

populations with up to 23 individuals, totaling ∼ 2.8 million sites per population (Table 1). 169
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{A}

{1A,2C}

{2A,1C}

{C}

{T}

{G}

{1A,2G}

{2A,1G}

{1A,2T}

{2A,1T}

{1C,2G}{2C,1G}

{2G,1T}

{1G,2T}

{2C,1T}

{1C,2T}

Mutation
Drift and Selection

Figure 1: PoMo state-space using N = 3. The 4 alleles represent the four nucleotide bases. Brow and
grey arrows indicate mutations, and genetic drift and selection, respectively. Monomorphic or boundary
states {i} are represented in the tetrahedron’s vertices, while the polymorphic states {ni, (N − n)j}
are represented in its edges. Monomorphic states interact with polymorphic states via mutation, but a
polymorphic can only reach a monomorphic state via drift or selection. Between polymorphic states only
drift and selection events occur.

Data preparation follows the pipeline described in De Maio et al. (2015). The allelic counts of 170

all 11 primate subspecies are available in the GitHub branch pomo-dev/pomo selection. 171

Estimates of the Watterson’s θ genetic diversity is below 0.003 for all the studied populations 172

(Schrempf et al., 2016), validating the boundary mutations assumption of 0.1. 173

3 Results 174

3.1 Simulations and algorithm validation 175

To validate the analytical solution for the stationary distribution of the multivariate Moran 176

model, we compare it to the numerical solution obtained by calculating the probability matrix 177

of Qt for large enough t. We confirmed that the numerical solution converges to the analytical 178

solution (Figure S1). 179

We validated the Bayesian algorithm for estimating population parameters from the stationary 180

distribution by performing simulations (Table S1 and Figures S2-S5). Our algorithms 181

efficiently recover the true population parameters from simulated allele counts. We tested the 182

algorithms for different number of sites (103, 106 and 109) and state-spaces (N = 5, 10 and 183
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50). While the number of sites does not increase the computation time substantially and is not 184

being a limiting factor for genome-wide analysis, the size of the state-space influences the 185

computational time. For larger state-spaces N , more iterations are needed to obtain 186

converged, independent and mixed MCMC chains during the posterior estimation. 187

3.2 Patterns of allelic selection in great apes 188

To test the role of allelic selection defining the distribution of alleles in the great apes, we 189

compared the neutral multivariate Moran model (MM) and the model with allelic selection 190

(MS). Using the predictive stationary distribution and the observed allele counts, we computed 191

the Bayes’ factors favoring the more complex model MS (i.e. log BF > 0 favors the model with 192

allelic selection) for all populations. It is clear that MS fits the data considerably better for 193

most of the studied great apes (log BF > 100, Table 1). The only exception is the Eastern 194

gorillas population, for each a lower log BF was obtained (log BF = 5.497, Table 1).

Table 1: Evidence of allelic selection among the great ape populations. The number of indi-
viduals and the number 4-fold degenerate sites per population are indicated by I and S, respectively.
The log Bayes’ factors (log BF) were calculated as the sum over the product of the allele counts and
the posterior predictive probabilities under the Moran model with boundary mutations (MM) and allelic
selection (MS). BF favor the model with allelic selection when higher than 1.

Population I S log p(x|MM) log p(x|MS) log BF

African humans 6 2827135 -3941390.98 -3940993.95 397
Non-African humans 12 2826956 -3940071.64 -3939858.12 213
Eastern gorillas 6 2823830 -3917375.00 -3917370.00 5
Western gorillas 54 2813092 -3955462.98 -3954663.09 799
Western chimpanzees 10 2823911 -3935188.83 -3934928.50 260
Nigeria-Cameroon chimpanzees 20 2825739 -3980386.43 -3979429.05 957
Eastern chimpanzees 12 2822976 -3961202.57 -3960561.15 641
Central chimpanzees 8 2822685 -3958674.29 -3957704.55 969
Bonobos 26 2824240 -3948520.55 -3947835.54 685
Bornean orangutans 10 2824768 -3952527.89 -3952358.67 169
Sumatran orangutans 10 2824618 -3973247.40 -3972725.44 521

195

We have also corroborated our Bayes’ factors by inspecting the fit of the predictive 196

distribution of alleles of MM and MS with the allele counts (Figure S6A-K). The allele counts 197

for the polymorphic states are not symmetric, generally one allele if preferred and so are the 198

polymorphic states that have it in higher proportions. As expected, we observed that MS 199

better reproduces the skewed distribution of allele counts among great apes. 200

We further explored the parameter estimates under MS to know how strong and variable are 201

the patterns of allelic selection among great apes. We analyzed the posterior distribution of 202

the relative selection coefficients of C, G, and T (σA was set to 0). A general pattern of allelic 203
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selection is observed in great apes. The selection coefficients of C and G are similar (meaning 204

that their posterior distributions largely overlap), but different from the selection coefficient of 205

