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ABSTRACT 33 

Policymakers and donors often need to identify the locations and settings where technologies are 34 

most likely to have important effects, to increase the benefits from agricultural development or 35 

extension efforts.  Higher quality information may help to target the high-payoff locations.  The 36 

value of information (VOI) in this context is formalized by evaluating the results of decision 37 

making guided by a set of information compared to the results of acting without taking the 38 

information into account. We present a framework for management performance mapping that 39 

includes evaluating the VOI for decision making about geographic priorities in regional 40 

intervention strategies, in case studies of Andean and Kenyan potato seed systems. We illustrate 41 

use of Bayesian network models and recursive partitioning to characterize the relationship 42 

between seed health and yield responses and environmental and management predictors used in 43 

studies of seed degeneration. These analyses address the expected performance of an 44 

intervention based on geographic predictor variables. In the Andean example, positive selection 45 

of seed from asymptomatic plants was more effective at high altitudes in Ecuador. In the Kenyan 46 

example, there was the potential to target locations with higher technology adoption rates and 47 

with higher potato cropland connectivity, i.e., a likely more important role in regional epidemics. 48 

Targeting training to high performance areas would often provide more benefits than would 49 

random selection of target areas. We illustrate how assessing the VOI can help inform targeted 50 

development programs and support a culture of continuous improvement for interventions. 51 

 52 

Additional keywords: agricultural development, disease, Ecuador, GIS, intervention ecology, 53 

Kenya, pest management, potato, seed degeneration, translational science, value of information, 54 

virus, yield gap  55 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 28, 2020. ; https://doi.org/10.1101/380352doi: bioRxiv preprint 

https://doi.org/10.1101/380352


Buddenhagen et al. – 3 
 

A central problem in applied spatial ecology is how to partition management efforts across 56 

landscapes. Interventions by governments or development organizations are often designed to 57 

increase regional crop yield, for example by improving disease management. International, 58 

governmental, and non-governmental organizations that seek to reduce poverty, enhance food 59 

security, and support ecosystem services, need strategies to geographically target interventions 60 

after identifying priorities using participatory approaches with stakeholders. We propose 61 

“management performance mapping” as a tool for translating experimental results to support 62 

identification of geographic priorities by policy makers and donors. Management performance 63 

mapping consists of scaling up models based on an often limited number of observations, to 64 

visualize how specific interventions are likely to perform at a regional scale (Altieri and Nicholls 65 

2008; van Bussel et al. 2015; van Wart, Kersebaum, et al. 2013; Grassini et al. 2015). 66 

Management performance mapping can have a number of applications, such as providing a 67 

summary of recommendations for extension programs, or evaluating which type of management 68 

is most effective for a set of locations.  In this paper, we focus on management performance 69 

mapping to inform targeting of interventions to support a management component known to be 70 

effective under some circumstances, where the goal is to identify the locations where it will be 71 

most effective.  This approach may be particularly useful in low-income countries where 72 

smallholder farmers have fewer options, and there is interest in making a valuable new option 73 

available through a system intervention. Management performance mapping can be implemented 74 

to visualize the impact of proposed interventions, to improve decision-making and policymaking, 75 

as a component of adaptive management in development (Fig. 1).  76 

Digital or precision agriculture and species distribution models both address components 77 

of spatial prioritization and are thus related to management performance mapping.  The question 78 
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of how to optimize information use for decision making is addressed at the within-field scale in 79 

precision agriculture (Tittonell and Giller 2013), allowing well-resourced farmers, and 80 

potentially smallholder farmers (Cook et al. 2003), to collect and utilize spatially explicit data 81 

sets (in near real-time) about crop performance. Inputs such as fertilizer, pesticides, and 82 

irrigation are applied to areas of the field where they are most needed to maximize yields.  83 

Species distribution models address the problem of optimal targeting indirectly, by 84 

providing information about where invasive (or endangered) species, including pathogens, are 85 

most likely to be found (Austin 2007; Hijmans and Graham 2006; Sheppard et al. 2014), often 86 

grappling with problems in statistical inference (Stolar and Nielsen 2015) also relevant to 87 

management performance mapping.  Species distribution models are generally designed to draw 88 

inference beyond the regions where data were collected, by estimating species niche parameters 89 

based on maps of species occurrence or abundance throughout a species’ native and introduced 90 

range (Sutherst and Maywald 1985; Wang et al. 2017; Phillips et al. 2018; Bourdôt and 91 

Lamoureaux 2019).  Management performance mapping for disease management can 92 

incorporate both information about which environments are conducive to pathogen and vector 93 

reproduction, and which environments are conducive to effective management. 94 

The value of information (VOI) concept is useful for evaluating the benefits of basing 95 

strategies on management performance mapping. Assessing the VOI involves quantifying the 96 

expected benefit of reducing uncertainty (Canessa et al. 2015), as described further below. VOI 97 

analyses offer a means of both evaluating information and benefits, and assessing the role of 98 

uncertainty when comparing management options (Hirshleifer and Riley 1979; Macauley 2006; 99 

Canessa et al. 2015).  VOI analyses compare outcomes from decision making with and without 100 

particular units of information, taking into account the stakes for making good or bad decisions, 101 
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such as differences in yield or profit (Fig. 2). In studies of willingness-to-pay, such as farmer 102 

willingness-to-pay for technologies, the utility functions for technologies are closely related to 103 

the VOI (Breidert et al. 2006; Asante Bright Owusu et al. 2011; Hanemann 1991).  Of course, 104 

decision-maker willingness-to-act based on information is necessary for information valuation to 105 

be meaningful. For example, overly confident decision-makers may not be influenced by new 106 

information, or they may not reflect on the uncertainty that is inherent in the information 107 

available. Many examples in the VOI literature focus on agriculture, such as the uncertainty risk 108 

distribution for farm yield (Hirshleifer and Riley 1979), the value of weather forecasting for 109 

farmers (Lave 1963), and risk assessment for crop futures (Danthine 1978). A related area of 110 

application of VOI concepts is in invasion biology more generally and in conservation biology, 111 

where decisions must also be made about where to prioritize efforts (Canessa et al. 2015; 112 

Johnson et al. 2017; Wilson 2015).  VOI analyses have so far seen little application in plant 113 

pathology, crop epidemiology, or seed system development, where they have the potential to 114 

improve research prioritization and decision making. 115 

We present case studies of management performance mapping and the application of VOI 116 

analysis that focus on smallholder management of “seed degeneration” in agricultural systems. 117 

