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 21 
ABSTRACT 22 
 23 
Identifying the locations and settings where technologies are most likely to have important 24 
effects can make the most of development or extension efforts.  In the context of development 25 
and applied ecology, decisions must often be made by policy makers and donors about where to 26 
implement projects designed to improve management.  Implementation in some regions may 27 
provide substantially higher payoffs to investment, and higher quality information may help to 28 
target the high-payoff locations.  The value of information (VOI) in this context is formalized by 29 
comparing the benefits from decision making guided by a set of information and the results of 30 
acting without taking the information into account. We present a framework for management 31 
performance mapping and for evaluating the value of information for decision making about 32 
geographic priorities in regional intervention strategies.  In our case studies of Andean and 33 
Kenyan potato seed systems, we evaluate seed health and yield information from farms, plots, 34 
and individual plant observations. We use Bayesian networks and recursive partitioning to 35 
efficiently characterize the relationship between these performance measures and the 36 
environmental and management predictors used in studies aimed at understanding seed 37 
degeneration. These analyses return the expected performance of an intervention for predictor 38 
variables mapped across the landscape. We link the scientific process and the learning cycle to 39 
the value of information assessments to support a culture of continuous improvement that 40 
informs strategic agricultural development. Assessment of the value of information demonstrates 41 
the value of science as an integral part of targeted development programs. 42 
 43 
Additional keywords: agricultural development, disease, Ecuador, GIS, intervention ecology, 44 
Kenya, pest management, potato, seed degeneration, translational science, value of information, 45 
virus, yield gap 46 
 47 
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A central problem in applied spatial ecology is how to partition management efforts across 49 
landscapes. Across larger spatial extents, interventions (e.g., by development organizations or 50 
governments) may be designed to increase yield across a region by improving management of 51 
agroecosystems. International governmental and non-governmental organizations that seek to 52 
reduce poverty, enhance food security, and improve natural resources and ecosystem services, 53 
need to understand how to prioritize regional interventions. We propose “management 54 
performance mapping” as a tool for translating experimental results to support decision making 55 
by policy makers and donors, and assessing the value of information (VOI) to support the 56 
analysis. Assessing the VOI involves determining the expected benefit of reducing or eliminating 57 
uncertainty (Canessa et al. 2015), as described below. In the absence of uncertainty, when the 58 
true state of the system is known, optimal actions can more readily be identified. Often data 59 
about agricultural management performance exist, or can be collected inside of existing 60 
intervention projects, but the data are collected at the scale of fields, farms or individual plant 61 
performance measures. Multiple factors influence plant productivity apart from management, 62 
creating uncertainty about the pay-off even where data are relatively abundant.  Scaling up 63 
models based on limited observations is necessary to visualize how specific interventions are 64 
likely to perform at a regional scale (Altieri and Nicholls 2008; van Bussel et al. 2015a; van Wart 65 
et al. 2013; Grassini et al. 2015). Management performance mapping can be implemented to 66 
visualize the impact of proposed interventions, to improve decision-making and policy setting, in 67 
the development of innovations, and during project implementation – as a component of adaptive 68 
management in development (Fig. 1).  69 

Data available for identifying good geographic prioritization strategies are generally limited, 70 
but evidence-based decision making can be designed to make the most of available data.  VOI 71 
analyses offer a means of both valuing information and assessing the role of uncertainty in 72 
making good decisions (Hirshleifer and Riley 1979; Macauley 2006; Canessa et al. 2015).  VOI 73 
analyses indicate the value of outcomes for decision making with and without particular 74 
information.  The VOI should ideally be considered in the context of the mean outcome, 75 
associated uncertainty, and what is at stake with respect to making good or bad decisions (e.g., 76 
the yield difference measured in yield or money) and how much stakeholders are willing to pay 77 
to act on their choices. The utility functions in studies of willingness to pay are related to VOI 78 
(Breidert, Hahsler, and Reutterer 2006; Asante Bright Owusu et al. 2011; Hanemann 1991).  79 
Many examples in the VOI literature focus on agriculture, such as the uncertainty risk 80 
distribution for farm yield (Hirshleifer and Riley 1979), the value of weather forecasting for 81 
farmers (Lave 1963), and risk assessment for crop futures (Danthine 1978). A related area of 82 
application of VOI concepts is in invasion biology more generally and in conservation biology, 83 
where decisions must also be made about where to prioritize efforts (Canessa et al. 2015; 84 
Johnson et al. 2017; Wilson 2015).  Of course, decision-maker willingness to act based on 85 
information is an important prerequisite for information valuation to be meaningful. For 86 
example, overly confident decision makers may not be influenced by new information, or they 87 
may not reflect on the uncertainty that is inherent in the information available. To our 88 
knowledge, VOI analyses have not been applied to plant pathology, crop epidemiology, or to 89 
seed system development, where they have the potential to improve decision making. 90 

