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Abstract 10 

Standard evolutionary theories of aging postulate that reduced extrinsic mortality leads to evolution of 11 

longevity. Clownfishes of the genus Amphiprion live in a symbiotic relationship with sea anemones that 12 

provide protection from predation. We performed a survey  and identified at least two species with 13 

lifespan of over 20 years. Given their small size and ease of captive reproduction, clownfishes lend 14 

themselves as experimental models of exceptional longevity. 15 

To identify genetic correlates of exceptional longevity, we sequenced the transcriptomes of Amphiprion 16 

percula and A. clarkii and performed a scan for positively-selected genes (PSGs). These were compared 17 

with PSGs detected in long-lived mole rats and short-lived killifishes revealing convergent evolution in 18 

processes such as mitochondrial biogenesis. Among individual genes, the Mitochondrial Transcription 19 

Termination Factor 1 (MTERF1), was positively-selected in all three clades, whereas the Glutathione S-20 
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Transferase Kappa 1 (GSTK1) was under positive selection in two independent clades.. For the latter, 21 

homology modelling strongly suggested that positive selection targeted enzymatically important 22 

residues.  23 

These results indicate that specific pathways were recruited in independent lineages evolving an 24 

exceptionally extended or shortened lifespan and point to mito-nuclear balance as a key factor.  25 

Keywords 26 

Amphiprion, positive selection, evolution of lifespan, life-history trait, mitonuclear balance 27 

Introduction 28 

The lifespan of vertebrate species spans two orders of magnitude from few months for annual killifish 29 

(1) to several centuries for the greenland shark (2). Understanding the genetic architecture underlying 30 

these differences is a major challenge but may deliver new insights into the mechanisms controlling 31 

evolution of lifespan and human longevity. 32 

Next-generation sequencing technology has revolutionized evolutionary genomics as it allows to obtain 33 

genome-scale sequence information for large number of species. A particularly useful approach to 34 

identify the genetic architecture of evolutionary novelties is the analysis of positive selection. This 35 

approach requires the comparison of the sequence of protein-coding genes in related clades where one 36 

of the clades evolved the trait of interest, in this specific case exceptional lifespan. To date, several 37 

different mammalian taxa/clades where analysed with this approach with the purpose of identifying 38 

sequence changes associated to evolution of longevity: the elephant, the bowhead whale, bats and 39 

mole-rats (3-8). These analyses delivered interesting candidate genes and pathways that underwent 40 

accelerated molecular evolution in coincidence with evolution of exceptional lifespan. A major drawback 41 
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of this approach is that these long-living mammals are difficult or impossible to be kept in captivity and 42 

manipulated experimentally. This creates the need for a long-lived vertebrate that is small in size, easily 43 

adaptable to captive life, can be bred in large numbers and therefore represents a convenient 44 

experimental model organism.  45 

Standard evolutionary theories of aging predict that low extrinsic mortality conditions lead to the 46 

evolution of slow senescence and increased lifespan. Some examples that confirm these theories are the 47 

exceptional longevity of vertebrate species under low predation risk since they are chemically protected 48 

(9, 10), adapted to an arboreal life (11) or found in protected environments such as caves, respectively. 49 

On the other hand, annual fishes of the genus Nothobranchius provide an example of how increased 50 

extrinsic mortality conditions lead to the evolution of accelerated senescence and short lifespan (12-14). 51 

Analysis of positive selection in annual killifishes revealed a potential link between the evolution of 52 

genes governing mitochondrial biogenesis and the evolution of lifespan (15).  53 

All clownfish species (genus Amphiprion) evolved a specific adaptation that allows them to live in 54 

symbiosis with sea anemones. Symbiosis evolved in the last common ancestor of clownfish and 55 

clownfish represent a monophyletic group in the Pomacentridae family (damselfishes) (16). In the Indo-56 

Pacific Ocean, clownfishes are found in association with one or more sea anemone species and a large 57 

variation in host usage exists (17-19). Fish that feel threatened by predators immediately seek 58 

protection by the anemone’s tentacles; without that symbiosis, fishes are readily attacked and predated 59 