Seed degeneration is the reduction in yield or quality caused by an accumulation of pathogens 118 

(often viruses) and pests in planting material over successive cycles of propagation, where 119 

vegetatively-propagated crops deserve particular attention because of their higher risk of disease 120 

transmission (Thomas-Sharma et al. 2016). Establishing improved seed systems is challenging, 121 

especially in low-income countries, due in part to the many system components that must be 122 

integrated for seed system success (Jaffee and Srivastava 1994; McGuire and Sperling 2016; 123 

McQuaid et al. 2016; Sperling 2008; Gildemacher et al. 2009; Bentley and Vasques 1998; 124 
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Almekinders et al. 2019). In informal seed systems in low-income countries, farmers typically 125 

use seed saved from the previous season for replanting, often leading to reduced yields, e.g., 5-126 

50% reduction (Devaux et al. 2010a), especially when farmers are unfamiliar with approaches 127 

for selecting healthier seed from their fields with reduced pathogen risk. Despite the challenges 128 

(Almekinders et al. 2019), seed system improvement has great potential for improving regional 129 

agriculture, by providing healthier seed of better varieties, and has been a major focus of 130 

agricultural development efforts funded by many agencies (e.g., national plant protection 131 

agencies, The Bill and Melinda Gates Foundation, USAID, and FAO) (Jaffee and Srivastava 132 

1994; McGuire and Sperling 2016; Almekinders et al. 1994).   133 

Optimizing yield by reducing disease impacts, and improving seed quality, is a primary 134 

goal of many seed system interventions.  Governments and institutions with a strong focus on 135 

science for development, such as CGIAR, work on a suite of factors linked to seed system 136 

health. Farmer training efforts focus on options for disease management and optimal decision-137 

making.  International development efforts for improved seed systems seek to increase farmer 138 

access to disease-free, disease-resistant, high-quality seed, to improve farmer practices, to 139 

implement “integrated seed health strategies” (Thomas-Sharma et al. 2016), and to implement 140 

realistic phytosanitary thresholds (Choudhury et al. 2017). Despite concerted efforts, many 141 

systems may revert to largely informal systems (sub-optimal seed sourced on-farm much of the 142 

time) after interventions. For example, 98% of potato seed sources in the Andes were reported as 143 

informal (Louwaars et al. 2013; Devaux et al. 2010a). Interventions are more likely to succeed if 144 

they are affordable, and help farmers to be profitable (McGuire and Sperling 2013; Sperling et 145 

al. 2013). As an example, positive selection is an on-farm management intervention that can 146 

provide large yield benefits, e.g., 28-55% increases (mean 32%) (Gildemacher et al. 2012,  2011; 147 
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Schulte-Geldermann et al. 2012) and is often recommended as part of an integrated seed health 148 

strategy (Thomas-Sharma et al 2016).  Under positive selection, farmers select healthy appearing 149 

plants and mark them for later harvesting of seed.  Training farmers in the techniques of positive 150 

selection can be an effective component of an integrated seed health strategy, and we use 151 

positive selection as the example management in our case studies.  152 

A challenge for management performance mapping – as for species distribution 153 

modelling, digital agriculture, and most analyses designed to draw inference about larger 154 

geographic areas – is to make the most of the available data while avoiding overinterpretation of 155 

results.  Often data about agricultural management performance exist, or can be collected inside 156 

of existing intervention projects, but the data are collected at the scale of fields, farms or 157 

individual plant performance measures. Multiple factors influence plant productivity apart from 158 

management, generating uncertainty about the pay-off from management choices even where 159 

data are relatively abundant.  We discuss considerations for use of limited data.  The Andean 160 

case study addressed below illustrates both the challenge and potential value of management 161 

performance mapping.  Greater vector activity is often assumed in lower elevations, suggesting 162 

that virus management in seed materials would be more important in these regions. Field 163 

observations in Ecuador, though based on a limited number of fields, suggest that the reverse is 164 

true for this case. We evaluate the VOI from management performance mapping to guide 165 

selection of intervention locations if this counterintuitive observation is indeed representative for 166 

the region. 167 

Our objectives in this study are to (i) introduce and illustrate the concept of management 168 

performance mapping and associated methods, (ii) introduce the use of VOI analysis in this 169 

context, and (iii) illustrate the application of management performance mapping for potato seed 170 
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degeneration management by positive selection of seed in the Andes and in Kenya. We also 171 

illustrate how analysis of likely management performance at individual sites can be combined 172 

with other geographic considerations, such as cropland connectivity as a proxy for the role of 173 

locations in epidemic spread for the region (Xing et al. 2020). 174 

 175 

METHODS 176 

We describe the steps involved in producing management performance maps (Fig. 1), 177 

using the example of training farmers in positive selection to identify plants more likely to 178 

produce healthy seed. Then we illustrate management performance mapping for a seed 179 

degeneration data set from a potato seed study in Ecuador and a study of management adoption 180 

in Kenya (Gildemacher et al. 2012; Kromann et al. 2017). As a step in preparing the Andean 181 

management performance maps, we illustrate the application of Bayesian networks and recursive 182 

partitioning for assessing the influence of disease, environmental factors, and management on 183 

yield.  We also evaluate the potential VOI for guiding the selection of locations in development 184 

interventions for potato seed health in Ecuador and Kenya based on the estimated effects, 185 

although we note that in these cases more data would be needed before proceeding to action in 186 

the field based on these analyses.  We illustrate steps 1 through 5 of the management 187 

performance mapping pipeline (Fig. 1), while steps 6 through 8 would also be key to achieving 188 

outcomes in the field in an adaptive management approach (Shea et al. 2014).  To illustrate the 189 

potential for combining management performance mapping (evaluated for each geographic pixel 190 

independently) with other types of spatial processes that may include the potential roles of 191 

locations in epidemic spread, we also provide an example of integration with a cropland 192 

connectivity analysis (Xing et al. 2020), described below. 193 
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1) Formulate questions about the performance of a specific management strategy 194 

across a geographic region. In these case studies, we evaluate the effects of positive selection 195 

of farm-saved seed potato for virus disease management.  In general, the identification of 196 

management strategies for evaluation will likely be more successful if the process includes 197 

participatory input from stakeholders.  In the Andean case study, our questions are: Where would 198 

training in positive selection likely produce the greatest benefit for yield in Ecuador and 199 