Precision agriculture and species distribution models both address components of spatial 91 
prioritization, at different scales.  The question of how to optimize information use for decision 92 
making is addressed at the within-field scale in precision agriculture (Tittonell and Giller 2013), 93 
allowing well-resourced farmers to collect and utilize spatially explicit data sets (in near real 94 
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time) about crop performance (Devaux et al. 2010). Farmers are able to choose and optimally 95 
apply inputs such as fertilizer, pesticides, and irrigation to areas of the field where they are most 96 
needed to maximize yields. Species distribution models address the problem of optimal targeting 97 
indirectly, by providing information about where invasive (or endangered) species including 98 
pathogens are most likely to be found.  They generally are designed to draw inference beyond 99 
regions where data were collected by assessing species niche parameters based on occurrences 100 
throughout a species’ native and introduced range (Hijmans and Graham 2006; Condori et al. 101 
2014; Sparks et al. 2014; Aguirre-Gutiérrez et al. 2017; Austin 2007; Sutherst 1985). 102 
Management performance mapping can draw on pathogen species distribution models as one of 103 
the components determining how important disease management is likely to be, and how likely it 104 
is to be successful. 105 

We present a case study that focuses on smallholder management of seed degeneration in 106 
agricultural systems. “Seed degeneration” is the reduction in yield or quality caused by an 107 
accumulation of pathogens (especially viruses) and pests in planting material over successive 108 
cycles of propagation, where vegetatively propagated crops deserve particular attention because 109 
of their higher risk of disease transmission (Sharma and Kang 2003; Thomas‐Sharma et al. 2016; 110 
Thomas-Sharma et al. 2017; Iritani 1968; Kawakami 1962). Establishing improved seed systems 111 
is challenging, especially in low-income countries, due in part to the many system components 112 
that must be integrated for seed system success (Jaffee and Srivastava 1994; McGuire and 113 
Sperling 2016; McQuaid et al. 2016; Sperling 2008; Gildemacher et al. 2009; Bentley and 114 
Vasques 1998). Seed system improvement has been a major focus of agricultural development 115 
efforts funded by many agencies (e.g., national plant protection agencies, The Bill and Melinda 116 
Gates Foundation, USAID, and FAO), but has often proven to be challenging to implement 117 
(Jaffee and Srivastava 1994; Almekinders C. J. M., Louwaars N. P., and De Bruijn G. H. 1994; 118 
McGuire and Sperling 2016). In informal seed systems in low-income countries farmers 119 
typically use seed saved from the previous season for replanting, often leading to reduced yields, 120 
e.g., 5-50% reduction (Devaux et al. 2010), especially when farmers are unfamiliar with 121 
approaches for selecting seed with reduced pathogen risk. 122 

Optimizing yield by reducing disease impacts, and improving seed quality, is a primary goal 123 
of many seed system interventions.  Governments and institutions with a strong focus on science 124 
for development, such as CGIAR, work on a suite of factors linked to seed system health. Farmer 125 
training efforts focus on options for disease management and optimal decision-making.  126 
International development efforts to improve seed systems seek to increase farmer access to 127 
disease-free, disease-resistant, high-quality seed, and improve farmer practices to implement 128 
“integrated seed health strategies” (Thomas-Sharma et al. 2017; Thomas‐Sharma et al. 2016). 129 
Attempts to formalize seed systems by imposing seed quality standards may fail if thresholds are 130 
unrealistic (Choudhury et al. 2017) and despite many interventions systems may revert to largely 131 
informal systems, with sub-optimal seed sourced from on farm much of the time, e.g., 98% of 132 
potato seed sources in the Andes are informal (Louwaars, de Boef, and Edeme 2013; Devaux et 133 
al. 2010). Interventions are more likely to succeed if they are affordable, and help farmers to be 134 
profitable (McGuire and Sperling 2013; Sperling, Ortiz, and Thiele 2013). As an example, 135 
positive selection is an on-farm management intervention that can provide large yield benefits, 136 
e.g. 28-55% increases (mean 32%) (Gildemacher et al. 2012,  2011).  Positive selection is often 137 
recommended as part of an integrated seed health strategy.  Under positive selection, farmers 138 
select healthy appearing plants and mark them for later harvesting of seed potato tubers.  139 
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Training farmers in the techniques of positive selection is an attractive potential intervention to 140 
support integrated seed health strategies. 141 

A risk framework for an integrated seed health strategy (Thomas-Sharma et al. 2017) 142 
examines the factors influencing seed system success (e.g., on farm seed management, disease-143 
free seed sources, amount of inoculum) and provides a useful starting point for the type of 144 
interventions that could be included in a management performance mapping analysis for seed 145 
systems. Management performance maps for seed systems should use reference data sets that 146 
focus on these key factors. In practice, the best available data sets, collected via literature 147 
reviews, experiments or on-farm observational studies, will fall short of an ideal data set. As 148 
such, scientists, policy-makers and funders interested in evidence-based decision-making often 149 
must make decisions based on the available data, even if data are sub-optimal. Management 150 
performance mapping can provide a useful starting point for assessing the most effective 151 
interventions for large scale (large extent, low resolution) interventions. We envisage that 152 
management performance maps could be useful for assessing the likely relative value of 153 
management interventions across regions, and as a means of reporting on the effectiveness of 154 
interventions. Management performance maps can be used to target limited resources to places in 155 
the landscape where impacts are likely to be highest. 156 