(20-22). Therefore, clownfish are protected from predation through reduction of extrinsic mortality 60 

owing to the presence of anemones (23). Hence, the overall mortality rate of clownfish is low as 61 

compared to other coral reef fishes or other tropical species of Pomacentridae of the same size (20, 23-62 

26). 63 
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All clownfish are born as males and develop, through protandrous hermaphroditism, into females: in a 64 

colony, only the dominant pair contributes to the reproduction of the colony (27).Other individuals of 65 

the colony are non-breeding males. Studies in the wild have shown that natural mortality of adult 66 

clownfishes can be very low: during the period 2011–2013, the average biannual mortality rate per 67 

capita varied, depending on the study site, between 0.18 and 0.49 for juveniles, 0.09 and 0.44 for males, 68 

and 0.19 and 0.55 for females (28). Predatory pressure differs in different stages of adulthood and is 69 

increased for non-breeding males (20).  70 

These fishes are small in size (less than 10 cm for the smallest species) and the closely-related species A. 71 

percula and A. ocellaris are popular and hardy aquarium fishes, are bred in large numbers for the 72 

aquarium trade, and are subject to selective breeding to fix specific pigmentation patterns so that a 73 

number of different captive strains are available. For these reasons, clownfishes could become the first 74 

experimental model for long-living vertebrates.   75 

In order to identify the genetic basis of adaptations linked to clownfishes’ exceptional lifespans, we 76 

performed a positive selection analysis. This analysis requires the identification of the closest related 77 

taxon that does not possess the trait of interest in order to exclude events of positive selection that 78 

predate the evolution of this trait (29).  79 

Other species of damselfish evolved an inter-specific mutualistic relationship with branching corals (30, 80 

31). In this case, corals are used by fishes as shelter that can provide protection from predators and a 81 

safe area to egg laying (32, 33). Among the family Pomacentridae, Chromis viridis shows an interesting 82 

relationship with a wide range of scleractinians (34, 35). Despite the presence of favourable 83 

microhabitat, C. viridis are predated by a wide range of generalist predator species. Hixon and Carr (36) 84 

suggested there is a clear relationship among transient and benthic predators and damselfish mortality: 85 

damselfish that search for protection in the shelter from transient predators are susceptible to attack by 86 
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resident benthic predators and vice versa. In the presence of both groups of predators, mortality 87 

increases dramatically due to the lack of available refuge that expose Chromis to intense predation (36). 88 

Therefore, Chromis viridis represent a well-suited outgroup for our analysis because it shares with 89 

clownfishes several general traits linked to benthic life and symbiosis with corals but it is subject to 90 

much higher predation rates (Fig. 1). 91 

Captive lifespan of clownfishes 92 

In order to obtain a reliable lower estimate for the captive lifespan of clownfish species, in 2016 we 93 

distributed a questionnaire to researchers working with clownfishes and to public aquaria across Europe 94 

(Table 1/S1), and surveyed existing literature. For six different species, at least one individual was 95 

reported to have lived more than 10 years and for two different species, A. melanopus and A. ocellaris, 96 

we obtained record of animals alive and actively spawning at an age of over 20 years. More systematic 97 

data could be obtained for the species A. ocellaris (the most common species in the aquarium trade). 98 

The oldest cohort for which a record was available comprised 27 fish born in 2008 of which 25 were still 99 

alive in 2016.  100 

We conclude that there is solid evidence that at least the species A. ocellaris and A. clarkii can live in 101 

captivity for more than two decades making them the first teleost model of exceptional longevity.  102 

Table 1. Results of the clownfish survey. The longest-lived individual for each species is indicated  103 