Colombia?  And how does the variety grown and the time since seed replacement influence the 200 

benefit for yield?  In the Kenyan case study, our question is: Where would training in positive 201 

selection likely produce the greatest benefit for yield, choosing among three regions of Kenya? 202 

2) Assemble data related to the performance of the management strategy.  We use 203 

two data sets as case studies. The first is from potato production in the Ecuadorian Andes, from a 204 

study designed for parameter estimation for a seed degeneration model.  This study (Kromann et 205 

al. 2017) monitored seed degeneration in two potato cultivars, at three altitudes, and considered 206 

the use of on-farm seed management options. The two cultivars were INIAP-Fripapa and 207 

Superchola (perceived by farmers to be susceptible and resistant to degeneration, respectively). 208 

The field trials were carried out during three cycles of planting at three sites representing three 209 

altitudes (<2700 masl, 3000 masl and > 3400 masl, where the site <2700 masl was moved during 210 

the course of the experiment). Twelve 49 m2 plots were planted each year, two plots of each 211 

cultivar at each altitude/site. In each whole plot, three types of seed management were carried 212 

out in subplots: positive selection, roguing and random selection. The response variables 213 

included (1) virus incidence (Potato virus X (PVX), Potato virus Y (PVY), Potato virus S (PVS), 214 

Potato leaf roll virus (PLRV), Andean potato latent virus (APLV), and Andean potato mottle 215 
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virus (APMoV)) in plants at emergence, flowering and in tubers, evaluated using DAS-ELISA, 216 

(2) incidence and severity of pest damage and diseases in tubers, and (3) tuber yield.  217 

This  Ecuadorian study was designed for parameter estimation for a seed degeneration 218 

model (Thomas-Sharma et al. 2017). The main components of this model relate to seed health 219 

(virus incidence, time/seasons since certified seed was last obtained), cultivar, environmental 220 

factors (weather), management (seed propagation and selection) and yield data for samples of 221 

individual potato plants (Kromann et al. 2017).   A single site represented each altitude in this 222 

data set, so variability within a scenario can only be evaluated at the individual plant level.  Lack 223 

of replication at the field level is a limitation for management performance mapping, because an 224 

analysis intended for providing recommendations for project implementation would be stronger 225 

if multiple farms per altitude provided estimates of farm-to-farm variation in management 226 

performance within an altitude range.  We focus on yield data as the response in the management 227 

performance mapping example, with potential predictors being farm altitude (across three 228 

altitudes), seasons since certified seed was obtained, and the management performance of 229 

positive selection compared to roguing or random seed selection as management strategies. 230 

Climate variables – precipitation, humidity and temperature, from the WorldClim data base (Fick 231 

and Hijmans 2017) – were also evaluated as potential predictors, but were not effective 232 

predictors of either disease incidence or yield, probably at least in part because only three fields 233 

per year were evaluated (data and analysis not shown).     234 

The second data set was published data about seed health management, and positive 235 

selection training and adoption rates in three counties in Kenya (Gildemacher et al. 2012).  We 236 

used this data to illustrate integrating information about the likelihood that farmers in a region 237 
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will adopt a technology (Gildemacher et al. 2012), another key component of intervention 238 

success.   239 

3) Identify predictor variables for management performance. There are many 240 

potential predictor variables for performance indicators (Thomas-Sharma et al., in preparation) 241 

and a wide range of methods can be used to identify important predictors, including regression 242 

analysis, generalized linear models, and generalized additive models.  We illustrate two types of 243 

machine learning algorithms – classification and regression trees, and Bayesian network analysis 244 

– to evaluate potential predictors, focusing on yield as the response used as a management 245 

performance indicator.  These two methods were used to identify predictor variables for the 246 

effect of positive selection on yield for the Kromann et al. (2017) dataset.  Simpler approaches to 247 

identifying key predictors may also often prove useful in application of management 248 

performance mapping. 249 

Classification and regression trees. Classification and regression trees have been applied 250 

in agricultural systems for land and soil classification, climate change impact assessment, risk 251 

assessment, and evaluation of toxin levels and disease conduciveness in plants (Langemeier et al. 252 

2016; Novak and LaDue 1999; Etter et al. 2006; Caley and Kuhnert 2006; Paul and Munkvold 253 

2004; Tittonell and Giller 2013). The strength of the recursive partitioning method lies in its 254 

ability to deal with non-linearity in data and to depict and support interpretation of the outputs in 255 

a decision-tree format. A limitation of this method is that it may perform relatively poorly with 256 

continuous variables or large numbers of unordered variables. We illustrate use of the rpart 257 

package in R in the following two examples using the Kromann et al (2017) data set.   258 

Effect of seed selection, time since seed renewal, and altitude on yield, evaluated with 259 

recursive partitioning (Andes). We evaluated yield as the response variable, with predictors 260 
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being the use of positive selection (as opposed to roguing or random seed selection), the time 261 

since seed renewal through purchase of certified seed (either three seasons or less than three 262 

seasons), and the effect of altitude (across three altitudes). Because altitude is available as a 263 

potential geographic predictor variable for the region, it is a candidate for extrapolating analysis 264 

of the performance of positive selection to a wider area in Step 4 (Fig. 1). 265 

 Effect of potato cultivar and its interactions on yield, evaluated with recursive 266 

partitioning (Andes). In a previous study of a grower cooperative in Tungurahua, Ecuador, 267 

Superchola (one of the most important potato varieties in Ecuador) and INIAP-Fripapa were sold 268 

and grown at a ratio of approximately 2:1 by volume (Buddenhagen et al. 2017). Our analysis of 269 

the Kromann et al. dataset (2017) also focuses on these two varieties.  We evaluate the effects of 270 

cultivar, altitude, and management by estimating mean per-plant yields across treatment 271 

combinations, and by using recursive partitioning in rpart. 272 

Bayesian networks. Bayesian networks (Therneau et al. 2010) have been applied in 273 

natural resource management systems for applications such as vegetation classification, optimal 274 

decision making, disease management, adaptive management of wildlife habitat, and expert 275 

elicitation (Geenen and Van Der Gaag 2005; Aguilera et al. 2011; Kristensen and Rasmussen 276 

