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AMP: ampicillin 33 
AMR: antimicrobial resistance 34 
AUG: amoxicillin/clavulanic acid (Augmentin) 35 
AXO: ceftriaxone 36 
AZI: azithromycin 37 
CDC: United States Centers for Disease Control and Prevention 38 
CHL: chloramphenicol  39 
CIP: ciprofloxacin  40 
CLSI: Clinical and Laboratory Standards Institute 41 
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FDA: United States Food and Drug Administration 43 
FIS: sulfisoxazole  44 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted August 1, 2018. ; https://doi.org/10.1101/380782doi: bioRxiv preprint 

https://doi.org/10.1101/380782


 2
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Nontyphoidal Salmonella species are the leading bacterial cause of food-borne disease in the 77 
United States.  Whole genome sequences and paired antimicrobial susceptibility data are 78 
available for Salmonella strains because of surveillance efforts from public health agencies.  In 79 
this study, a collection of 5,278 nontyphoidal Salmonella genomes, collected over 15 years in 80 
the United States, were used to generate XGBoost-based machine learning models for 81 
predicting minimum inhibitory concentrations (MICs) for 15 antibiotics.  The MIC prediction 82 
models have average accuracies between 95-96% within ± 1 two-fold dilution factor and can 83 
predict MICs with no a priori information about the underlying gene content or resistance 84 
phenotypes of the strains.  By selecting diverse genomes for training sets, we show that highly 85 
accurate MIC prediction models can be generated with fewer than 500 genomes.  We also show 86 
that our approach for predicting MICs is stable over time despite annual fluctuations in 87 
antimicrobial resistance gene content in the sampled genomes.  Finally, using feature selection, 88 
we explore the important genomic regions identified by the models for predicting MICs.  To 89 
date, this is one of the largest MIC modeling studies to be published.  Our strategy for 90 
developing whole genome sequence-based models for surveillance and clinical diagnostics can 91 
be readily applied to other important human pathogens.   92 
 93 
 94 
  95 
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Introduction 96 
Nontyphoidal Salmonella species are the leading bacterial cause of food-borne disease in the 97 
United States[1, 2], causing over one million illnesses per year[3] and an estimated 80 million 98 
illnesses annually world-wide[4].  Nontyphoidal Salmonella causes acute gastroenteritis and is 99 
usually contracted via fecal contamination of food sources[5].  Although these infections are 100 
usually self-limiting and typically do not require antibiotic treatment[6], severe infections can 101 
occur[7].  Antimicrobial resistance (AMR) is prevalent in Salmonella isolates and infections 102 
caused by highly antimicrobial resistant Salmonella strains result in worse outcomes than 103 
infections caused by susceptible strains[8-11].   104 
 105 
In 1996, the National Antimicrobial Resistance Monitoring System (NARMS) was established as 106 
a collaboration between the United States Centers for Disease Control and Prevention (CDC), 107 
U.S. Food and Drug Administration (FDA), U.S. Department of Agriculture (USDA), and state and 108 
local health departments.  A primary goal of NARMS is to monitor antimicrobial resistance in 109 
Salmonella and other food-borne bacteria, including Campylobacter, Escherichia and 110 
Enterococcus[12].  The data collected by NARMS is used to inform public health decisions aimed 111 
at identifying contaminated food sources and reducing the spread of AMR through enhanced 112 
stewardship.  In recent years, NARMS has adopted whole genome sequencing (WGS) as a 113 
routine monitoring tool.  The WGS data are used to determine the source of outbreak strains, 114 
the virulence factor and AMR genes carried by each strain.  As a result, a large collection of 115 
bacterial whole genome sequences with extensive metadata is available for downstream 116 
research efforts[13].  117 
 118 
Whole genome sequencing is now routinely used for public health surveillance and to guide 119 
diagnostic and patient care descisions[14-18].  For routine surveillance, WGS provides the 120 
highest possible resolution for individuating traits in bacteria, assessing phylogenetic 121 
relationships, conducting outbreak investigations, and predicting virulence and epidemicity.  122 
From the clinical perspective, rapid diagnostics are key to improving patient care.  For a 123 
conventional microbiology laboratory diagnosis, the total time for organism growth, isolation, 124 
taxonomic identification, and antimicrobial minimum inhibitory concentration (MIC) 125 
determination may exceed 36 hours for relatively fast-growing bacteria and several days for 126 
slower growing organisms[19-21].  Since reducing the time to optimal antimicrobial therapy 127 
significantly improves patient outcomes[22-24], rapid sequencing-based approaches that 128 
predict MICs may have clinical utility.  The extensive WGS datasets generated by health 129 
agencies and the scientific community, such as nontyphoidal Salmonella strains, provides the 130 
necessary training sets required for building predictive models.   131 
 132 
Several investigations have recently built models for predicting AMR phenotypes from WGS 133 
data.  To date, the most common approach has relied on using a curated reference set of genes 134 
and polymorphisms that are implicated in AMR[25-33].  This reference-guided approach best 135 
predicts susceptibility and resistance when organisms are well studied and the AMR 136 
mechanisms are known.  As larger collections of genomes have become available, several 137 
studies have used machine learning algorithms to predict susceptible and resistant 138 
phenotypes[27, 29, 31, 34-38].  By using WGS and AMR phenotype data to train a machine 139 
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learning model, predictions without a priori information about the underlying gene content of 140 
the genome or molecular mechanism for resistance to each agent are possible.  Although this 141 
reference-free approach requires many genomes, it is unbiased and can potentially be used to 142 
enable the discovery of new genomic features that are involved in AMR[36, 37].  These two 143 
general approaches have also been used to predict MICs for Streptococcus, Neisseria, and 144 
Klebsiella[35, 38-40].  When a curated reference collection of genes and SNPs is used for 145 
predicting MICs, a rules-based or machine learning algorithm is required for determining how 146 
much a given feature contributes to the MIC.  Thus, for MIC prediction, both reference-guided 147 
and reference-free approaches are expected to have similar advantages and disadvantages if 148 