T, which in turn overlaps 0 (approximately equal to the selection coefficient of A) (Figure 2). 206

The only exception is the Eastern gorillas, for which the selection coefficients are all only 207

slightly higher than 0 and rather similar (Figure 2). This result corroborates the relatively low 208

Bayes’ factor found for evidence of allelic selection in the Eastern gorilla population. 209

0
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0
1

2
3

0
1

2
3

Selection 
coefficients:

C

G

T

nucleotide bases

sc
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ed
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Sumatran orangutansBornean orangutansBonobos

African humans Non-african humans Eastern gorillas Western gorillas

Western chimpanzees Nigeria-Cameron 
chimpanzees

Eastern chimpanzees Central chimpanzees

Figure 2: Scaled allelic selection coefficients for the great apes 4-fold degenerate synonymous
sites. The boxplots represent the posterior distribution of the C, G and T scaled selection coefficients (σA
was set to 0); the estimates were obtained using the 4-variate Moran model. The line in blue represents
σA = 0. Table S2 summarizes the average scaled selection coefficients for each great ape population.

We further explored this result in order to check if the patterns of GC-bias found among great 210

apes can be associated with gBGC. We correlate the GC-bias per chromosome (σC + σG) with 211

the chromosome size and recombination rate in the non-African human population (Figure 212

S7), for which this data is particularly well characterized (Jensen-Seaman, 2004). We found a 213
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significant positive correlation between the GC-bias and recombination rate (Spearman’s ρ = 214

0.57, p-value = 0.006), but a negative correlation with the chromosome length (Spearman’s ρ 215

= -0.52, p-value = 0.014). 216

Although the patterns of selection among great apes are similar qualitatively, they differ 217

quantitatively. For example, the Central chimpanzees have patterns of GC-bias around 218

2.08/2.60 (σC/σG, Table S2 and Figure 2), while the closely related population of Western 219

chimpanzees shows less strong patterns (around 1.38/1.42). Likewise, the GC-bias content in 220

African and non-African human populations contrasts: 2.41/1.86 and 1.19/1.16, respectively. 221

These results show that the patterns of allelic selection greatly vary among great apes, even 222

among closely related populations. 223

It has been hypothesized that GC-bias is a compensation mechanism for the mutational bias 224

that exists in favor of the weak alleles, A and T (Duret and Galtier, 2009; Philippe et al., 225

2011): the AT/GC toggling effect. Congruently with this expectations, we observed that 226

mutation rates from strong to weak alleles are higher (by a factor of 3.05 in average), but 227

rather similar between alleles of the same type (around 1.02 in average; supplementary table 228

S2), while the selection coefficients, as shown, have a clear pattern of GC-bias in most of the 229

great ape populations. 230
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Figure 3: Correlating Ne and the total rate of mutation and selection in great apes. Great
ape populations are numbered: 1. African human, 2. Non-African human, 3. Eastern gorilla, 4. Western
gorilla, 5. Western chimpanzee, 6. Nigeria-Cameroon chimpanzee, 7. Eastern chimpanzee, 8. Central
chimpanzee, 9. Bonobo, 10. Bornean orangutan and 11. Sumatran orangutan. Estimates of Ne were
taken from Prado-Martinez et al. (2013) and Tenesa et al. (2007).
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3.3 Ne and the total rate of mutation and selection in great apes 231

It is widely known that the intensity of mutation and selection reflect population demography. 232

To check whether the estimated mutation and selection coefficients among great ape 233

populations may be explained by demography, we tested the correlation between the total rate 234

of mutation and selection and Ne (obtained from Tenesa et al. (2007); Prado-Martinez et al. 235

(2013)). Positive and significant correlations between the total mutation and selection rates 236

and the effective population size were obtained (Figure 3): Spearman’s correlation coefficient 237

of 0.65 (p-value = 0.033) and 0.69 (p-value = 0.023), respectively. 238

This result shows that Ne plays an important role in determining the intensity of mutations 239

and selection. In particular, it becomes clear that the different patterns of GC-bias found 240

among great apes are, in part, due to different demographies. For example, Central 241

chimpanzees have the highest GC-bias among the studied great apes, and they are indeed the 242

population that was estimated with the largest Ne (30 000, Prado-Martinez et al. (2013)). 243

Eastern gorillas showed the opposite pattern: this population had no evidence of GC-bias 244

(with very homogeneous selection coefficients) and congruently Prado-Martinez et al. (2013) 245

estimated its Ne as only 2000, the lowest of the studied populations. 246

Table 2: Expected number of substitutions per unit of time. The expected number of substitutions
for the multivariate Moran model with boundary mutations d∗M and allelic selection d∗S were calculated
based on the posterior distributions of the model parameters and equation (6). The relative difference
between these distances was calculated as the ratio between the average number of events between the
two models (d∗S/d

∗
M ) and was used to assess how dissimilar these distances are.