2002; Perez-Ariza et al. 2012; Howes et al. 2010). A Bayesian network is a directed, acyclic 277 

graph whose nodes represent predictor variables and links represent dependencies. The 278 

relationships between variables are quantified in conditional probability tables, where the set of 279 

all tables together represents the full joint distribution. Important strengths of the Bayesian 280 

network method include its ability to infer probabilistic relationships among many variables 281 

simultaneously. The network structure can be set manually by the user or learned from the data 282 

using a variety of algorithms. In the case of exact estimation algorithms, it is possible to set 283 
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values for any combination of nodes and produce new posterior probabilities for each variable in 284 

the network.  A limitation of this method is the cost of some of the most advanced Bayesian 285 

network software. In addition, combinations of continuous and categorical data can be 286 

problematic for some commonly-used Bayesian network algorithms (Aguilera et al. 2011). Tools 287 

available for Bayesian network analysis include BI-CAMML, Hugin and Netica (Aguilera et al. 288 

2011). R packages include bnlearn, gRain and pcalg (Nagarajan et al. 2013). We selected Netica 289 

for this illustration because it is relatively affordable, the algorithms it uses allow for immediate 290 

updating of conditional probabilities based on selected levels for variables, it has a powerful 291 

graphical interface, and it is widely used in ecological and environmental analyses (Aguilera et 292 

al. 2011). 293 

  Effect of positive selection on yield, evaluated in Bayesian networks (Andes). The 294 

benefit of positive selection (in the third cropping cycle after certified seed purchase) was 295 

evaluated in a Bayesian network in Netica. Netica’s Tree-Augmented Naive Bayes (TAN) 296 

classifier algorithm was used to estimate the conditional probability tables and the network 297 

structure. From the conditional probability tables we estimated yields above (7.7 t/ha) and below 298 

(3.2 t/ha) the threshold altitude identified in the analysis: 2895 m.a.s.l.   299 

 A simple analysis of regional differences in adoption of training recommendations 300 

(Kenya). In this case study, we evaluated regional differences in farmers’ adoption of positive 301 

selection after training (Table 1), reported by Gildemacher et al. (2012) as follows for three 302 

Kenyan counties: Nakuru 46%, Nyandarua 19%, and Narok 18%.   303 

 4) Estimate management performance across the geographic study region.  For 304 

positive selection of on-farm seed in the Andes, we selected for analysis and extrapolation a 305 

major potato growing region stretching from southern Ecuador to southern Colombia. Using 306 
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potato production geographic data layers from SPAM 2005 v3.2 Global Data  (IFPRI and IIASA 307 

2016) we focused on pixels with >200 ha potato production per pixel (where a pixel represents 5-308 

arc minutes, approximately 10,000 ha). Here 51% of potato production is above 2895 m (the 309 

altitude threshold identified in the analyses above) based on SPAM estimates (You et al. 2012). 310 

The resulting management performance map will indicate that these regions would be priorities 311 

for targeting training in positive selection if decisions are based solely on this analysis of the data 312 

from Kromann et al. (2017).  313 

 For positive selection of on-farm seed in Kenya, rather than extrapolating the estimates of 314 

management performance for positive selection, we simply compare the relative performance of 315 

the counties (Table 1).  The resulting management performance map will indicate prioritization 316 

among these counties if decisions for targeting positive selection training are based solely on the 317 

data from Gildemacher et al. (2009). 318 

 5) Evaluate the value of information for management intervention or policy.  We 319 

assessed the value of information for decisions about where to invest management interventions, 320 

for a scenario where the estimates from Kromann et al. (2017) do correctly represent the region. 321 

For the purposes of this illustration, we considered cases where decision makers either have or 322 

do not have information about the geographic differences in management performance (Fig. 2). 323 

In the absence of information, they might select any location for management with equal 324 

probability. An estimate of the value of information would be the difference in the benefit of 325 

investment for locations selected based on the information (“informed location selection”), and 326 

the benefit for locations selected randomly (“uninformed location selection”). For example, 327 

informed site selection might direct site selection to farms above or below the altitude threshold 328 

identified in analysis (e.g., 2895 m.a.s.l. identified in Bayesian network analysis), depending on 329 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 28, 2020. ; https://doi.org/10.1101/380352doi: bioRxiv preprint 

https://doi.org/10.1101/380352


Buddenhagen et al. – 15 
 

whether higher or lower elevations provide greater benefits.  In the case where decision makers 330 

have a prior belief that is not supported by the data, and it is in fact an incorrect belief, the value 331 

of information would be the difference between investment outcomes based on the 332 

misconception (“misinformed location selection”) and outcomes based on informed investments.  333 

For example, there could be a prior belief that a particular pathogen will be more prevalent at 334 

lower elevations, due to a higher abundance of vectors, resulting in a prior belief that positive 335 

selection would be more important at lower elevations. We evaluated uninformed, informed, and 336 

misinformed management choices related to spatially distributed differences in yield, disease, 337 

cultivar and the rates with which best practices are adopted.  338 

 VOI for positive selection targeting in the Andes. Comparison of yield improvements 339 

due to positive selection training – with and without the information from Kromann et al. (2017) 340 

– has as a first step determining how common each trait combination is in the landscape being 341 

considered. Then the probability of randomly including a particular trait combination can be 342 

estimated.  The proportion of Ecuadorian farmers using certified seed was previously reported at 343 

2% (Devaux et al. 2010b), and many farmers lack access to certified seed, though for some 344 

organized farming groups the proportion using certified or quality-declared seed can be as high 345 

as 46% (Buddenhagen et al. 2017).  We take the frequency of farms in this landscape being 346 

planted with certified seed (“new seed”) at any given time as being approximately 2% (so that a 347 

farm drawn at random has probability p = 0.02 of being planted with certified seed, although this 348 

is an approximation because it is generally the wealthier farmers, government programs, or non-349 

governmental organizations who acquire certified seed). Farm altitude, based on the geographic 350 

analysis described above for higher density potato regions, is above the altitude threshold 351 

identified in recursive partitioning approximately 51% of the time.   For simplicity, we treat the 352 
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potato cultivar planted as 33% INIAP-Fripapa and 66% Superchola, based on estimates for the 353 

province of Tungurahua from Buddenhagen et al. (2017). 354 

VOI for targeting positive selection in Kenya.  The average benefit of positive selection 355 

was reported by Gildemacher et al. (2012) as 3.4 tons per ha (~$350 per ha). This translated to a 356 

per-household benefit of $156 per season for a farm of average size for the region. Meanwhile, 357 

the cost of training was $38 per farmer. In this case, the expected first-year benefit was $44 per 358 

household when training occurred in a randomly selected region (without regard to adoption 359 

rate) (Table 1).  We compare this outcome to the outcome using information about frequencies of 360 

adoption. 361 

Integration with another criterion for selecting priority locations: cropland 362 

connectivity (Ecuador and Colombia).  The data layer of estimated management performance 363 

is one important factor for deciding where to prioritize management efforts. The management 364 

performance map developed up to this stage is generated pointwise, in that it treats each location 365 