the collection of genes and SNPs used by the reference-guided method is sufficient for 149 
predicting all MICs, including those that are in the susceptible range.  For example, in previous 150 
work, we built a machine learning model to predict MICs for a comprehensive population-based 151 
collection of 1,668 Klebsiella pneumoniae clinical isolates[38].  For each genome, we used 152 
nucleotide 10-mers and the MICs for each antibiotic as features to train the model.  Extreme 153 
gradient boosting (XGBoost) was chosen as the machine learning algorithm[41].  The model 154 
could rapidly predict the MICs for 20 antibiotics with an average accuracy of 92%.  This 155 
demonstrated that it is possible to successfully predict MICs without using a precompiled set of 156 
AMR genes or polymorphisms.   157 
 158 
In this study, we build models that use whole genome sequence data to predict MICs for 159 
nontyphoidal Salmonella based on strains collected and sequenced by NARMS from 2002-2016.  160 
Our strategy can be used to guide responses to outbreaks and inform antibiotic stewardship 161 
decisions.  162 
 163 
 164 
Materials and Methods 165 
 166 
Genomes and Metadata 167 
A total of 5,278 nontyphoidal Salmonella genome sequences were used in this study. All strains 168 
were collected and sequenced as part of the NARMS program.  The strains were recovered 169 
from either raw retail meat and poultry or directly from livestock animals at slaughter.  170 
Antimicrobial susceptibility testing was performed using broth microdilution on the Sensititre® 171 
system (Thermo Scientific) for 15 antibiotics: ampicillin (AMP), amoxicillin/clavulanic acid 172 
(AUG), ceftriaxone (AXO), azithromycin (AZI), chloramphenicol (CHL), ciprofloxacin (CIP), 173 
trimethoprim/sulfamethoxazole (COT), sulfisoxazole (FIS), cefoxitin (FOX), gentamicin (GEN), 174 
kanamycin (KAN), nalidixic acid (NAL), streptomycin (STR), tetracycline (TET), and ceftiofur (TIO) 175 
at FDA and USDA NARMS laboratories[13].  Clinical breakpoints are based on CLSI and FDA 176 
guidelines[42].  Whole genome sequencing was performed using the Illumina HiSeq and MiSeq 177 
platforms using standard methods[25].  Accession numbers and MICs for each isolate are listed 178 
in Table S1.  All non-AMR metadata including serotypes, host, geographic location of isolation 179 
and isolation year were taken from the metadata associated with each NCBI SRA entry.   180 
 181 
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Genomic Analyses 182 
The short read sequence data for each strain was assembled with the PATRIC genome assembly 183 
service[43], using the “Full SPAdes” pipeline which uses BayesHammer[44] for read correction 184 
and SPAdes for assembly[45].  All genomes were annotated using the PATRIC annotation 185 
service[43], which uses a variation of the RAST tool kit annotation pipeline[46].  Annotated 186 
genomes are available on the PATRIC website (https://patricbrc.org).  PATRIC genome 187 
identifiers are displayed in Table S1.  Protein annotations, including those specifically asserted 188 
to be involved in AMR[47] were downloaded from the PATRIC workspace and used for 189 
subsequent analyses.  A phylogenetic tree was generated for the strains in the analysis by 190 
aligning the genes for the beta and beta prime subunits of the RNA polymerase using 191 
MAFFT[48], concatenating the alignments, and computing a tree with FastTree[49].  The tree 192 
was rendered using iTOL[50]. 193 
 194 
MIC Prediction 195 
Model Generation.  A model for predicting minimum inhibitory concentrations for the 15 196 
antibiotics was built following the methods previously described by Nguyen and colleagues[38].  197 
Briefly, each genome was divided into the set of nonredundant overlapping nucleotide 10-mers 198 
using the k-mer counting program KMC[51].  A matrix was built where the k-mers, antibiotics, 199 
and MICs are treated as features for each genome.  Each row in the matrix contains the k-mers 200 
for a genome as well as the MIC for a single antibiotic.  The MIC prediction model was built 201 
using an XGBoost[41] regressor predicting linearized MICs.  All model parameters were identical 202 
to those used by Nguyen et al[38].  Ten-fold cross validations were used to assess the overall 203 
accuracy and sensitivity of every model used in this study.  A non-overlapping training set (80% 204 
of the data), validation set (10% of the data), and test set (10% of the data) were generated for 205 
each fold.  The validation set was used to monitor each model to prevent overfitting.  Unless 206 
otherwise stated, the accuracy is reported as the ability to predict the correct MIC within ± 1 207 
two-fold dilution step of the laboratory-derived MIC.  Defining an accuracy to be within one 208 
two-fold dilution step is consistent with FDA requirements for automated MIC measuring 209 
device standards and is consistent with established clinical microbiology practices[20, 52, 53].  210 
A comparison of raw accuracies and accuracies within ±1 two-fold dilution step is shown in 211 
Table S2.  To assess the accuracy of a model over various metadata categories including date, 212 
serotype source, and location, the training set genomes are used to make the model.  The test 213 
set genomes are used to assess the model accuracy for a given fold.  For models based on date 214 
ranges, all parameters are identical and the accuracy is reported over the genomes from the 215 
held-out dates. 216 
 217 
Subsampling.  In order to perform the model building on a machine with 1.5 TB of RAM 218 
(machines with more memory are currently somewhat uncommon), we reduced the matrix size 219 
to sets of size �, where � ≤ 250, 500, 1000, 2000, 3000, 4000, and 4500 genomes respectively.  220 
To create a diverse subset of size �, a hierarchical clustering method[54] was used to create � 221 
clusters by using the 10-mer distribution of each genome as input features.  To avoid the curse 222 
of dimensionality[55, 56], the taxicab/Manhattan distance ��� norm) was used, rather than the 223 
Euclidean distance ��� norm), since previous research has shown it to be both computationally 224 
fast and more accurate for high dimensional data[57].  From the resulting � clusters, one 225 
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genome from each cluster was randomly selected from a uniform distribution to create the 226 
subset containing � genomes.  For each subset of genomes, a matrix was generated, and 227 
models were generated as described above. 228 
 229 
Feature identification.  In order to unambiguously identify k-mers that are important to MIC 230 
prediction, we built separate models for each individual antibiotic using the method described 231 
above, except that we increased the k-mer length to 15 nucleotides in order to reduce the 232 