Population d∗M × 103 d∗S × 103 d∗S/d
∗
M

African humans 0.123 0.120 0.978
Non-African humans 0.041 0.039 0.954
Eastern gorillas 0.061 0.064 1.045
Western gorillas 0.011 0.009 0.845
Western chimpanzees 0.054 0.052 0.956
Nigeria-Cameroon chimpanzees 0.045 0.038 0.858
Eastern chimpanzees 0.073 0.066 0.910
Central chimpanzees 0.130 0.114 0.873
Bonobos 0.019 0.016 0.821
Bornean orangutans 0.077 0.077 0.998
Sumatran orangutans 0.111 0.106 0.959

3.4 Comparing the expected number of substitutions in great apes 247

We calculated the expected number of substitutions under MM and MS to evaluate the impact 248

of allelic selection (in particular, GC-bias) in the evolutionary process. With formula (6), we 249

calculated d∗M and d∗S using the posterior estimates of the respective model parameters. We 250
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observe that for most of the great ape populations, the expected number of substitutions is 251

lower when allelic selection is accounted (Table 2). Eastern gorillas are an exception, and the 252

opposite pattern was observed. We also calculated the relative difference between the expected 253

number of substitutions in both models (i.e. dS/dM ) and we obtained minor (-0.26% in 254

Bornean orangutans) to major (-17.8% in bonobos) relative differences; the average difference 255

is -7.3% (Table 2). These results suggest that not accounting for GC-bias may distort the 256

reconstructed evolutionary process by overestimating the expected number of substitutions. 257

Sumatran orangutansBornean orangutansBonobos

African humans Non-african humans Eastern gorillas Western gorillas

Western chimpanzees Nigeria-Cameron 
chimpanzees

Eastern chimpanzees Central chimpanzees
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Figure 4: Relative difference in the mutation rates estimated under the neutral and non-
neutral Moran model. rij represents the ratio between the mutation from allele i to allele j in the
model with allelic selection and the model with boundary mutations: rij = µS

ij/µ
M
ij . The 12 mutational

types are indicated in the western gorillas plot: all the plots follow this arrangement.

We complement this result by comparing the posterior distribution of the mutations rates in 258

MM and MS. Because we wanted to identify the mutational types that may be differently 259

estimated between these models, we calculated the relative difference between the mutation 260
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rate from allele i to allele j under the models, respectively: rij = µSij/µ
M
ij . If rij > 1 for a 261

certain mutation rate ij, then this mutation rate is being underestimated in MM when 262

compared to MS (and vice versa if rij < 1); if rij ≈ 1 the mutation rates are equally estimated 263

in both models. 264

We observed a systematic bias among great apes. While weak-to-weak and strong-to-strong 265

mutation rates are generally non-differentially estimated in both models (most of their r 266

overlap 1, Figure 4) the strong-to-weak and weak-to-strong mutation rates are generally biased 267

in MM. In particular, we obtained that weak-to-strong mutation rates are augmented, while 268

mutations rates from strong-to-weak alleles are deprecated (Figure 4), which suggests that not 269

accounting for GC-bias may bias the estimation of population parameters. Eastern gorillas 270

behave differently by not showing significant differences between the estimated mutations rates 271

(all rij overlap 1, Figure 4). 272

4 Discussion 273

In this work, we built on the multivariate Moran model with boundary mutations and allelic 274

selection to explain the population processes shaping the observed distribution of alleles. We 275

obtained new formulae to characterize this model: in particular, we derived the stationary 276

distribution and the rate of the process. In addition, we built a Bayesian framework to 277

estimate population parameters (base composition, mutation rates, and selection coefficients) 278

from population data. This work accomplishes tasks set by Schrempf and Hobolth (2017) who 279

observed derivations from neutrality without having a model in place to enlighten the causes. 280