(point) as independent from other locations.  However, some locations will have more important 366 

roles in epidemics than others, due to factors such as the location’s position in spatial epidemic 367 

networks. Thus, targeting some locations will have more important effects to slow regional 368 

epidemics, for seed degeneration pathogens such as viruses that tend to be spread from one field 369 

to another.  We also evaluated the layer of management performance estimates for positive 370 

selection integrated with a data layer of the potato “cropland connectivity risk index”, a measure 371 

of the likely importance of locations for spatial movement through potato growing areas (Xing et 372 

al. 2020; Margosian et al. 2009), as described below. 373 

The potato cropland connectivity analysis was based on the potato crop harvested area 374 

data from SPAM 2005 v3.2 Global Data (IFPRI and IIASA 2016). This data has pixel resolution 375 
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5-arc min, and those cells with harvested area greater than 200 ha were included in the cropland 376 

connectivity risk analysis (Xing et al., 2020). As described in more detail in Xing et al. (2020), 377 

the distance between pairs of cells was evaluated in a sensitivity analysis for both inverse power-378 

law models (parameters 0.5, 1, and 1.5) and negative exponential models (parameters 0.05, 0.1, 379 

0.2, 0.3, and 1). Three network link thresholds (0.001, 0.0001, 0.00001) were applied separately 380 

to each adjacency matrix to represent three different scenarios in the network analysis in a 381 

sensitivity analysis. A cropland connectivity risk index (CCRI) was calculated as the scaled 382 

weighted sum of betweenness centrality, node strength, the sum of nearest neighbours’ node 383 

degrees, and eigenvector centrality, as in Xing et al. (2020). For each realization in the sensitivity 384 

analysis, the mean CCRI was evaluated across the 24 parameter combinations.  This mean CCRI 385 

was then mapped in combination with the map of management performance estimates, to 386 

identify locations important both for the CCRI (indicating a potentially important epidemic role) 387 

and for management benefits from positive selection. 388 

 389 

RESULTS 390 

3) Identifying predictor variables for management performance 391 

 Positive selection and yield for Andean potato.   392 

 In the recursive partitioning analysis, higher per plant yields were generally obtained 393 

from INIAP-Fripapa (compared to Superchola) in the first two years after the certified seed was 394 

purchased, the highest yields being obtained for altitudes over 3278 m (Fig. 3). The highest 395 

yields for Superchola were found above 2895 m altitude. If a farmer can afford to replace seed 396 

more frequently, and the farm is over 3200 m, INIAP-Fripapa yielded higher than Superchola 397 
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(and their value in the market was comparable in 2016 – 0.29 and 0.33 USD per kg, 398 

respectively).  399 

 Plants three years post-certified seed purchase yielded 33% less per plant. The benefits of 400 

positive selection allow yields to approach the average yields for recently purchased certified 401 

seed. There were no differences with respect to cultivar three years after certified seed purchase, 402 

suggesting positive selection was equally valuable in both varieties for seed that had gone 403 

through more than two planting cycles. 404 

 The Bayesian network analysis indicated that high yielding plants were found more 405 

commonly in plots where first generation certified seed was used, at higher altitudes, for the 406 

INIAP-Fripapa cultivar, and where there was a lower minimum temperature and higher rainfall 407 

six months after planting, as well as low levels of PVX, PLRV, and PVY (Fig. 4). Positive 408 

selection was less likely to be the management implemented if the yield was low. All the viruses 409 

except PVY, and PLRV for low yield plants, were more likely to be absent (frequency = 0) than 410 

present. Each virus was relatively more likely to be absent if a plant was in the high yield 411 

category compared to plants in the low yield category (Fig. 4). The uncertainty was high 412 

compared to the observed values, indicating that another cycle of data collection would be 413 

needed before implementing project plans based on this data. 414 

 Adoption of positive selection for Kenyan potato.  This analysis was based on the 415 

probability of adoption of positive selection, where higher adoption rates resulted in a higher 416 

payoff for intervention investment.  Adoption rates were 46, 19 and 18% in three counties (Table 417 

1) (Gildemacher et al. 2012,  2011). Thus, based on this measure alone, selection of the county 418 

with 46% adoption rate would approximately double the benefits obtained from a training 419 

intervention focused only where there was 18% or 19% adoption. 420 
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4) Estimating management performance across the geographic study region, and 421 

integrating with cropland connectivity estimates. 422 

Applying models to a map of the relevant region and integrating data layers for 423 

Andean potato.  The mapped estimates of the management performance of positive selection for 424 

Andean potato yield (based on altitude) and the locations where potato cropland connectivity risk 425 

was highest based on the CCRI (Fig. 5) were combined to identify locations both (a) 426 

independently likely to have the best management outcomes, and (b) likely important for 427 

regional management of disease spread (high CCRI).  Locations that meet both criteria were 428 

observed near the border of Ecuador and Colombia, and near Ambato and Riobamba in Ecuador 429 

(Fig. 5). 430 

Technology adoption rates for three counties in Kenya.  The county with the highest 431 

adoption rate for positive selection, Nakuru (Table 1), was intermediate in terms of the cropland 432 

connectivity index (Fig. 6).  The cropland connectivity index was high for multiple locations in 433 

and near Nyandarua county. 434 

5) Evaluate the value of information for management intervention or policy. 435 

 VOI for targeted implementation of positive selection (yield as response, Bayesian 436 

networks to identify predictors) For equivalent farm sizes above and below 2895 m 437 

(representing 49% of the area), we estimated the benefit of training under uninformed (random) 438 

site selection by using the weighted mean of the benefit above and below 2895 m.a.s.l. 439 

(representing 51% of the cultivated area), which is 6.5 t/ha (0.51 * 7.7 + 0.49 * 3.2 = 6.5). 440 