number of redundant k-mers within each genome and to enable analyses with BLAST[58].  We 233 
also measured k-mer hits as presence versus absence, rather than counts, in order to simplify 234 
the analysis.  Each model was built using the set of 1,000 diverse genomes from the 235 
subsampling experiment described above and 10-fold cross validations were performed on 236 
each model. 237 
 238 
XGBoost’s internal feature importance was computed for each fold within the 10-fold cross 239 
validation.  This results in an importance score per feature (15-mer) from each fold.  In order to 240 
generate an overall importance score for the top features, we summed the feature importance 241 
scores from each fold for the top ten features.  This overall importance score captures both the 242 
importance of the 15-mer to a given fold and the number of times that 15-mer was chosen as a 243 
top feature within each of the ten folds. 244 
 245 
XGBoost’s internal feature importance is unable to provide correlations between features and 246 
label values, and thus does not provide an indication of whether a k-mer is related to antibiotic 247 
resistance or susceptibility.  This is partially due to the fact that many non-linear correlations 248 
exist that may use multiple features.  In order to see if the high scoring k-mers correlate with 249 
resistance or susceptibility, we computed the distribution of MICs for the genomes containing 250 
each high scoring k-mer.  For example, a k-mer conferring susceptibility should be found in 251 
more genomes with lower MICs, while a k-mer conferring resistance should exist in genomes 252 
with higher MICs.  Each high scoring k-mer was also compared to the set of protein encoding 253 
genes within each Salmonella genome.  If a k-mer was found within a known AMR gene, that 254 
gene was reported.  Otherwise, all protein-encoding genes within 3kb of the k-mer were 255 
reported in order to assess the neighborhood of the k-mer. 256 
 257 
To find k-mers that are being used by the individual antibiotic models to predict susceptible 258 
MICs, we computed the presence or absence of each k-mers with high XGBoost feature 259 
importance values (described above) for the entire data set of 5278 genomes.  The k-mers with 260 
the largest difference in occurrence between the susceptible and resistant genomes are the 261 
ones that are being chosen by the models for predicting susceptible MICs.  To demine if there 262 
were significant SNPs in these k-mers, we found the genomic features containing the k-mer—263 
protein encoding gene, RNA gene, or intergenic region—using BLASTn[58].  The corresponding 264 
feature or region was then found for all genomes in the collection.  The features were aligned 265 
using MAFFT[48] and manually curated using Jalview[59].  Poor quality sequence was removed, 266 
all duplicates and paralogs were removed, and the subalignment covering the k-mer was 267 
extracted.  To prevent possible biases due to clonality that may exist in the full set of genomes, 268 
the analysis was repeated on the diverse subset of 1000 genomes (described above).  We 269 
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report a SNP in a k-mer region as being significant if the susceptible and resistant sets are 270 
significantly different (P-value < 0.001) for a given nucleotide position based on a Chi-square 271 
test for both the full set of 5278 genomes and the set of 1000 diverse genomes.  Sequence 272 
logos for k-mers containing significant SNPs were generated using WebLogo[60].  K-mers from 273 
the Azithromycin and Ciprofloxacin models were excluded from this analysis because they each 274 
had seven resistant genomes.  Comparisons of codon usage were computed versus the genome 275 
average, genome mode, and high expression gene sets as described previously[61, 62]. 276 
 277 
Software availability 278 
The Salmonella MIC prediction model based on 4,500 genomes—including the software and 279 
documentation for running the model—is available at our GitHub page, 280 
https://github.com/PATRIC3/mic_prediction.   281 
 282 
 283 
Results 284 
 285 
Model Construction 286 
For this study, we used a publicly available collection of 5,278 Salmonella whole genome 287 
sequences generated by the NARMS project between 2002 and 2016.  The strains were isolated 288 
from retail meat and food animal sources in the United States. The collection includes 98 289 
different serotypes, including Heidelberg (678 genomes), Kentucky (618 genomes), and 290 
Typhimurium var. 5- (588 genomes) from 41 states (Table S1).  Isolates were tested for 291 
resistance to up to 15 antimicrobial agents using the broth microdilution method.  Many of the 292 
strains were randomly selected for sequencing as part of a compulsory nation-wide collection 293 
program (Table 1).  294 
 295 
The nontyphoidal Salmonella MIC prediction model was built similar to our previously 296 
described strategy used to predict MICs for K. pneumoniae clinical isolates[38].  Since the 297 
Salmonella data set has many more genomes and greater sampling in the range of susceptible 298 
MICs, it provides a critical test case for determining if the approach remains robust for other 299 
pathogens.  In the Klebsiella study, we built individual models for each antibiotic, as well as a 300 
single large integrated model by combining the data from all antibiotics.  We found that the 301 
combined model achieved slightly higher overall accuracies (by ~1-2%), however the matrix 302 
that was necessary to train this model had a large memory footprint.  Indeed, if we were to 303 
build a similar matrix for the current Salmonella data set using all 5,278 genomes, the model 304 
training would exceed 1.5 TB of RAM.  Therefore, we first built models for all antibiotics using 305 
subsets of the genomes ranging in size from 250-4,500 genomes that were rationally selected 306 
to maximize genetic diversity (Figure 1).  A matrix built from 4,500 genomes is the largest we 307 
can train on a 1.5 TB machine using this protocol.  As the training set size increases from 250 to 308 
1000 genomes, the accuracy increases from 88.5% to 91.4%.  Then as the training set increases 309 
beyond 1000 genomes, the accuracy continues to improve more modestly, with the 4,500-310 
genome model having an average accuracy of 95.2%.  Results indicate that the overall MIC 311 
prediction approach, which was developed previously for Klebsiella pneumoniae, also works for 312 
Salmonella despite the differences in sampling, genetic diversity and MICs.  Also, we discovered 313 
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that a smaller number of well-chosen diverse genomes can serve as a useful proxy for 314 
representing the entire set, since models built from ≥500 genomes have accuracies exceeding 315 