Our objectives in this study are to (i) introduce and illustrate the concept of management 157 
performance mapping and associated methods, (ii) introduce the use of VOI analysis in this 158 
context, (ii) compare methods for identifying predictor variables for management outcomes, and 159 
(iv) illustrate the application of management performance mapping to potato seed degeneration 160 
data from the Ecuadorian Andes and Kenya.  161 
 162 
MATERIALS AND METHODS 163 
 164 
A primary decision for agricultural development is where to invest limited resources for an 165 
intervention. For the case of seed systems, potential interventions include training, seed 166 
multiplier subsidies, and improved variety dissemination. We start by describing the steps 167 
involved in producing management performance maps, using the example of training in positive 168 
selection by farmers to identify plants more likely to produce healthy seed (Fig. 2). Then we 169 
illustrate management performance mapping using a detailed seed degeneration data set from a 170 
potato seed study in Ecuador. As a step in preparing the management performance maps, we 171 
illustrate the application of Bayesian networks and recursive partitioning for assessing the 172 
influence of disease, environmental factors, and management on yield, and similarly assess 173 
factors that influence virus incidence.  We also evaluate the potential value of the information for 174 
guiding selection of locations in development interventions, if the estimated mean performance 175 
is correct, for potato seed health in Ecuador and Kenya. 176 

  177 
Management performance maps: steps. Linking real world farm or field level management 178 
data to mapped landscape level data involves the following steps (Fig. 2): (i) gather management 179 
performance data, (ii) identify performance measures and predictor variables, (iii) evaluate 180 
management performance for the proposed interventions, (iv) identify the best management 181 
intervention or policy based on currently available data, (v) assess the value of information,  182 
(vi) link predictor variables to GIS data layers, (vii) implement interventions, (viii) facilitate and 183 
assess technology adoption by farmers.  We illustrate steps i through v, while steps vi and vii 184 
would be key to achieving outcomes in the field. 185 
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 186 
Gathering management performance data 187 
 188 
To illustrate the process, we use two data sets, the first being data related to potato production in 189 
Ecuador, the elements of which are designed to support parameter estimation for a seed 190 
degeneration model (Thomas-Sharma et al. 2017).  The main components of this model relate to 191 
seed health (virus incidence, seed age since certified seed was produced), variety, environmental 192 
factors (weather), management (seed propagation and selection) and yield data (Kromann et al. 193 
2017).  A single field represented each of the scenarios (treatment combinations) in this data set, 194 
so variability within a scenario can only be evaluated at the individual plant level.  We focus on 195 
yield data as the response as an example, and the intervention of positive selection versus 196 
roguing and random seed management strategies.  Second, we used published data about seed 197 
heath management, and positive selection training and adoption rates in Kenya to explore how 198 
information about the likelihood that farmers in a region will adopt a technology can be 199 
integrated (Gildemacher et al. 2012).   200 
  201 
Identifying performance measures and predictor variables  202 
 203 
A variety of methods are useful for selecting predictor variables for performance indicators. We 204 
focus on two types of machine learning algorithms: Bayesian networks and recursive partitioning 205 
trees (Therneau, Atkinson, and Ripley 2010). These were selected because of their under-206 
appreciated utility in applications such as disease or pest management, and their utility for our 207 
problem. As performance indicators, we focused on yield. 208 
 Classification and regression trees have been applied in agricultural systems for the 209 
purposes of land and soil classification, climate change impact assessment, risk assessment, toxin 210 
levels and disease conduciveness for plants (Langemeier et al. 2016; Novak and LaDue 1999; 211 
Etter et al. 2006; Caley and Kuhnert 2006; Paul and Munkvold 2004; Tittonell and Giller 2013). 212 
These models are known for their ability to identify important variables in classification 213 
problems, identify hierarchically the most important predictor variables, and to support decision 214 
making processes. Recursive partitioning is a type of decision tree model. The strength of the 215 
recursive partitioning method lies in its ability to deal with non-linearity in the data, and depict 216 
and interpret the outputs in decision-tree format. A limitation of this method is that it may 217 
perform relatively poorly with continuous variables or large numbers of unordered variables. In 218 
R there are several packages that perform recursive partitioning, where randomForest, caret, 219 
party and rpart are among the most used (Therneau, Atkinson, and Ripley 2010). We used rpart, 220 
designed to perform well even when missing data are common.  221 