4.1 Variable patterns gBGC among great apes 281

A genome-wide application in the great apes provides important insight into the strength and 282

magnitude of GC-bias patterns and also the impact of gBGC in the evolutionary process. To 283

our knowledge, this is the first work giving a population perspective of the patterns of GC-bias 284

in non-human populations. 285

Here, we focus on GC-bias because it is a genome-wide effect. Mathematically speaking, it is 286

difficult to disentangle gBGC from directional selection: they may have different biological 287

explanations, but represent the exact same process modeling-wise (i.e. one allele is preferred 288

over the others). Therefore, existing signatures of directional selection are most likely 289

canceling out, when several site-histories (around 2.8 million sites in our case) are summarized 290

to perform inferences. 291
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The patterns of GC-bias we have found in great apes are in concordance with the well-known 292

process of gBGC. As expected, we observed that the larger the recombination rate or the lower 293

the chromosome length, the higher the GC-effect. Evidently, recombination promotes gBGC; 294

however, a negative association between gBGC and chromosome size is expected (because at 295

least one crossover per chromosome is necessary for proper segregation during meiosis, the 296

crossover rate (in cM per Mb) will be higher for small than for large chromosomes (Farré 297

et al., 2013)). We have performed these analyses in non-African Humans, for which this data is 298

available; however, we are confident that the patterns of GC-bias found in great apes are due 299

to gBGC. 300

In agreement with previous studies in mammals and humans (Spencer et al., 2006; Lartillot, 301

2013; Capra et al., 2013; Lachance and Tishkoff, 2014; Glémin et al., 2015), we found that 302

gBGC is weak on average. Indeed, among great apes, the effect of GC-bias ranges between 303

1.49 ± 0.53, consistent with the nearly-neutral scenario (Ohta and Gillespie, 1996; Vogl and 304

Bergman, 2015). These estimates are in congruence with other estimates of the scaled 305

conversion coefficient in coding regions: Lynch (2010) estimated 4Nes as 0.82 in humans and 306

Lartillot (2013) adopted a phylogenetic approach to predict scaled conversion coefficients lower 307

than 1 in all apes. Notice that the latter works employed the Wright-Fisher model. As the rate 308

of genetic drift is twice as fast in the Moran model, we expect to estimate twice as hight 309

selection coefficients with our approach. 310

It has been hypothesized that GC-bias is a compensation mechanism for the mutational bias 311

that exists in favor of the weak alleles, A and T (Galtier et al., 2009; Duret and Galtier, 2009; 312

Philippe et al., 2011). Congruently with this expectations, we observed that mutation rates 313

from strong to weak alleles are higher but rather similar between alleles of the same type. 314

Interestingly, this symmetric manner by which mutations and selection are acting in great apes 315

leads, as we have demonstrated, the number of substitutions to decrease in average, which 316

suggests that the AT/GC toggling may actually increase the population variability by 317

promoting more polymorphic sites. 318

Glémin et al. (2015) hypothesized that differences in GC-bias intensity among human 319

populations were due to effects of demography. We also advance that demography regulates 320

the intensity of gBGC in great apes. We obtained a positive correlation between the total rate 321

of selection and Ne in great apes. An important conclusion of our study is that the patterns of 322

gBGC can rapidly change due to demography, even among closely related populations. In fact, 323

most of the studied populations are known to have diverged less than 0.5 million years ago 324

(Prado-Martinez et al., 2013). 325
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Here, we showed that GC-bias determines the genome-wide base composition of genomes in a 326

factor proportional to (1 + σC/G)N−1 (or (1 + s)Ne−1 in the true dynamic). Therefore, by 327

either changing Ne or s, we are able to change the AT/GC composition of genomes. Because 328

we were able to correlate Ne with the intensity of allelic selection, we are convinced that 329

demography has a major role determining the base composition of great apes genomes. 330

Intriguingly, Galtier et al. (2018) have not found this correlation at the species level in 331

animals. This is most likely happening because genome-wide recombination rate, length of 332

gene conversion tracts and repair biases should significantly vary across species, but not so 333

much across related populations, which explains why the correlation between the intensity of 334

gBGC and Ne was found in great ape populations, but not more generally in animals. 335

While correlating the strength of selection with Ne, we obtained a correlation coefficient (0.69) 336

that suggests that other processes may be determining the strength of allelic selection: we can 337

refer two likely reasons. First, the effect of recent demographic effects. We have considered a 338

fixed population size and stationarity, which are good assumptions to recover long-standing 339

population processes, but may not capture the more-recent demographic events and therefore, 340

their impact on GC-bias. Second, variations in s due to species-specific recombination 341

landscapes may also contribute to different GC-bias. Indeed, variation in the karyotypes 342