90%.   316 
 317 
Model Accuracy 318 
We computed the overall accuracy for each antibiotic using the model that is based on 4,500 319 
genomes.  For this model, all 15 antibiotics have average accuracies ≥90%, with their Q1 quartile 320 
bound ≥89% (Figure 2).  Chloramphenicol and ceftiofur had the highest accuracies (99%), and 321 
gentamicin and tetracycline had the lowest accuracies (91% and 90%, respectively) (Table S2).  322 
Since the model is robust to the various mechanisms of resistance for the 15 antibiotics, it is 323 
possible that the slightly lower accuracies for gentamicin and tetracycline could be due to the 324 
distribution of multiple AMR genes/mechanisms across the population of strains with resistant 325 
genomes (which will be analyzed in more detail below).  Figure 3 depicts the accuracy of the 326 
4,500-genome model for each MIC.  Overall, the model is robust for both the resistant and 327 
susceptible MICs, and it tends to be more accurate when a MIC is represented by many 328 
genomes.  The model tends to have lower accuracies for the highest and lowest MICs, perhaps 329 
because of underlying genetic differences between strains that have been reported with ≥ or ≤ 330 
values, which represents a range of MICs rather than a discrete value.   331 
 332 
The utility of AMR diagnostic devices is often described in terms of error rate.  Major errors 333 
(MEs) are defined as susceptible genomes that have been incorrectly assigned resistant MICs by 334 
the model.  Very major errors (VMEs) are defined as resistant genomes that have been 335 
incorrectly assigned susceptible MICs by the model.  FDA standards for automated systems 336 
recommend a major error rate ≤ 3%[53].  All antibiotics used in the model have ME rates within 337 
this range (Table 2).  The FDA standards for VME rates indicate that the lower 95% confidence 338 
limit should be ≤1.5% and upper limit should be ≤7.5%[53].  Seven of the 15 antibiotics—339 
amoxicillin/clavulanic acid, ceftriaxone, chloramphenicol, cefoxitin, streptomycin, tetracycline 340 
and ceftiofur—have acceptable VME rates by this measure.  Ampicillin and sulfisoxazole have 341 
VME rates with 95% confidence intervals approaching this range: [0.022, 0.033] and [0.026, 342 
0.053] respectively.  The VME rates are higher for some of the remaining antibiotics because 343 
there are fewer resistant genomes.  As more resistant genomes are collected, and the data set 344 
becomes more balanced, we expect VME rates to be reduced.  345 
 346 
In addition to the extensive MIC data, NARMS reports rich metadata including isolation date, 347 
food or animal source, collection year, geographic location and serotype.  We computed the 348 
accuracy of the model over each available metadata category to determine if the model is 349 
robust to these differences and to ensure that no subset is biasing the model.  The genomes 350 
span a 15-year collection period, with all the years except 2002 (the oldest) and 2016 (the most 351 
recent) having over 100 isolates.  The model accuracy ranges from 94-97% over each collection 352 
year (Table 3).  That is, the genetic factors that contribute to the MICs have either remained 353 
stable over the 15-year period or have been learned as the model was trained.   Although the 354 
data set is mostly comprised of poultry meat or live animal isolates, the accuracy ranges 355 
between 94-96% over the four contamination sources: turkey, beef, pork, and chicken (Table 356 
4).  No obvious biases were detected in the accuracies based on the state of isolation (an 357 
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average of 95% accuracy over 41 states with a 95% CI equal to [0.95-0.96]) (Figure 4) or the 358 
serovars of each isolate (94% accuracy over 97 serovars with a 95% CI equal to [0.94-0.96]) 359 
(Table S3).  Since the traditional Salmonella serotyping scheme is based the lipopolysaccharide 360 
O and flagellar H antigens, which are encoded by genes that influence the cell surface[63], we 361 
also constructed a phylogenetic tree for Salmonella genomes to observe the model accuracy 362 
over the various clades.  Overall, no phylogenetic bias in the model accuracy was detected 363 
(Figure S1). 364 
 365 
One concern of using a model that is trained on the data from previous years, in some cases 366 
over 15 years old, is that the training set is not representative of currently circulating strains.  367 
That is, the model may be inaccurate for predicting MICs for genomes of strains that are 368 
currently circulating or will emerge in the future.  For example, shifts in clonal groups, evolution 369 
of AMR-associated genes, or introduction of AMR genes by horizontal gene transfer is 370 
possible[64, 65].  We evaluated this possibility by building models from subsets of the whole 371 
genome sequence data using strains collected in earlier years and measuring the accuracy of 372 
the models on genomes collected in later years.  Models were built for years prior to 2009 373 
through 2014 and tested on the remaining genomes (Table 5).  These models have accuracies 374 
ranging from 86-92%.  As the number of years used for building the models increases, the 375 
number of genomes available for testing decreases, so we also tested each model on only the 376 
462 genomes from 2015 and 2016.  Similarly, the accuracy of each model on the 2015 and 2016 377 
genomes ranges from 87-90% (Table S4).  The results indicate that within this data set, models 378 
generated from genomes collected at earlier dates yield stable MIC predictions for genomes 379 
collected at later dates.  This finding is consistent with the pattern of AMR genes that is 380 
observed within the data set.  Although AMR gene content may vary from year to year, we do 381 
not observe any major sweeps or fixation events that drastically alter the AMR gene content of 382 
the collection between years, which would cause the MIC predictions to fail for a large fraction 383 
of the genomes (Table S5).  Taken together, these data suggest that the MIC prediction models 384 
generated in this study are likely to be sustainable over time.  385 
 386 
Genomic regions important for MIC prediction 387 
The 4,500-genome model described above contains data from all antibiotics and MICs, making 388 
feature extraction to determine which k-mers contribute to the MIC predictions for each 389 
antibiotic difficult.  To address this limitation, we modified the protocol by building separate 390 
models for each antibiotic.  Instead of using 10-mers, we increased the k-mer length to 15 391 
nucleotides to reduce redundancy and make them identifiable using BLAST[58].  We also 392 
searched for presence or absence of k-mers, rather than using k-mer counts, to simplify the 393 
analysis of the XGBoost decision trees.  Since a 15-mer matrix can be 4