Bayesian networks have been applied in natural resource management systems for 222 
vegetation classification, optimal decision making, disease management and expert elicitation 223 
(Geenen and Van Der Gaag 2005; Aguilera et al. 2011; Kristensen and Rasmussen 1997; Perez-224 
Ariza, Nicholson, and Flores 2012). A Bayesian network is a directed, acyclic graph whose 225 
nodes represent predictor variables, and links represent dependencies. The relationships between 226 
variables are quantified by conditional probability tables. All of these tables together represent 227 
the full joint distribution. These models are designed to incorporate learning from both empirical 228 
data and from expert assessment, to build conditional probability tables.  Important strengths of 229 
the Bayesian network method lie in its ability to infer probabilistic relationships between many 230 
variables simultaneously. The network structure can be set manually by the user or learned from 231 
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the data using a variety of algorithms. In the case of exact estimation algorithms, it is possible to 232 
set values for any combination of nodes and produce new posterior probabilities for each 233 
variable in the network.  A limitation of this method is the cost of some of the most advanced 234 
Bayesian network software. In addition, mixed data of continuous and categorical data can be 235 
problematic for commonly used Bayesian network algorithms. These algorithms tend to work 236 
best for cases where all the variables are continuous, or all are discretized. Tools available for 237 
Bayesian network analysis include BI-CAMML, Hugin and Netica (Aguilera et al. 2011). R 238 
packages include bnlearn, gRain and pcalg (Nagarajan, Scutari, and Lèbre 2013). We selected 239 
Netica for this illustration because it is relatively affordable, the algorithms it uses allow for 240 
immediate updating of conditional probabilities based on selected levels for variables, it has a 241 
powerful graphical interface, and it is widely used in ecological and environmental analyses 242 
(Aguilera et al. 2011). 243 

 244 
Evaluating management performance 245 
 246 
Training in positive selection methods is often useful for familiarizing farmers with disease 247 
symptoms and benefits (Gildemacher et al. 2012).  We consider data (Kromann et al. 2017) from 248 
potato seed production in Ecuador, asking at what locations the benefits of training in positive 249 
selection are likely to be greatest.  These data (Kromann et al. 2017) focus on potato yield and 250 
virus incidence for six viruses, under different management practices, such as positive selection 251 
and the number of plantings since disease-free seed was obtained.  Using Bayesian network 252 
analysis, as described above, the estimated yield with and without positive selection was 253 
evaluated for each of three generations of seed at elevations above and below 2895 m a.s.l., the 254 
threshold elevation identified in the Bayesian network analysis.  Thus, the decision about where 255 
to invest in positive selection training might be phrased in terms of (a) uninformed (random) site 256 
selection, where each location is equally likely to be selected for training, and (b) informed site 257 
selection, where locations above or below 2895 m a.s.l. may be targeted for training, depending 258 
on which provides greater benefits, and (c) misinformed site selection, selecting higher or lower 259 
elevations based on an incorrect belief about where positive selection will provide greater 260 
benefits.  For example, there could be a prior belief that a particular pathogen will be more 261 
prevalent at lower elevations, due to a higher abundance of vectors, thus making positive 262 
selection more important there. 263 
  264 
Yield evaluated in Bayesian networks - The benefit of positive selection (in the third year after 265 
disease-free seed purchase) was estimated using a Bayesian network in Netica. Netica’s Tree-266 
Augmented Naive Bayes (TAN) classifier algorithm was used to estimate the conditional 267 
probability tables and the network structure. From the conditional probability tables we obtained 268 
estimated yields above (7.7 t/ha) and below (3.2 t/ha) 2895 m.a.s.l.  269 
 270 
Interacting factors evaluated with recursive partitioning. We can assess scenarios where we 271 
have information about interacting predictors, and these are or are not taken into account in the 272 
targeting of training.  Here we use experimental data about yield under positive selection (as 273 
opposed to roguing or random seed selection), at different altitudes and for certified seed that has 274 
been propagated for three seasons or less than three seasons.   275 
 276 
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Considering variety with recursive partitioning. The two most important ware potato varieties 277 
in Ecuador, Superchola and Fripapa, were sold at a ratio of 2:1 by volume by growers in a 278 
cooperative in Tungurahau, Ecuador (Buddenhagen et al. 2017), and there was a similar ratio of 279 
farmers growing each type. For this illustration, let us ignore the other 14 varieties that were 280 
grown in this cooperative, as the volumes reported were less than 10%.  Some farmers grow both 281 
varieties. We consider variety, altitude, and management by estimating mean per plant yields 282 
under different conditions, and by using recursive partitioning in rpart. The observed proportion 283 
of Ecuadorian farmers using certified seed was reported at 2% (Devaux et al. 2010), though for 284 
some organized groups the proportion can be as high as 46% (Buddenhagen et al. 2017).  In 285 
summary, the reported ratios for this example are as follows: farm altitude (high to low, 51:49), 286 
potato variety (Fripapa to Superchola, 33:66) and potato seed age (old to new, 98:2).  287 
 288 
Regional differences in adoption of training recommendations. Another example of evaluating 289 
management performance, and where management performance is greatest, is based on regional 290 
differences in adoption of positive selection after training (Table 1). In one study, adoption 291 
varied for three Kenyan counties:  Nakuru 46%, Nyadarua 19%, and Narok 18% (Gildemacher et 292 
al. 2012). The average benefit of positive selection was 3.4 tons per ha (~USD 350 per ha). This 293 
translated to a per-household benefit of $156 per season for a farm of average size for the region. 294 
Meanwhile the cost of training was $38 per farmer. In this case, the average value for each 295 
region combined gives the expected benefit of $44 where training occurs in a random region.  296 
 297 
Applying models to a map of the relevant region  298 
 299 
We selected for analysis and extrapolation a major potato growing region stretching from 300 
southern Ecuador to southern Colombia.  Using data from mapSPAM  (HarvestChoice 2014), we 301 
identified the region for evaluation  by selecting pixels with >200 ha potato production per pixel 302 
(where a pixel represents 5-arc minutes, approximately 10,000 ha). Here 51% of potato 303 
production is above 2895 m based on MapSpam estimates (You et al. 2012), the elevation cut-off 304 
for predicting yield from the Bayesian network analysis.  305 
 306 
The data layer of management performance estimates is one important factor for deciding about 307 
where to prioritize management efforts.  This analysis effectively treats each location as 308 
independent from other locations.  However, some locations will have more important roles in 309 
epidemics than others, due to factors such as environmental conduciveness to disease and 310 
position in spatial epidemic networks. We evaluated the layer of management performance 311 
estimates for positive selection with a data layer of the potato cropland connectivity risk index, a 312 
measure of the likely importance of locations for spatial movement through potato growing areas 313 
(Xing et al. 2017). 314 
 315 
Estimating the value of information 316 
 317 
We assess the value of information for decisions about where to invest management 318 
interventions. For the purposes of this study we consider cases where decision makers either 319 
have or do not have information about geographic differences in management performance. In 320 
the absence of information, they might select any location for management with equal 321 
probability. An estimate of the value of information in this case would be the difference in the 322 
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benefit of investment for locations selected based on the information (“informed location 323 
selection”), and the benefit for locations selected randomly (“uninformed location selection”). In 324 
the case where decision makers have a prior belief that is not supported by the data, or a 325 
misconception, the value of information would be the difference between investments based on 326 
the misconception (“misinformed location selection”), versus informed investments. We look at 327 
the uninformed and informed management choices related to spatially distributed differences in 328 
yield, disease, variety and rates with which best practices are adopted. 329 