Species oldest animal status at census size of group 

A. akydinos 13 dead 1 

A. clarkii (wild)* 12 alive n.a. 

A. clarkii (privately owned) 16 alive 2/0 dead 

A. clarkii 9 alive 2/0 dead 

A. frenatus** 18 dead n.a. 

A. melanopus 21 alive 2/0 dead 

A. ocellaris (privately owned) 22 alive 2/0 dead 

A. ocellaris 17 alive 2/0 dead 
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A. perideraion** 18 alive n.a. 

* Moyer, 1986 (37) 104 
** Fautin and Allen, 1992 (17) 105 

Analysis of positive selection  106 

In order to perform genome-wide scans for positive selection, we obtained the transcriptomes of the 107 

species A. clarkii and A. percula based on own sequencing using methods previously described for the 108 

killifishes (15). Furthermore, we assembled clownfish transcriptomes from public read data of A. 109 

bicinctus, A. ocellaris and A. sebae. As the closest-related non-symbiotic species, we additionally 110 

sequenced the transcriptome of Chromis viridis, a very abundant species in coral reefs.  More distant 111 

outgroups were a selection of species from the series Ovalentaria, whose genomes are available in 112 

GenBank (see also (15)). We analysed positive selection on the branch leading to the last common 113 

ancestor (LCA) of all clownfish species (Fig. 1).  114 

A total of 157 positively selected genes (PSGs) of 14214 analyzed genes were identified in the LCA of the 115 

clownfishes (Table S2). We tested for overrepresentation of gene ontology (GO, FDR <0.1) and observed 116 

19 biological processes enriched for PSGs (Table 2, Table S3). A majority of these processes is of 117 

particular interest for aging research: altogether nine enriched processes are linked to the metabolism 118 

of xenobiotics, detoxification or glutathione metabolism, respectively. Interestingly, these processes 119 

were shown to be strongly up-regulated in experimental conditions favoring longevity such as dietary 120 

restriction and inhibition of the somatotropic axis making the animals more resistant to toxins (38-41). 121 

Furthermore, experimental manipulation of mitochondrial translation, another enriched process, is 122 

known to increase lifespan in C. elegans (42).  123 

 Table 2. Biological gene ontology processes enriched for positively selected genes (FDR<0.1). 124 

GOBPID* Term FDR** 
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GO:1901685 glutathione derivative metabolic process 0.020646 

GO:1901687 glutathione derivative biosynthetic process 0.020646 

GO:0006805 xenobiotic metabolic process 0.08376 

GO:0032543 mitochondrial translation 0.08376 

GO:0071466 cellular response to xenobiotic stimulus 0.08376 

GO:0009410 response to xenobiotic stimulus 0.08376 

GO:0042178 xenobiotic catabolic process 0.08376 

GO:0007157 heterophilic cell-cell adhesion via plasma membrane cell adhesion molecules 0.08376 

GO:0050900 leukocyte migration 0.08376 

GO:0045321 leukocyte activation 0.08376 

GO:0007155 cell adhesion 0.08376 

GO:0022610 biological adhesion 0.08376 

GO:0048870 cell motility 0.08376 

GO:0051674 localization of cell 0.08376 

GO:1990748 cellular detoxification 0.08376 

GO:0055081 anion homeostasis 0.08376 

GO:0007229 integrin-mediated signaling pathway 0.085657 

GO:0016477 cell migration 0.085657 

GO:0098754 detoxification 0.085657 

* GOBPID – gene ontology biological process ID 125 
* FDR – false discovery rate (adjusted p-value for multiple testing) 126 

Furthermore, mitochondrial translation was one of the mitochondrial biogenesis processes that were 127 

found to be enriched for PSGs in extremely short-lived killifishes (15). Recent observations of similar 128 

genes and pathways found to be affected by positive selection, both, in very long- and short-lived 129 

species led to hypotheses of antiparallel evolution (43, 44). This means that functionally opposite 130 

selection pressures with regard to the tradeoff between fast growth and a long lifespan can result in 131 

adaptations of the same genes and pathways – in opposite functional directions. We further tested this 132 

hypothesis by using Fisher’s method to combine enrichment p-values across the results of the recent 133 

positive selection analyses in short-lived killifishes and the analysis in clownfishes. In this meta-analysis, 134 

34 genes exhibited a signature of positive selection (FDR<0.1) across species (Tables S4-S6). 135 