5 
times larger than a 10-394 

mer matrix, we used <= 1000 diverse genomes to reduce the memory footprint during training.  395 
Overall, the average accuracy for the individual models is nearly identical to the average 396 
accuracy for the combined 4,500-genome model (96% vs. 95%, respectively), and in nearly all 397 
cases, the 95% confidence intervals overlap between the combined and single antibiotic models 398 
(Table S6).  Thus, for this data set, single antibiotic models with fewer genomes and larger k-399 
mers perform as well as a combined model (Figure S2).  400 
 401 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted August 1, 2018. ; https://doi.org/10.1101/380782doi: bioRxiv preprint 

https://doi.org/10.1101/380782


 11

During model training, XGBoost assigns an importance value to each k-mer used in a decision 402 
tree.  When the model is used to predict the MICs for a new genome, the k-mers with the 403 
highest importance values are the most informative for the MIC prediction.  Thus, by analyzing 404 
the feature importance values of each k-mer, we can use the models as a tool for 405 
understanding the genomic regions that differentiate MICs.  For each antibiotic-specific model, 406 
we parsed the XGBoost decision trees from each fold of the ten-fold cross validation to extract 407 
the importance values for each k-mer.  To understand the relationship between known AMR 408 
genes and the important k-mers that were chosen by each model, we then searched for k-mers 409 
with high importance values within AMR genes that occur in close proximity to an AMR gene (in 410 
this case, we consider a window of 3kb, approximately 3 genes, to be a close proximity).  Table 411 
6 lists the highest-ranking k-mers from each model that occur within or in close proximity to an 412 
AMR gene.  In most cases, the k-mers correspond to known AMR genes including class A and C 413 
beta-lactamases for the beta lactam antibiotics, aminoglycoside nucleotidyl- and 414 
acetyltransferases for the aminoglycosides, DNA gyrase and QnrB for the fluoroquinolones, 415 
TetA and TetR for tetracycline, and dihydrofolate reductase and dihydropteroate synthase for 416 
co-trimoxazole and sulfisoxazole.  In the case of azithromycin, the collection contains mostly 417 
susceptible genomes (Table 1), so the first macrolide resistance gene observed corresponds 418 
with the eighth ranking k-mer.  The top ten k-mers with the highest feature importance values 419 
from each of the ten folds used in model training are listed in Tables S7-S21.  In addition to the 420 
top AMR k-mers displayed in Table 6, these tables show other highly ranking k-mers from the 421 
same AMR genes as well as k-mers from related genes that are known to confer resistance to 422 
the given antibiotic.  In some cases, k-mers matching regions or genes from unrelated AMR 423 
mechanisms have high importance values, suggesting a pattern of co-occurrence on 424 
horizontally transferred genetic elements.  425 
 426 
Since each model is predicting the entire range of MICs, some of the highly ranking k-mers will 427 
be used to predict susceptible MICs.  To assess this, we computed the fraction of susceptible 428 
and resistant genomes with each k-mer from Tables S7-21.  The set of k-mers that are most 429 
enriched in the susceptible genomes is shown in Table 7.  Overall, seven of the top ten k-mers 430 
represent significantly different SNPs (P-value < 0.001) in both the complete set of 5,278 431 
genomes and in the set of 1,000 diverse genomes used to build the models (Figure S3).  The top 432 
k-mer associated with susceptibility is from the nalidixic acid model and occurs in the DNA 433 
gyrase gyrA gene.  This is also the top k-mer that was found in an AMR gene for nalidixic acid 434 
from Table 6.  In this case, the model is relying more heavily on the “wild type” version of the k-435 
mer rather than any of the resistant versions (the remaining k-mers from Table 6 occur almost 436 
exclusively in resistant genomes).  The same gyrA k-mer is also found as a highly ranking k-mer 437 
in the case of ciprofloxacin (Table S12).  Two significant gyrA SNPs are captured by this k-mer 438 
(Figure S3).  These are missense mutations in the resistant genomes occurring at Ser-83 and 439 
Asp-87, and changes at these positions have been shown to confer quinolone resistance in in E. 440 
coli [66, 67].  The remaining significant mutations from Figure S3 that occur in the protein-441 
encoding genes are same sense (not amino acid changing) mutations.  In the cases of eptA (Ser, 442 
TCG to TCA), oadA (Ala, GCC to GCA), the AraJ precursor gene (Leu, CTG to CTA), and the second 443 
gcd mutation (Thr, ACG to ACA), the codon changes from a commonly used codon in the 444 