  330 
We evaluated uncertainty through the lens of how frequently the better management choice 331 
would be made (in terms of managing seed degeneration over the three years) based on the data 332 
available, as follows. For each of the 28 potential pairwise comparison of management scenarios 333 
(each pair of treatment (positive selection versus random) x year (year 1 or 3) x altitude 334 
combinations), the difference in yield randomly drawn from the set of observed yields for the 335 
treatment combination was collected 10,000 times. (Note that yields were available at the 336 
individual plant level, rather than the individual farm level across multiple farms.)   337 
 338 
RESULTS 339 
 340 
Identifying performance measures and predictor variables, and evaluating management 341 
performance  342 
 343 
Positive selection and yield for Andean potato. The Bayesian network analysis (Fig. 3) showed 344 
that, compared to low yield plants, high yielding plants were found in plots more commonly 345 
where first generation seed was used, at higher altitudes, with the Fripapa variety, and with lower 346 
minimum temperature and higher rainfall six months after planting, as well as low levels of 347 
PVX, PLRV, and PVY. The uncertainty is high compared to the observed values.  In the 348 
recursive partitioning analysis (Fig. 4), higher per plant yields were generally obtained from 349 
Fripapa (compared to Superchola) in the first two years after certified seed was bought, the 350 
highest yields being obtained for altitudes over 3278 m. Meanwhile the highest yields for 351 
Superchola were found above 2895 m altitude. If a farmer can afford to replace seed more 352 
frequently, and the farm is over 3200 m, Fripapa might be a better choice than Superchola if only 353 
a single variety is grown, based solely on yield and assuming the value in the market is 354 
comparable (0.29 versus 0.33 cents per kg respectively).  355 
 356 
Year 3 plants yield ~300 g per plant less on average, and the benefits of positive selection allow 357 
yields to approach the average yields for recently purchased certified seed (if values from cycle 1 358 
and 2 are combined). Since there are no differences with respect to variety in year/cycle 3 after 359 
certified seed it would seem positive selection is equally valuable in both varieties for seed that 360 
has gone through more than a two planting cycles. 361 
 362 
The price farmers obtain for each variety was estimated to be $0.33 USD per kg for Superchola 363 
and $0.29 USD per kg for Fripapa (Navarrete, perssonal observation). The variety Superchola 364 
has entered into the common parlance and is widely regarded as superior, even though there is 365 
some evidence that consumers cannot easily recognize the difference between ware potato of it 366 
and other varieties (Kromann, personal observation).  367 
 368 
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Positive selection and yield for Kenyan potato.  This analysis was based on the probability of 369 
adoption of positive selection, where higher adoption rates result in a higher payoff for 370 
investment.  Adoption rates were 46, 19 and 18% in three regions (Table 1) (Gildemacher et al. 371 
2012,  2011). Thus, based on this measure alone, selection of the region with better training 372 
uptake would double the benefits obtained of a training intervention focused only in the other 373 
areas. 374 
 375 
Applying models to a map of the relevant region and integrating data layers 376 
 377 
The mapped estimates of the management performance of positive selection for Andean potato 378 
yield (Fig. 5A) and the locations where cropland connectivity risk was highest (Fig. 5B) could be 379 
combined to identify locations both independently likely to be successful and of importance for 380 
regional management.  381 
 382 
VOI for targeted implementation of positive selection (yield as response, Bayesian networks to 383 
identify predictors) For equivalent farm sizes above and below 2895 m, we can estimate the 384 
benefit of training under uninformed (random) site selection by using the weighted mean of the 385 
benefit above and below 2895 m.a.s.l., which is 6.5 t/ha (0.51 * 7.7 + 0.49 * 3.2 = 6.5). 386 
 387 
The estimated benefit under informed site selection, selecting locations above 2895 m, is 7.7 t/ha 388 
– a difference of 1.2 t/ha from random site selection. Under misinformed site selection, if the 389 
assumption was that positive selection provides more benefits at low altitude due to greater 390 
pathogen load, then the benefit is 3.2 tons per ha, 4.5 tons per ha less than the optimal allocation, 391 
and 3.3 tons per ha less than the uninformed (random) site selection option. 392 
 393 
VOI for targeted implementation of positive selection (yield as response, rpart to identify 394 
predictors) Assuming that positive training targeted farmers randomly with respect to the 395 
observed frequency of the variables, the weighted mean benefit of positive selection would be 396 
8.7 tons per ha. Preferentially targeting sites at high altitude (but sampling randomly with respect 397 
to seed age and variety) provides higher benefits of 9 tons per ha, otherwise targeting low 398 
altitude sites provides lower returns at 8.3 tons per ha. Targeting farmers who plant old seed (3 399 
years since certification) provides little benefit: 8.8 tons per ha compared to random targeting of 400 
farmers (under the scenario where use of certified seed is rare at 2%), but targeting the 2% that 401 
do use new seed provides a benefit of 3.1 tons per ha.  By far the greatest benefit is provided by 402 
targeting farmers that grow Fripapa (benefit of 10.9 tons per ha) as opposed to Superchola 403 
(benefit of 7.6 tons per ha). 404 