 The estimated benefit under informed site selection, selecting locations above 2895 m, is 441 

7.7 t/ha – a difference of 1.2 t/ha from random site selection. Under misinformed site selection,  442 

if the assumption was that positive selection provides more benefits at low altitude (perhaps due 443 
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to greater pathogen load), then the benefit is 3.2 tons per ha, 4.5 tons per ha less than the optimal 444 

allocation, and 3.3 tons per ha less than the uninformed (random) site selection option. 445 

 VOI for targeted implementation of positive selection (yield as response, recursive 446 

partitioning to identify predictors) Assuming that positive selection training targeted farmers 447 

randomly with respect to the observed frequency of the categories, the weighted mean benefit of 448 

positive selection would be 8.7 tons per ha (Fig. 3). Preferentially targeting sites at high altitude 449 

(but sampling randomly with respect to seed age and cultivar) provides higher benefits (9 450 

tons/ha), otherwise targeting low altitude sites provides lower returns at (8.3 tons/ha). Targeting 451 

farmers who plant farm-saved seed, three years since purchase of certified seed, provides little 452 

benefit: 8.8 tons/ha compared to random targeting of farmers (under the scenario where use of 453 

certified seed is rare at 2%). Targeting the 2% that do use new seed provides a benefit of 3.1 454 

tons/ha, although these more successful farmers may not need interventions. By far the greatest 455 

benefit is provided by targeting farmers that grow INIAP-Fripapa (benefit of 10.9 tons/ha) as 456 

opposed to Superchola (benefit of 7.6 tons/ha). 457 

Regional differences in adoption of training recommendations in Kenya.  In the 458 

example of Kenyan potato seed technology adoption, targeted selection of high adoption rate 459 

areas for training (where the per-farmer benefit was $72) would increase the return by $28 per 460 

farmer trained (Table 1). Realized benefits would vary depending on the farm size. 461 

 462 

DISCUSSION 463 

 The examples given here show how management performance mapping can be used to 464 

target sites for project interventions.  We illustrate how identifying locations where positive 465 

selection of on-farm saved seed has the highest performance for increasing yield (Andes) or the 466 
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highest adoption rates (Kenya) can provide substantial regional benefits. While the particular 467 

examples here would require additional information to advance to the field with confidence 468 

(steps 6 through 8 in Fig. 1), they illustrate how a management performance mapping framework 469 

can be implemented An NGO or government extension agency with limited resources could use 470 

such an approach to better target rural development interventions. We compared uninformed and 471 

informed allocation of resources, for scenarios where the management performance models are 472 

correct (i.e., scenarios where the data perfectly represent the region of interest), to assess the 473 

value of the information used for targeting interventions. In a simple scenario, using Bayesian 474 

network analysis to identify altitude as a management performance predictor, we found that the 475 

benefit of positive seed selection was highest (an increase of 4.5 tons per ha) at high altitudes, 476 

and uninformed allocation of farmer training would provide a net benefit of 1.2 tons per ha less 477 

than targeted training. Incorrectly assuming that better outcomes for positive selection would be 478 

obtained at lower altitudes, perhaps because aphid vector abundances were thought to be higher, 479 

would have produced 3.3 and 4.5 tons per ha less for random site selection and optimal 480 

allocation, respectively, for this scenario (Bertschinger et al. 2017). 481 

 Along with the magnitude of management effects on yield, adoption rates are also key to 482 

successful interventions (Parsa et al. 2014).  Based on the data about the benefits of adoption 483 

rates of positive selection of seed in Kenya, we found that unless adoption rates were higher than 484 

24%, the first-year benefit per household would not exceed the $38 per farmer cost of training 485 

(although, presumably, the benefits would continue to accrue in subsequent years). Also, random 486 

allocation of training effort would only yield a $44 benefit (over the cost of the training) per 487 

household. Gildemacher et al. (2017) also point out that adoption rates were lower in drought 488 

years, suggesting that prediction of adoption rates could be difficult if based on regional patterns 489 
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in a single year. Observed adoption rates may vary in predictable ways based on disease 490 

incidence in the current or previous season, in-season weather conditions, language spoken, 491 

literacy, cultural differences between trainer and trainee, wealth or other factors. When these 492 

relationships are understood and spatial data are available for key predictor variables for 493 

adoption, these variables could form a part of selection criteria for farmer training initiatives (and 494 

the approach to the training could be altered to improve adoption rates).  495 

 Our example decision, deciding where to implement training for improved disease 496 

management, represents a class of decisions where there is confidence that the activity will 497 

provide a benefit.  Management performance mapping is applied to guide implementation to 498 

locations where there is some evidence that the benefit will be greater than in other locations.  499 

For this class of decisions, the risk is often low that limited data is “worse than no data at all”.  In 500 

the management performance mapping context, the null hypothesis is often that the benefit of 501 

implementation will be the same in all locations. In evaluating where there is evidence to reject 502 

this hypothesis, there is not a strong motivation to particularly avoid false positives or Type I 503 

error (rejecting a null hypothesis when the null hypothesis is true), because a false negative or 504 

Type II error (failing to reject a null hypothesis when the null hypothesis is false) is arguably just 505 

as bad.  The main risk of “bad data” would be from data with a strong bias that would lead to 506 

misinformed decisions.  The cost of “bad data” may also go up if the logistical costs (of 507 

transport, communications, etc.) of targeting locations incorrectly identified is higher than 508 

targeting locations at random or selecting locations based on convenience. There is the potential 509 

for these risks to be managed in real time during project implementation by incorporating 510 

distributed or “big” data sourced from farmer phone apps, rapid disease detection methods or 511 

citizen science initiatives (Nakato et al. 2016; Boykin et al. 2019).  In our example data from 512 
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Ecuador, our only estimate of uncertainty within a scenario was based on variability among 513 

individual plants, while a person making decisions about regional priorities would strongly 514 

prefer to have information about farm-to-farm variability within each scenario.  One of the 515 

potential applications of VOI analysis is to determine whether collecting more or better data 516 

about management performance is justified (Ades et al. 2004), not just for the sake of more 517 

statistical power in general, but because the information improves farmer decision-making under 518 

a realistic range of conditions.     519 

Two key factors for adoption of positive selection are market price and the varieties 520 

grown in a region, in terms of their rates of seed degeneration. The number of seasons over 521 

which positive selection is adopted is also an important factor helping to determine the return on 522 

investment in training. The study of adoption rates in Kenya was performed once and may be 523 

limited to the circumstances at the time of sampling. At the time of the training in positive 524 

selection, there was a shift in Nyandarua from the variety Tigoni to Shangi, so there might have 525 

been more interest in acquiring the new variety than in improving old seed stock (Okello et al. 526 