susceptible genomes to the least preferred codon in the resistant genomes.  In the cases of the 445 
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nrfE/nrfF mutation (Asn, AAT to AAC) and the first gcd mutation (Asp, GAC to GAT), the 446 
resistant genomes have the preferred codon of the pair.  Whether these SNPs have a 447 
modulating effect on protein translation or contribute to the fitness of the resistant organisms 448 
requires further analysis.  449 
 450 
 451 
Discussion 452 
In this study, we have built machine learning-based MIC prediction models for nontyphoidal 453 
Salmonella genomes using XGBoost[41] that achieve overall accuracies of 95-96% within ± 1 454 
two-fold dilution factor.  To our knowledge, this is one of the largest and most accurate MIC 455 
prediction models to be published to date.  Importantly, it provides a model strategy for 456 
performing MIC prediction directly from genome sequence data that could be applied to other 457 
human or veterinary pathogens.   458 
 459 
The success of our MIC prediction model was dependent on the large, publicly available, 460 
population-based collection of genomes with associated metadata.  Since researchers often 461 
focus on collecting highly resistant or otherwise unusual strains, the opportunities to generate 462 
balanced models are rare.  We demonstrate the many benefits from comprehensive sampling 463 
for the entire range of possible MICs.  First, diverse and balanced data sets improve model 464 
accuracies because there is better sampling across all MIC dilutions.  Second, having balanced 465 
data enabled us to achieve acceptable ME and VME rates for 7 of the 15 antibiotics used in the 466 
study.  Third, compared with our recent model for Klebsiella pneumoniae, the larger and more 467 
balanced data set in nontyphoidal Salmonella enabled us to build models for individual 468 
antibiotics that had similar accuracies to the combined model.  This enabled us to begin to 469 
disambiguate the important genomic regions relating to resistant and susceptible MICs.  Finally, 470 
we show that MICs in the susceptible range can be accurately predicted with the algorithm 471 
using all genomic data rather than scoping it to known AMR genes or gene polymorphisms.  472 
This contrasts with prior work correlating MICs to known resistance mechanisms in 473 
Salmonella[68].  In future studies, our strategy could be used as a starting point for identifying 474 
the subtle genomic changes that result in different MICs. 475 
 476 
For each single-antibiotic model, we analyzed the k-mers that had high feature importance 477 
values and were important to the models for predicting MICs.  The highly ranking k-mers that 478 
were enriched in the resistant genomes mainly occurred within or in close proximity to well-479 
known AMR genes.  With the exception of the gyrA k-mer, the highly ranking k-mers that were 480 
enriched in the susceptible genomes were significant in several cases, but more difficult to 481 
interpret.  Some of these susceptibility k-mers hint at a possible relationship between AMR and 482 
oxidative stress or electron transport, such as the k-mers matching components of the nitrate 483 
and nitrite reductases and pqq-dependent glucose dehydrogenase, which is consistent with the 484 
known link between antibiotics to oxidative stress[69, 70]. Determining the molecular 485 
mechanisms underlying the susceptibility k-mers and AMR phenotypes should be further 486 
investigated. 487 
 488 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted August 1, 2018. ; https://doi.org/10.1101/380782doi: bioRxiv preprint 

https://doi.org/10.1101/380782


 13

The genomes in this study were collected over a 15-year period from 41 U.S. states.  By building 489 
models encompassing ranges of earlier dates, we demonstrated stable and accurate MIC 490 
prediction for genomes collected at later dates.  Presently, we are not aware of any large 491 
publicly available collections of Salmonella genomes with MIC data from other countries.  Since 492 
AMR gene content may vary across pathogen populations, validation of the Salmonella models 493 
using strains from other countries is important to its application in global health.  Nevertheless, 494 
the present analysis clearly demonstrates that current model provides accurate MIC predictions 495 
for United States isolates.  Similarly, an analysis of this model on Salmonella typhi strains would 496 
provide information about the utility of the model over broader phylogenetic distances. 497 
 498 
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Tables 717 
 718 
Table 1.  The number of susceptible, intermediate and resistant genomes across the 15 719 
antibiotics for the 5278 Salmonella genomes used in this study. 720 