 405 
Regional differences in adoption of training recommendations in Kenya.  406 
In the example of Kenyan potato seed technology adoption, targeted selection of high adoption 407 
rate areas for training (where the per-farmer benefit was $72) would increase the return by $28 408 
per farmer trained. Realized benefits would vary depending on farm sizes for the targeted 409 
farmers. 410 
 411 
 412 
 413 
 414 
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DISCUSSION 415 
 416 
The value of information was assessed by comparing (a) allocating development resources (with 417 
the example of positive selection training for farmers) without regard to the observed site 418 
characteristics, and (b) targeted allocation of training resources toward sites with known 419 
characteristics.  In our example, the data (and expert expectation) show that positive selection is 420 
often an effective way to reduce seed degeneration. An NGO or government extension agency 421 
could implement a rural development intervention where farmers are trained to use positive 422 
selection without regard to their specific farm conditions, variety used or the frequency with 423 
which they can buy improved seed. However we showed that this option is not optimal as a 424 
means of obtaining higher yield, and lower disease incidence. We compared uninformed and 425 
informed allocation of resources, to assess the value of the information used for targeting 426 
interventions. In the simplest scenario, using results from Bayesian networks, we showed that the 427 
benefit of positive selection was highest (4.5 tons per ha) at high altitudes, and uninformed 428 
allocation of farmer training would provide a net benefit of 1.2 tons per ha less than targeted 429 
training.  430 
 Using data about adoption rates from Kenya, we showed that unless adoption rates were 431 
higher than 24%, the first-year benefit per household would not exceed the $38 per farmer cost 432 
of training (though presumably the benefits would continue to accrue in subsequent years). Also 433 
random allocation of training effort would only yield a $44 dollar benefit (over the cost of the 434 
training) per household. Gildemacher et al. (2017) also point out that adoption rates were lower 435 
in drought years, suggesting that prediction of adoption rates could be difficult if based on 436 
regional patterns in a single year. It is easy to imagine scenarios where observed adoption rates 437 
(say in a training scheme) would vary in predictable ways based on in season weather conditions, 438 
language spoken, literacy, cultural differences between trainer and trainee, wealth or other 439 
factors. Further spatial data could be available for key predictor variables, and could form a part 440 
of selection criteria for farmer training initiatives (and the approach to the training could be 441 
altered to improve adoption rates).  442 
 Then in a more complex scenario, we showed that targeting farmers growing the variety 443 
Fripapa, or at high altitude was the optimal strategy. Not examined was the size of the farms, 444 
which would logically determine the returns on training efforts per farmer. Over and above the 445 
availability of data, the value of information in this scenario requires that the data be linked to 446 
real world distributions of farm or farmer characteristics and behavior (we used altitude, variety 447 
use, rate of seed replacement).  448 