2018; Kaguongo et al. 2008).  Nyandarua also has an apparent role in spread of potato cyst 527 

nematode in the region (Mburu et al. 2018; Mwangi et al. 2015), along with bacterial wilt 528 

problems, which may have made positive selection less effective there. Potato farming has a 529 

longer history in Nyandarua. In Narok, potatoes are less important and conditions are less 530 

favorable, with the main potato variety grown being Dutch Robijn. In Nakuru, with the highest 531 

adoption rate, more varieties are grown and potato farming is more recent, in generally good 532 

growing conditions. These differing factors in the three counties, combined with changes over 533 

time such as the occurrence of droughts, can modify the likelihood of adoption of positive 534 

selection. The yield improvements from positive selection in Kenya, averaging 30% (Schulte-535 
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Geldermann et al. 2012), make it an attractive technology for development investments. In this 536 

system, there is the possibility of farmers actually improving seed quality over time, rather than 537 

simply slowing decline, and understanding this potential could also support decisions. 538 

Formulating a strategy for targeting positive selection in Kenya would be strengthened by new 539 

data about how the differences among these and other counties influence the current likelihood 540 

of technology adoption. 541 

Combining data layers for evaluating optimal intervention strategies can provide more 542 

insight, along with potential challenges due to uncertainty and different spatial resolutions 543 

(Sutton and Armsworth 2014).  Evaluating the risk of disease due to cropland connectivity (Xing 544 

et al. 2020) in combination with independent location characteristics can position the analysis in 545 

the larger context of disease management for the region.  Cropland connectivity may change 546 

over the course of the year, as potato is present or absent.  For example, in Kenya some parts of 547 

Nyandarua county, such as Njambini and Oljororok, have potato in the field the entire year, due 548 

to the availability of groundwater coming from the Aberdare range during the dry season. Three 549 

crops a year are very common, and likely affect pest and disease cycles.  Consistently highly 550 

connected locations may be more important targets for achieving impacts on regional epidemic 551 

spread, although there is also the potential for highly connected locations experiencing high 552 

inoculum loads to respond poorly to some types of management.  A broader systems analysis – 553 

for example, impact network analysis (Garrett et al. 2018) which integrates across management 554 

performance, socioeconomic or innovation networks (Fritsch and Kauffeld-Monz 2010; Leeuwis 555 

and Aarts 2011), and biophysical networks such as epidemic networks – can aid in identifying 556 

intervention locations that prioritize across multiple goals.  For farmer decision making, flexible 557 
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decision rules and reducing variability of risk may be priorities (Bert et al. 2006; Andrieu et al. 558 

2015).   559 

Crop and epidemic models may provide valuable data layers if they incorporate spatially 560 

mappable variables.  Estimating the effects of management strategies, such as variety 561 

deployment, depends on understanding the yield potential, perhaps based on a combination of 562 

weather or climate data and data about regional management practices (van Wart, van Bussel, et 563 

al. 2013; Araya et al. 2010; Reynolds et al. 2018).  Disease modeling may be used to evaluate the 564 

likely effects of management, such as addressing the problem of seed degeneration (Thomas-565 

Sharma et al. 2017; Jones et al. 2010).  Spatial epidemic components such as seed trade networks 566 

(McQuaid et al. 2017; Buddenhagen et al. 2017; Andersen et al. 2019) may also be valuable 567 

components of more refined management performance mapping. 568 

 Management performance mapping to identify target locations for interventions, and the 569 

VOI analysis therein, is potentially useful for many problems in agriculture or intervention 570 

ecology. There is a constellation of approaches that address related goals. Yield gap analyses that 571 

incorporate maps can address some of the same goals as management performance mapping 572 

(Schulthess et al. 2013; Silva et al. 2017; Lobell et al. 2015,  2009; van Ittersum et al. 2016; 573 

Grassini et al. 2015; van Bussel et al. 2015).  For example, yield gap analysis attempts to identify 574 

the most important factors that influence yield, especially factors that are controllable. The focus 575 

of management performance mapping for intervention targeting, however, is on providing spatial 576 

information about the intervention impact of management options. Management performance 577 

maps would ideally incorporate and account for interacting human dimensions (e.g., learning, 578 

financial liquidity, capital, institutions; Arneth et al. 2014), as well. 579 
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 The benefits from management performance mapping may be enhanced if maps and VOI 580 

calculations are updated with new information sources over time in an adaptive management 581 

scheme (Shea et al. 2014; Bennett et al. 2018).  Empirical data can be supplemented with 582 

models, expert opinion, and local knowledge (Petsakos et al. 2018; Tulloch et al. 2014) to 583 

understand changes in factors such as pesticide resistance, new varieties, and new management 584 

such as irrigation.  Projects may expand due to new stakeholder priorities and new situations on 585 

the ground.  As new pests and pathogens enter a region (Bebber et al. 2014), they will likely 586 

necessitate alterations in current best management practices. For example, in Ecuador potato 587 

purple top disease has become a major problem (Caicedo et al. 2015; Castillo-Carrillo et al. 588 

2018) since the Ecuadorian experiments reported here were performed.  ‘Candidatus Liberibacter 589 

solanacearum’, associated with zebra chip disease, and its vector the tomato potato psyllid, 590 

Bactericera cockerelli, have also been reported in Ecuador (Caicedo et al. 2020; Castillo-Carrillo 591 

et al. 2019).  New strategies for potato best management practices in Ecuador will need to 592 

address purple top and the risk of zebra chip, including uncertainty about causal agents.  In other 593 

scenarios, multiple outcomes may be important, such as a combination of benefits and 594 

environmental costs of management (Laurance et al. 2014), pesticide effects on non-target 595 

species in disease management, or conservation management focusing on both biodiversity 596 

hotspots and locations with keystone species (Smith et al. 2007).  Our examples addressed 597 

management performance mapping with performance defined in terms of the mean performance 598 

observed.  Other potential criteria for selecting regions for investment might emphasize different 599 

priorities (Table 2). For example, effective altruism concepts can be used to target stakeholders 600 

to maximize research benefit (Garrett et al. 2020).   601 
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 In summary, management performance mapping provides a process to extrapolate from 602 

available data to make evidence-based decisions about where to invest in disease and crop 603 

management or training initiatives.  Scenario analyses to support decision making (Wiebe et al. 604 