Antibiotic 

Susceptible 

genomes 

Intermediate 

genomes 

Resistant 

genomes 

AMP 3682 2 1593 

AUG 4145 355 778 

AXO 4508 1 769 

AZI 2409 0 7 

CHL 5026 87 164 

CIP 5217 53 7 

COT 5219 0 58 

FIS 3356 0 1573 

FOX 4501 98 679 

GEN 4577 68 633 

KAN 837 3 84 

NAL 5233 0 45 

STR 872 0 1919 

TET 2364 28 2885 

TIO 4517 8 753 

 721 
  722 
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 723 
 724 
Table 2. Very major error (VME) rate, defined as resistant genomes predicted as being 725 
susceptible, and major error (ME) rate, defined as susceptible genomes predicted as being 726 
resistant, for the 4500-genome model.  727 

Antibiotic 
VME 

Avg
1
 

VME 95% CI
2
 

ME 

Avg
1
 

ME 95% CI
2
 

Resistant 

Samples 

Susceptible 

Samples 

All 0.027 [0.024-0.030] 0.001 [0.001-0.002] 10979 47366 

AMP 0.028 [0.022-0.033] 0.000 [0.000-0.001] 1442 3054 

AUG 0.012 [0.000-0.025] 0.000 [0.000-0.000] 746 3449 

AXO 0.022 [0.011-0.032] 0.000 [0.000-0.001] 740 3758 

AZI 0.857 [0.508-1.207] 0.000 [0.000-0.000] 7 2040 

CHL 0.000 [0.000-0.000] 0.000 [0.000-0.001] 149 4271 

CIP 0.417 [-0.099-0.933] 0.000 [0.000-0.000] 7 4445 

COT 0.670 [0.515-0.825] 0.000 [0.000-0.001] 55 4443 

FIS 0.039 [0.026-0.053] 0.000 [0.000-0.000] 1479 2757 

FOX 0.009 [-0.001-0.020] 0.000 [0.000-0.000] 651 3754 

GEN 0.090 [0.066-0.113] 0.000 [0.000-0.000] 579 3862 

KAN 0.074 [0.012-0.136] 0.000 [0.000-0.000] 82 662 

NAL 0.917 [0.819-1.014] 0.000 [0.000-0.001] 39 4460 

STR 0.014 [0.008-0.020] 0.027 [0.013-0.040] 1703 744 

TET 0.000 [0.000-0.000] 0.018 [0.012-0.025] 2575 1901 

TIO 0.004 [-0.001-0.009] 0.000 [0.000-0.000] 725 3766 
1 

Reported within ±1 two-fold dilution step
 728 

2
 95% confidence interval 729 

 730 
 731 
  732 
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 733 
 734 
Table 3.  Model accuracy for the genomes from each sample collection year. 735 

Collection Date Accuracy Genomes Bins
*
 

2002 0.97 55 624 

2003 0.95 159 1809 

2004 0.96 235 2850 

2005 0.95 274 3384 

2006 0.95 313 3880 

2007 0.94 258 3192 

2008 0.95 388 4821 

2009 0.95 436 5367 

2010 0.94 230 2820 

2011 0.95 214 2968 

2012 0.96 257 3694 

2013 0.97 265 3793 

2014 0.95 506 7100 

2015 0.95 689 9646 

2016 0.96 83 1161 
*
The total number of MICs available for the genomes isolated in that year 736 

 737 
 738 
Table 4.  Model accuracy for the genomes isolated from various sources. 739 
Source Accuracy Genomes Bins

*
 

Chicken 0.96 1981 25869 

Cow/Beef 0.94 419 5688 

Pig/Pork 0.95 448 6144 

Turkey 0.94 1651 21260 
*
The total number of MICs available for the genomes of each category 740 

 741 
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Table 5.  The ability of models trained on genomes from prior years to predict MICs for genomes collected in later years. 

Training 

set years 

Test set 

years Accuracy 95% CI 

Training 

Bins
*
 

Testing  

Bins
*
 

Training 

Genomes  

Testing 

Genomes  

2002-2008 2009-2016 0.88 [0.88-0.89] 36563 22412 1819 2681 

2002-2009 2010-2016 0.88 [0.88-0.89] 31196 27779 2255 2245 

2002-2010 2011-2016 0.88 [0.88-0.88] 28376 30599 2485 2015 

2002-2011 2012-2016 0.88 [0.88-0.89] 25408 33567 2699 1801 

2002-2012 2013-2016 0.88 [0.87-0.88] 21714 37261 2956 1544 

2002-2013 2014-2016 0.86 [0.86-0.87] 17921 41054 3221 1279 

2002-2014 2015-2016 0.92 [0.92-0.92] 10807 48168 3728 772 
*
The total number of genome/antibiotic combinations
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Table 6.  The highest-ranking AMR-related protein function (or genomic region) with a matching k-mer from the XGBoost models. 