We showed that recursive partitioning and Bayesian networks provide easily interpreted 449 
graphics and estimates of the predictor variables related to yield in seed degeneration studies. We 450 
anticipate that these tools will be useful in other studies examining disease incidence or yield and 451 
predictor variables related to management or environmental conditions. 452 

Combining data layers for evaluating optimal intervention strategies can provide more 453 
insight, along with challenges due to uncertainty.  Evaluating the risk of disease due to cropland 454 
connectivity (Xing et al. 2017) in combination with independent location traits can position the 455 
analysis in the larger context of disease management for the region.  A broader systems analysis 456 
– for example, impact network analysis (Garrett 2018; Garrett et al. 2018), which integrates 457 
across management performance, socioeconomic networks, and biophysical networks such as 458 
epidemic networks – can aid in identifying intervention locations that prioritize across multiple 459 
goals. 460 
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 Management performance mapping is potentially applicable to any problem in 461 
intervention agriculture or ecology with measurable outcomes. Yield gap analyses that 462 
incorporate maps can address some of the same goals as management performance mapping 463 
(Schulthess et al. 2013; Silva et al. 2017; Lobell, Cassman, and Field 2009; Lobell et al. 2015; 464 
van Ittersum et al. 2016; Grassini et al. 2015; van Bussel et al. 2015b).  For example, yield gap 465 
analysis attempts to identify the most important factors that influence yield, and are controllable. 466 
The focus of management performance mapping, however, is on providing spatial information 467 
about intervention impact of management options. Management performance maps would 468 
ideally incorporate and account for interacting human dimensions (e.g., learning, financial 469 
liquidity, capital, institutions) and biophysical aspects of crop production (Arneth et al., 2014) 470 
 To make maps, management performance measures are modelled as a function of 471 
predictor variables available in geographic data layers, e.g., climate variables, altitude, or soil 472 
fertility. Useful outcome variables include yield, disease incidence, measures of crop quality, 473 
technology adoption levels, or measures of food security. As in species distribution modeling, 474 
data to inform management performance mapping may come from experiments, surveys or 475 
monitoring of management carried out at any scale.  Species distribution models for crops can, 476 
themselves, be a useful predictor variable for evaluating the importance of management of 477 
invasive species.  Worldwide crop distribution models are valuable for defining the relevant 478 
locations for consideration of management options (You et al. 2014; Monfreda, Ramankutty, and 479 
Foley 2008). Alternatively, there could be cases where maps are derived from crop distributions 480 
are well understood via more direct means such as remote sensing, surveys or farm level 481 
measurements (e.g., Lobell et al. 2015).  The extent and depth of the reference data, the 482 
magnitude of management effect sizes, and the degree to which geographic extrapolation is 483 
appropriate will determine the level of confidence decision makers have in management 484 
performance maps. 485 
 Our example decision, deciding where to implement training for improved disease 486 
management, represents a class of decisions where there is confidence that the activity will 487 
provide a benefit.  Management performance mapping is applied to guide implementation to 488 
locations where there is some evidence that the benefit will be greater than in other locations.  489 
For this class of decisions, the risk is low that limited data is “worse than no data at all”.  In the 490 
language of hypothesis testing, there is not a strong motivation to avoid Type I error (rejecting a 491 
null hypothesis when the null hypothesis is true), because a Type II error (failing to reject a null 492 
hypothesis when the null hypothesis is false) is arguably just as bad.  In the management 493 
performance mapping context, the null hypothesis is that the benefit of implementation will be 494 
the same in all locations.  The main risk of “bad data” would be from data with a strong bias that 495 
would lead to misinformed decisions.  The cost of “bad data” may also go up if the logistical 496 
costs (of transport, communications, etc.) of targeting locations incorrectly identified 497 
is higher than targeting locations at random or selecting locations based on convenience. 498 
 We addressed management performance mapping with performance defined in terms of 499 
the mean performance observed.  Other potential criteria for selecting regions for investment 500 
might emphasize different priorities (Table 2). Going forward with applying management 501 
performance mapping, it will be important to consider not only the value of information under a 502 
reasonable set of assumptions, but also the role of uncertainty.  One of the applications of VOI 503 
analysis is to determine whether collecting more or better data about management performance is 504 
justified, not just for the sake of more statistical power but because the information improves 505 
farmer decision-making under a realistic range of conditions. Scientists, funders and policy 506 
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makers will need to evaluate whether decreasing uncertainty is likely to lead to shifts in the mean 507 
of the performance measures. There may be little value in collecting more evidence about 508 
management performance if the mean is little influenced. Estimates of uncertainty were obtained 509 
from the Bayesian and recursive partitioning methods we used, but we emphasized the 510 
differences in the estimated value of the management rather than the spread of the uncertainty.  511 
In our example data, our only estimate of uncertainty within a scenario was based on variability 512 
among individual plants, while a person making decisions about regional priorities would 513 
strongly prefer to have information about farm-to-farm variability within each scenario.  514 
However, emphasizing mean differences in management outcomes could be justified, in general, 515 
even if uncertainty is high, particularly if there is reason to believe more data will not lead to 516 
major shifts in the ranking of mean management performance. Management performance 517 
mapping provides a process to extrapolate from available data to make evidence-based decisions 518 
about where to invest in disease and crop management or training initiatives.   519 
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Table 1. Regional adoption rates after positive selection training in Kenya and the expected 722 
realized benefit of training given the adoption rate. The average benefit is that expected under 723 
random allocation of training effort to the regions without regard to adoption rates. 724 