2018) can build on the framework developed here. 605 

 606 
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Table 1. Regional adoption rates after positive seed selection training in Kenya and the expected 891 
benefit of training given the adoption rate (Gildemacher et al. 2011,  2012). The average benefit 892 
is that expected under random allocation of training effort to the regions without regard to 893 
adoption rates. 894 
 895 

County Observed adoption 
rate 

Per household benefit 
$USD 

Expected benefit of 
training in year 1 

Nakuru 0.46 156 72 
Nyandarua 0.19 156 30 

Narok 0.18 156 28 
      Average Benefit: 44 

 896 
  897 
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Table 2. Potential criteria for identifying priority sites for interventions (such as training farmers 898 
to use positive selection for improved seed health). 899 
 900 
Criterion Rationale 
Regions where expected absolute 
benefit is greatest 

Greatest benefit to regional food production 

Regions where expected proportional 
gain is greatest 

Greatest benefit to regional farmers  

Regions where outcomes before 
intervention are lowest 

Benefit to regions in greatest need 

Regions where outcomes before 
intervention are highest 

Benefit to regions currently best adapted for 
production 

Incorporating measures of uncertainty at the farm level 
Regions where the 5th percentile benefit 
is greatest 

Consistent benefit across farmers 

Regions where the trimmed mean is 
greatest 

Greatest benefit for typical farmers 

 901 
  902 
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 903 

 904 
 905 
Figure 1.  Steps in the management performance mapping pipeline. Selected development 906 
interventions should ideally take place in a culture of continuous improvement, based on ongoing907 
monitoring and evaluation with stakeholders, and incorporating experimentation to facilitate 908 
adaptive management. Two case studies show how the steps may be implemented. Management 909 
performance mapping operates in this context by scaling up field, farm, and plot derived 910 
information to larger scale landscapes, regions or countries.  911 
 912 
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914 
 915 
Figure 2. The of information (VOI) for data used to guide site selection for interventions can be 916 
evaluated as illustrated here for a hypothetical case.  Suppose there are three types of 917 
environment, each equally common, and a measure of how well the management being evaluated918 
performs in each environment: improvements in yield in environments A, B, and C of 4, 1, and 0 919 
units, respectively.  If sites are selected at random for intervention, without information about 920 
yield in the different environments, the average benefit from management is 1 2/3 units.  If sites 921 
are selected considering the information about better management performance in environment 922 
A, and thus only environment A is targeted, then the average benefit from management is 4 923 
units.  If misinformation leads to the incorrect belief that management is more effective in 924 
environments B and C and these environments are equally targeted, then the average benefit 925 
from management is 1/2 unit.  The VOI comparing informed site selection to random site 926 
selection is 2 1/3 units.  The VOI comparing informed site selection to misinformed site selection927 
is 3 1/2 units. 928 
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 930 

 931 
 932 
Figure 3. Recursive partitioning results in a decision tree format, with per plant yield (g) of 933 
potato in Ecuador as the response variable, based on the Kromann et al. (2017) dataset. Branches 934 
to the left are results when the logical statements at the nodes are true, and branches to the right 935 
are results when the logical statements are false. The upper numbers in the boxes are the mean 936 
yields for that condition, and the percent values are the proportion of the data for which the 937 
condition applies. For “Cycle >= 2.5”, “yes” indicates that the time since seed replacement with 938 
certified seed was greater than 2 years, while ‘no’ indicates that it was 2 or fewer years. For 939 
“Management = Random, Roguing”, “yes” indicates that either roguing or random seed selection 940 
was implemented, while ‘no’ to that option indicates that positive selection was implemented. 941 
For “Variety = Superchola”, “no” indicates that the variety was INIAP-Fripapa.  (Darker colors 942 
indicate a higher number of ‘no’ answers for that condition compared to other conditions.) 943 
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 945 
 946 
 947 

 948 
 949 
Figure 4. Ecuadorian potato yield and the factors associated with yield from a Bayesian network 950 
analysis carried in Netica using the Kromann et al. (2017) dataset. The two networks indicate the 951 
frequency distribution of a set of twelve potential predictor variables for plants with low yield 952 
(top) and high yield (bottom). The lower text for each node gives the estimated mean and 953 
uncertainty. Positive selection was less likely to be the management implemented for cases 954 
where the yield was low (top network). All the viruses except Potato virus Y, and Potato leaf roll 955 
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virus for low yield plants, were more likely to be absent (frequency = 0) than present. Each virus 956 
was relatively more likely to be absent if a plant had high yield (bottom) than if it had low yield. 957 
 958 
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 963 
 964 

Figure 5. Ecuador and southern Colombia, with potato production indicated based on SPAM 965 
estimates. An altitude of 2895 m.a.s.l. was identified as a cut-off for management performance 966 
for positive selection of plants for on-farm seed saving.  Pixels above 2895 m elevation (51% of 967 
the pixels) are indicated with a dot, where pixels are included if the harvested area estimate is 968 
greater than 200 ha. The graticules are 1-degree squares.  Higher values of the potato cropland 969 
connectivity risk index estimated for Ecuador and southern Colombia are indicated by darker 970 
colors, indicating likely more important roles in potato epidemics.  Targeting sites for farmer 971 
training in positive selection, might be based on the combination of being above the altitude cut-972 
off for positive selection performance, and being in high cropland connectivity locations such 973 
that improved management would have the potential to positively influence other regions. 974 
 975 
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 981 
Figure 6. Cropland connectivity in the area of three counties in Kenya, where darker shading 982 
indicates a higher cropland connectivity risk index. Cropland connectivity is a measure of the 983 
likely importance of a pixel for epidemic spread through potato production. When the three 984 
counties indicated were studied to evaluate adoption rates for positive selection of plants for on-985 
farm seed saving, Nakuru county was reported to have over twice the adoption rate. Targeting 986 
for training in positive selection methods could take into account the higher adoption rate in 987 
Nakuru and the higher cropland connectivity in Nyandarua. 988 
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