(number and length of chromosomes) and the short-life and self-destructive nature of 343

recombination hotspots are known to contribute to generating different patterns of GC-bias 344

among species (Duret and Galtier, 2009; Lesecque et al., 2014). For the particular case of great 345

apes, changes in the karyotype should not be a major aspect, as it is very conserved among 346

primates: humans have 46 diploid chromosomes whereas the other great apes (orangutans, 347

gorillas, and chimps) have 48. However, it is known that humans and chimpanzees, and even 348

human populations share few recombination hotspots (Auton et al., 2012; Lesecque et al., 349

2014), which may explicate differences in the great apes’ recombination landscapes and, 350

ultimately, why the intensity of allelic selection cannot be completely explained by the effects 351

of demography. 352

Knowing to what extent variations in Ne or s determine the base composition of genomes will 353

require further studies. In particular, determining s experimentally, ideally in different 354

populations, would help to assess the real impact of gBGC and how variable it is among 355

species/populations. If as for the mutation rate, we could assume that s vary slightly among 356

closely related populations/species, then we might attribute different intensities of GC-bias 357

almost solely to demographic effects, which simplifies the task of accommodating gBGC in 358

population models. 359
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4.2 gBGC calls for caution in molecular and phylogenetic analyses 360

The effects of gBGC in the molecular analysis have been extensively described in the literature 361

(reviewed in Romiguier and Roux (2017)), we complement these results by showing how 362

GC-bias affects the base composition of genomes, and how the mutation rates and genetic 363

distances may be biased if GC-bias is not properly accounted. In particular, we observed that 364

mutations rates from weak-to-strong and strong-to-weak alleles are systematically over and 365

underestimated, respectively. Biased estimators are not necessarily worthless (particularly 366

when the bias is known) for parameter estimation. Being able to describe the distribution of 367

alleles with fewer parameters is in principle a good aspect modeling-wise. However, we have 368

strong evidence that the model with allelic selection much better fits the observed allele counts 369

for all the studied great ape populations. 370

The idea that gBGC may distort the reconstructed evolutionary process comes mainly from 371

phylogenetic studies. For example, it is hypothesized that gBGC may promote substitution 372

saturation (Romiguier and Roux, 2017). We have shown that the number of substitutions may 373

be significantly overestimated if we do not account for GC-bias, meaning that gBGC may 374

indeed promote branch saturation. Based on this and other gBGC-related complications (e.g. 375

GC-bias promotes incomplete lineage sorting (Hobolth et al., 2011)), some authors advocate 376

that only GC-poor markers should be used for phylogenetic analysis (McCormack et al., 2012; 377

Romiguier et al., 2013). Contradicting this approach, our results show that we may gain more 378

inferential power if GC-bias is accounted for when estimating evolutionary distances. 379

Recently, a nucleotide substitution process that accounts for gBGC was proposed by Lartillot 380

(2013). In this model, the scaled conversion coefficient is used to correct the substitution rates 381

in a similar fashion as we have done to calculate the expected number of substitutions for the 382

Moran distance (i.e. assessing the relative fixation probabilities under GC-bias, File S3). 383

Therefore, we expect to obtain similar results with this nucleotide substitution model and our 384

model: the only differences being that our model accounts for polymorphic sites and is based 385

on the Moran model (while in Lartillot (2013) populations follow the Wright-Fisher model). 386

5 Conclusion 387

Despite the widespread evidence of gBGC in several taxa, several questions remain open 388

regarding the role of gBGC determining the base composition of genomes. In this work, we 389

quantify the patterns of gBGC in great apes while contributing to the discussion of the tempo 390

and mode of gBGC evolution in vertebrate genomes. 391
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Our Moran model adds a significant contribution to the endeavor of estimating population 392

parameters from multi-individual, genome-wide population-scale data. Our model was used to 393

estimate genome-wide signature of gBGC, but it can also be more generally employed to 394

estimate patterns of nucleotide usage and associated mechanisms of evolution. Importantly, 395

our analysis showed that gBGC may significantly distort estimates of population parameters 396

and genetic distances, stressing that gBGC-aware models should be used when employing 397

molecular phylogenetics and population genetics analyses. 398

Here, we have not performed phylogenetic inference, but previous applications of the Moran 399

model to phylogenetic problems (De Maio et al., 2015; Schrempf et al., 2016) show that it can 400

be done. Therefore, a necessary future work would be testing the effect of gBGC in phylogeny 401

reconstruction, in particular, determining how much of its signal can be accounted for 402

increasing the accuracy of tree estimation both on the topology and branch lengths. 403
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