Table 3. Positively selected genes associated with mitochondrial biogenesis identified in a meta-analysis 136 

across three evolutionary clades with exceptional short or long lifespans.  137 
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Gene 
symbol 

p-value 
FDR**** 

Clownfish LCA* Nothobranchius** Mole-rat** Combined*** 

MTERF1 7.34E-03 1.25E-03 2.57E-02 3.12E-05 4.01E-04 

RARS2 1.82E-03 1.18E-02 NA***** 2.52E-04 2.43E-03 

MRPL30 2.55E-02 1.00E+00 9.59E-03 2.28E-03 7.98E-03 

FASTKD2 1.77E-04 1.56E-01 1.00E+00 3.16E-04 2.43E-03 

FASTKD5 NA***** 1.39E-03 8.25E-01 8.89E-03 2.44E-02 

TFB2M NA***** 4.34E-04 6.91E-01 2.73E-03 9.15E-03 

NDUFA9 NA***** 8.31E-02 6.90E-03 4.85E-03 1.56E-02 

* LCA – last common ancestors 138 
** These p-values resulted from meta-analysis using Fisher’s method of 3 ancestral Nothobranchius and 139 
11 examined mole-rat branches on which lifespan changed considerably  140 
*** This p-value results from a meta-analysis of the three p-values in the left columns using Fisher’s 141 
method 142 
**** FDR – false discovery rate (adjusted p-value for multiple testing) 143 
***** NA – no p-value calculated since the gene could not be tested in the respective context 144 

An overrepresentation analysis of GO terms among the genes yielded signatures of positive selection in 145 

the meta-analysis across different species with exceptional lifespans. As in our previous examination of 146 

short-lived killifishes (15), we found an enrichment for mitochondrial biogenesis functions (p=1.05*10-5, 147 

Table S7). Among the genes involved in mitochondrial biogenesis were TFB2M and MTERF, that are 148 

necessary for mitochondrial transcription, FASTKD5 and FASTKD2 whose gene products are required for 149 

the biogenesis of mitochondrial ribosomes, (45), as well as RARS2 coding for a mitochondrial tRNA-150 

synthetase.  151 

Among the other 15 PSGs genes showing evidence for positive selection, both, in the clownfish LCA and 152 

in meta-analysis were, e.g., LAMP2 and CD63 (also called LAMP3) which code for major protein 153 

components of the lysosomal membrane (46, 47). In addition, CD63 gene expression was shown to 154 

predict the malignancy grade of many different tumor types (48-52) and the artificial prevention of the 155 

decrease of LAMP2 gene expression during aging in mice results in considerably reduced cell damage, as 156 

well as in liver functions in old mice that are indistinguishable from those in young mice (53). Finally, 157 

another interesting example that was identified as significant, both, in the clownfish LCA and in the 158 
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meta-analysis, is GSTK1 encoding a glutathione-S-transferase that localizes to the peroxisome. GSTK1 159 

was shown to be associated with diabetes type 2 which is another major aging related disease (54, 55).  160 

The positive selection analysis provides not only candidate genes but also candidate amino acids for 161 

follow-up studies. To exemplify this, we performed protein homology modeling for GSTK1 starting from 162 

the publicly available structures of the human dimeric apoenzyme (PDB 3RPP, (56)) and the rat dimeric 163 

enzyme with the bound GSH substrate (PDB 1R4W; (57)). The latter was used to assess on a structural 164 

basis the relationship of the six positively selected sites in the clownfish with those that are known to be 165 

involved in the enzyme’s function (57). Interestingly, also the LCA of Nothobranchius shows positive 166 

selection in GSTK1 contains, in addition, one site with high probability of positive selection in the LCA of 167 

Nothobranchius (Glu167, blue in Fig.2).  The selected site in Nothobranchius, however, is structurally 168 

remote to the functionally relevant sites. In contrast, we found that in clownfish two of three sites that 169 

were predicted with high probability to be positively selected (≥ 95%, Phe60, Met63, red in Fig.2) and 170 

one of three sites with lower probability (41%, His64, orange in Fig.2) belong to the same -helical 171 

stretch of amino acids that lines the substrate access channel, contribute to the dimer interface (Asn61, 172 

Tyr65, Asp69, green in Fig. 2) as well as to the substrate binding sites (Lys62, turquoise in Fig. 2), 173 

respectively (57).  The third site with a high probability to be positively selected is Glu88 (brown in Fig 2). 174 