Region Observed adoption 
rate 

Per household benefit 
$USD 

Expected realized 
benefit of training in 

year 1 
Nakura 0.46 156 72 

Nyadarua 0.19 156 30 
Narok 0.18 156 28 

  Average Benefit 44 
 725 
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Table 2. Potential criteria for identifying priority sites for interventions (such as training farmers 727 
to use positive selection for improved seed health). 728 
 729 
Criterion Rationale 
Regions where expected absolute 
benefit is greatest 

Greatest benefit to regional food production 

Regions where expected proportional 
gain is greatest 

Greatest benefit to regional farmers  

Regions where outcomes before 
intervention are lowest 

Benefit to regions in greatest need 

Regions where outcomes before 
intervention are highest 

Benefit to regions currently best adapted for 
production 

Incorporating measures of uncertainty at the farm level 
Regions where the 5th percentile benefit 
is greatest 

Consistent benefit across farmers 

Regions where the trimmed mean is 
greatest 

Greatest benefit for typical farmers 

 730 
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 732 

 733 
 734 
Fig 1. Development efforts ideally take place in a culture of continuous improvement, based on 735 
continuous monitoring and evaluation, and incorporating experimentation to facilitate adaptive 736 
management. The cycle described here closely resembles the learning cycle and the scientific 737 
process, in general. Management performance mapping operates in this context by scaling up 738 
field, farm, and plot derived information to larger scale landscapes, regions or countries. 739 
  740 
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 741 
 742 

 743 
 744 
 745 
Figure 2. The steps in a management performance mapping “pipeline”, illustrated for the use of 746 
positive selection for seed potato in Ecuador. 747 
  748 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/380352doi: bioRxiv preprint 

https://doi.org/10.1101/380352
http://creativecommons.org/licenses/by-nc-nd/4.0/


Buddenhagen et al. – 22 
 

 749 
 750 

 751 
 752 
Figure 3. Ecuadorian potato yield and the factors associated with yield from a Bayesian network 753 
analysis in Netica, where the impact of selected conditions can be seen for plants with low yield 754 
(left) and high yield (right) and the posterior probabilities in other nodes is returned. The lower 755 
text for each node gives the estimated mean and uncertainty. 756 
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 759 
 760 

 761 
Fig. 4. Recursive partitioning results in decision tree format, with per plant yield (g) as the 762 
dependent variable. Branches to the left are results when the logical statements at the nodes are 763 
true, and branches to the right are results when the logical statements are false. The upper 764 
numbers in the boxes are the mean yields for that condition, and the percent values are the 765 
proportion of the data for which the condition applies. 766 
 767 
  768 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/380352doi: bioRxiv preprint 

https://doi.org/10.1101/380352
http://creativecommons.org/licenses/by-nc-nd/4.0/


Buddenhagen et al. – 24 
 

 769 
 770 
 771 

 772 
Figure 5A. Ecuador and surroundings, with potato production indicated based on MapSpam 773 
estimates.  Pixels above and below 2895 m.a.s.l. are indicated in green and white, where pixels 774 
are included if the harvested area estimate is greater than 200 ha. We find that 51% of the 775 
harvested is above this threshold. The country border is for Ecuador, and the graticules are 1 776 
degree squares.  777 
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 781 
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 783 
 784 
Figure 5B. The potato cropland connectivity risk index estimated for Ecuador and southern 785 
Colombia, based on the mean from uncertainty quantification across multiple parameter 786 
combinations (Xing et al., 2017). 787 
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