Glu88 is one of four amino acids at the entrance of the substrate access channel and situated in close 175 

proximity to Pro55, Pro56 and Pro87 (black in Fig. 2). The latter three are also part of the substrate 176 

access channel (57). We found another site positively selected with a lower probability in close proximity 177 

to the dimer interface (Lys177, orange in Fig. 2). This positive selection at particular positions related to 178 

enzymatic function invites the speculation that it might have a bearing on the enzymatic activity of the 179 

clownfish GSTK1, but this hypothesis would have to be tested experimentally.  180 
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Conclusions 181 

We have provided evidence for exceptional longevity of clownfishes in captivity. The species A. ocellaris 182 

is bred in captivity and commercially available in large numbers and we suggest this species as 183 

laboratory model for extended lifespan.  184 

Analysis of positive selection has shown evolutionary convergence both with the exceptionally short-185 

lived genus Nothobranchius and with exceptionally-long lived mole rats.  186 

In particular, clownfishes and mole rats both show positive selection in two key proteins of the 187 

lysosome: LAMP2 and CD63. These results are consistent with the conserved up-regulation across 188 

tissues and species of genes coding for lysosomal proteins and widespread accumulation of lysosomal 189 

aggregates observed during aging (58, 59) and suggests that lysosomal function is of key importance for 190 

evolution of exceptional longevity. Another interesting example of convergent evolution is GSTK1, which 191 

is positively selected in both the exceptionally-long and exceptionally-short lived fish clades. GSTK1 is 192 

involved in glutathione metabolism. Since detailed structures of this protein are available (56, 57), 193 

homology modelling was possible and it strongly suggests that positive selection targeted positions that 194 

are involved in the enzymatic function of the encoded protein. 195 

Finally, prominent signs of convergence were observed for genes and pathways related to biogenesis of 196 

mitochondrially-encoded proteins with the remarkable observation that MTERF is under positive 197 

selection in all three taxa. These findings point to the key importance of mito-nuclear balance in the 198 

regulation of animal longevity. 199 
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Methods 200 

Clownfish lifespan estimation 201 

The determination of clownfish lifespan was performed through the distribution of an internet-based 202 

questionnaire to zoos and aquariums worldwide, requesting information on clownfish demographic 203 

details: (1) the various clownfish species maintained in captivity, (2) the number of individuals for each 204 

species, (3) if each individual is captive bred or not, (4) the year of acquisition and, if not still alive, 205 

death, and (5) the sex of each individual, if determined. The questionnaire was circulated in 2016 to 206 

international associations and organizations of zoos and public aquariums such as the European 207 

Association of Zoos and Aquaria (EAZA), the Association of Zoos and Aquariums (AZA), the European 208 

Union of Aquarium Curators (EUAC) and the World Association of Zoos and Aquariums (WAZA). 209 

Responses to our questionnaire were received from 5 zoos and aquariums as well as two private entities 210 

(see Acknowledgments).  211 

Experimental fish and sampling 212 

Sub adult Amphiprion percula (total length, 45.2±1.2 mm; Wt, 1.6±0.1 g, n=12), Amphiprion clarkii (total 213 

length, 46.4±5.1 mm; Wt, 2.3±0.9 g, n=12) and Chromis viridis (total length, 43.0±1.6 mm; Wt, 1.3±0.1 g, 214 

n=12), were used. Animals were acquired from local dealers and subjected to acclimation during one 215 

month in the facilities of the Marine Acquarium at the University of Murcia (Spain). Fish were kept in 216 

groups under exactly the same conditions (temperature, 27±1 ºC; salinity, 24±1, pH, 8±0.2; dissolved 217 

oxygen, 6.5±0.2 mg/L) and fed ad libitum four times a day a standard low-fat diet to match their 218 

requirements (composed by Mysis shrimp, enriched Artemia nauplii and red plankton).  219 

Fish were euthanized by exposure to the anesthetic benzocaine hydrochloride (400 mg l-1) for 10 min 220 

following the cessation of opercular movement. Brains, livers and samples of skeletal muscle were 221 
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collected for analyses. For each species, three whole brains were frozen in l-N and stored at -80 ºC prior 222 

to molecular determinations. 223 

The animal procedures were approved by responsible authorities (A13160603, from the Consejeria de 224 

Agua, Agricultura, Ganaderia y Pesca, Comunidad Autonoma de la Region de Murcia, Spain).  225 

Coding sequence data 226 

Our analysis comprised five clownfish species (A. ocellaris, A. clarkii, A. bicinctus, A. percula, A. sebae), C. 227 

viridis representing the non-symbiotic sister-taxon of the Amphiprion genus and nine more distantly 228 

related outgroup species (Stegastes partitus, Pundamilia nyererei, Maylandia zebra, Oryzias latipes, 229 

Xiphophorus maculatus, Poecilia formosa, Fundulus heteroclitus, Nothobranchius furzeri, Aphyosemion 230 

striatum). mRNA sequences of the ougroups were obtained obtained from RefSeq along with their 231 

coding sequence annotation (Table S8).  For A. ocellaris, A. bicinctus, A. sebae we downloaded read data 232 

from the short read archive (Bio projects PRJNA374650, PRJNA261388 and PRJNA285007, respectively). 233 

For A. clarkii, A. percula and C. viridis we performed novel RNA-seq as described in Table S9. The reads 234 

of the clownfishes and C. viridis were preprocessed using SeqPrep with minimum adapter length of five 235 

as well as a demanded minimum read length of 50. De novo transcriptome assemblies for these species 236 

were performed using FRAMA with Stegastes partitus as reference species (60). For the clownfishes and 237 

C. viridis the longest isoform was chosen to represent the gene. For the outgroups, in cases in which 238 

multiple isoforms per gene were annotated based on the reference, all of them were used in 239 

subsequent analyses. The assembly completeness of all examined species were estimated using BUSCO 240 

(61), was 90-100% (Table S8). 241 

Identification of positively selected genes 242 

To scan on a genome-wide scale for genes under positive selection, we fed the coding sequences of the 243 

described species set into the PosiGene pipeline (62). Stegastes partitus was used as PosiGene’s anchor 244 
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species. Orthology was determined by PosiGene via best bidirectional BLAST searches (63, 64)  against 245 

Stegastes partitus. The branch of the last common ancestor of the clownfishes was tested for genes 246 

under positive selection (Table S2). FDR <0.05 was used as threshold for significance.  247 

Gene ontologies 248 

We determined enrichments for GO categories using Fisher’s exact test based on the R package GOstats 249 

(Table S3). The resulting p-values were corrected using the Benjamini-Hochberg method (65). We used 250 

throughout the manuscript 0.1 as significance threshold. Enrichment for mitochondrial biogenesis genes 251 

was tested using Fisher’s exact test and the union set of the genes in the following five mitochondrial 252 

related GO terms: GO:0000959, 0032543, 0045333, 0033108, 0070584 (Table S5). The same GO terms 253 

were used in our previous study (15) to test for enrichment  254 

Meta analysis 255 

To identify genes that show signs of positive selection across multiple evolutionary branches on which 256 

lifespan was altered considerably, we combined p-values from this study with those of two previous 257 

studies using Fisher’s method (66) (Table S4-S6). In all three studies, PosiGene was used to determine p-258 

values. The first study searched for genes under positive selection on 11 rodent branches on which the 259 

lifespan was presumably extended – most of them in the clade of the African mole-rat family that covers 260 

the longest-lived known rodents (67). The second study examined three branches of the Nothobranchius 261 

genus on which lifespan was presumably reduced (15) – the genus covers the shortest-lived vertebrate 262 

species that can be held in captivity (68). 263 

Protein homology modeling 264 

Homology modelling of the clownfisch GSTK1 was carried out with SWISS–MODEL 265 

(http://swissmodel.expasy.org; (69, 70) using the crystal structures of the dimeric apoform of the human 266 
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mitochondrial GSTK1 (PDB 3rpp; (56)) and the substrate bound dimer of the rat enzyme PDB 1r4w; (57)). 267 

No further optimization was applied to the resulting models. Visualisation, superimposition of the 268 

respective crystal structures and the models as well as rendering was carried out using CHIMERA (71).  269 
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Figures 289 

 290 

Fig. 1. Nucleotide-based phylogeny of the analyzed fish species. We searched for positively selected 291 

genes on the last common ancestor of the clownfishes (Amphiprion, red). The two species A. clarkii and 292 

A. percula depicted in bold are those that were sequenced in this study. The phylogenetic tree was 293 

derived as part of the positive selection analysis with the PosiGene pipeline (62). Briefly, during this 294 

process 8215 genes were concatenated and the resulting concatenated alignment split in 404 fragments 295 

each of which had a length of 15 knt. From each fragment, a phylogeny was calculated via maximum 296 

likelihood and, from all resulting 404 trees, a consensus tree was determined using the Phylip package 297 

(72). The scale bar represents 0.05 substitutions per site. 298 
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 299 

 300 

Fig. 2. (A) Linear depiction of GSTK1 with color coded known functional domains/sites (dimer interface – 301 

green, GSH binding – turquoise, sites that serve as both dimer interface and GSH binding – violet,  302 
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substrate access channel – black) and positively selected sites (in the last common ancestor of the 303 

clownfishes with a predicted probability ≥ 95% – red , in the last common ancestor of the clownfishes 304 

with a predicted probability < 95% – orange, in the last common ancestor of Nothobranchius pienaari 305 

and Nothobranchius rachovii – blue. (B) Alignment of GSTK1 orthologs across a wide phylogenetic range 306 

of species . Depicted are two protein regions (51-69, 84-89) that contain positively selected sites and 307 

functionally relevant sites in close proximity. The color code for positively selected and functionally 308 

relevant sites is the same as in panel A. (C) Clownfish GSTK1 model showing one subunit of the modelled 309 

dimer (for an overview see SI Fig S1. Selected positions are color coded according function depicted in 310 

the overview scheme at the top. The numbered and colored residue positions (60, 68, 88, 170 and 177) 311 

are discussed in detail in the text. Also shown is the GSH substrate (glutathione, light purple) as 312 

positioned in the template structure (PDB 1R4W) of the rat GSTK1.  313 

 314 

Supplement Fig. S1. Homology modelling of Clownfish GSTK1. Ribbon representation of the model 315 

dimer for the clownfish enzyme as derived from SWISS-MODEL in grey, superimposed onto the dimeric 316 
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structure of the substrate bound rat GSTK1 (PDB 1r4w; (57)) used as template in light green. The 317 

pairwise r.m.s.d. for the Cα positions between the model and 1r4w amounts to 0.52 Å  as determined 318 

with the CHIMERA Matchmaker tool. The GSH substrate in the rat enzyme structure is rendered in light 319 

purple. 320 

Supplement 321 

Supplement tables 322 

Table S1. Clownfish lifespan questionnaire results. 323 

Table S2. PosiGene results for positively selcted genes on the phylogenetic branch representing the last 324 

common ancestor of the the clownfishes (genus Amphiprion). 325 

Table S3. Enrichment test resullts of biological gene ontology processes enriched for positively selected 326 

genes. 327 

Table S4. Meta analysis using Fisher's method of positive selection across three analyses of phylogenetic 328 

branches on which lifespand changed considerably.    329 

Table S5. Meta analysis using Fisher's method of positive selection across three phylogenetic branches 330 

of the Nothobranchius genus on whichlifespan was reduced considerably.    331 

Table S6. Meta analysis using Fisher's method of positive selection across eleven phylogenetic rodent 332 

branches on which lifespan was reduced considerably.    333 

Table S7. Genes that were regarded as mitochondrial biogenesis related from five gene ontology terms. 334 

Table S8. Assembly and sequence statistics. 335 

Table S9. Samples that were sequenced to create genome/transcriptome assemblies. 336 
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Supplement data 337 

available at:  338 

ftp://genome.leibniz-fli.de/pub/user/arne.sahm/clownfish/supplement_data.tar.gz 339 

The package contains assembled sequence data, visualizations of alignments and positively selected 340 

sites for all genes that were analyzed in this article. 341 
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