Antibiotic 

K-

mer 

Rank 

Type of 

match
1
 k-mer PATRIC Annotation(s) 

AMP 1 direct CTTAATCAGTGAGGC Class A beta-lactamase (EC 3.5.2.6) => TEM family 

AUG 1 direct AAACGTCTTACTAAC Class C beta-lactamase (EC 3.5.2.6) => CMY/CMY-2/CFE/LAT family 

AXO
2
 1 proximity AAAGAGAAAGAAAGG Class C beta-lactamase (EC 3.5.2.6) => CMY/CMY-2/CFE/LAT family 

AZI 8 direct CCCATTTCCGCCGCC Macrolide 2'-phosphotransferase => Mph(A) family 

CHL
2
 1 proximity AGACAAGTAAGCCGC Chloramphenicol/florfenicol resistance, MFS efflux pump => FloR family 

CIP 1 proximity ACAGTCCATCCAGGA 

Pentapeptide repeat protein QnrB family => Quinolone resistance protein 

QnrB10 

COT
2
 1 proximity AAAAACGATAGCTGC Dihydrofolate reductase (EC 1.5.1.3) 

FIS
2
 1 proximity CGCAACGGCTCAAGC 

Dihydropteroate synthase type-2 (EC 2.5.1.15) @ Sulfonamide resistance 

protein 

FOX 1 direct AAAAAAACCTTGGCA Class C beta-lactamase (EC 3.5.2.6) => CMY/CMY-2/CFE/LAT family 

GEN 1 proximity AGTTAAGCCGCGCCG 

Aminoglycoside 3''-nucleotidyltransferase (EC 2.7.7.-) => APH(3'')-Ia (AadA 

family); Aminoglycoside N(3)-acetyltransferase (EC 2.3.1.81) => AAC(3)-

II,III,IV,VI,VIII,IX,X 

KAN 1 direct AAAAAGCCGTTTCTG Aminoglycoside 3'-phosphotransferase (EC 2.7.1.95) => APH(3')-I 

NAL 1 direct ATTCCGCAGTGTATG DNA gyrase subunit A (EC 5.99.1.3) 

STR 1 direct ATTTGTACGGCTCCG 

Aminoglycoside 3''-nucleotidyltransferase (EC 2.7.7.-) => APH(3'')-Ia (AadA 

family) 

TET 1 proximity CGTTCTGCCTTGCGC 

Tetracycline resistance regulatory protein TetR; Tetracycline resistance, 

MFS efflux pump => Tet(A) 

TIO
2
 1 proximity AAAGAGAAAGAAAGG Class C beta-lactamase (EC 3.5.2.6) => CMY/CMY-2/CFE/LAT family 

1
A “direct” match means that the k-mer is an exact match to the protein-encoding gene, a “proximity” match means that an AMR 

gene occurs within 3kb of the k-mer.  The k-mer sequences and the top k-mers for each antibiotic are shown in Tables S7-21. 
2
Has other AMR genes within 3kb listed in Tables S7-21.  
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Table 7.  Important k-mers used by the individual antibiotic models for predicting susceptible MICs.  

Antibiotic k-mer Sus
1
 Res

1
 

Frac 

Sus
2
 

Frac 

Res
2
 

Genomic 

region
3
 PATRIC annotation or genomic region 

NAL ATTCCGCAGTGTATG 5233 45 1.00 0.38 PEG DNA gyrase subunit A (EC 5.99.1.3) 

AXO TGGTATTCGCATCAA 4508 769 0.78 0.48 PEG Phosphoethanolamine transferase EptA 

KAN CTGGCTTTTTTTTTT 837 84 0.30 0.00 RNA RyhB RNA 

STR 
CCCTTATCCAACACG 872 1919 0.85 0.55 PEG 

Respiratory nitrate reductase delta chain (EC 

1.7.99.4) 

AXO 

CAGAACCAGAATTTG 4508 769 0.74 0.46 PEGs 

Formate-dependent nitrite reductase complex 

subunit NrfF, and Cytochrome c-type heme lyase 

subunit nrfE, nitrite reductase complex assembly 

TIO 
AGAGAAGCCTGCCGC 4517 753 0.68 0.40 PEG 

Oxaloacetate decarboxylase alpha chain (EC 

4.1.1.3) 

AXO 
ATCCCCGCCATTACA 4508 769 0.73 0.46 PEG 

Tagatose-1,6-bisphosphate aldolase GatY (EC 

4.1.2.40) 

AXO TGCTGCAAAACGCCA 4508 769 0.69 0.45 PEG Protein AraJ precursor 

AXO GAAAACAGGGTGTAG 4508 769 0.47 0.23 INT Upstream of IlvGMEDA operon leader peptide  

FOX 

GGATACCACGCCGGG 4501 679 0.58 0.35 PEGs 

Glucose dehydrogenase, PQQ-dependent (EC 

1.1.5.2), and IncF plasmid conjugative transfer 

protein TraP 
1
 Total number of susceptible and resistant genomes in the entire collection 

2
 Fraction of susceptible and resistant genomes with the k-mer in the entire collection  

3 
PEG is protein-encoding gene, RNA is RNA gene, INT is intergenic region 
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Figure Legends 

 

Figure 1.  MIC prediction model accuracy for subsamples of genomes.  Diverse subsamples of 

genomes were chosen and the model accuracy within ± 1 two-fold dilution step based on a 10-

fold cross validation is shown with the red plot line.  The dashed line represents the high and 

low values for the 95% confidence interval for the average accuracy at each given plot point. 

 

Figure 2.  Box plot of the overall accuracies within ± 1 two-fold dilution step for each antibiotic 

in the 4500-genome model. The Y-axis depicts each antibiotic (abbreviations are defined in 

Materials and Methods). The X-axis depicts the accuracy. Each vertical red line represents the 

median accuracy over the holdout sets for each fold in the ten-fold cross validation. The blue 

box encompasses the data of the first and third quartiles. The dashed blue horizontal lines 

bounded by black vertical lines (or “whiskers”) depict the entire distribution of accuracies for 

each fold and antibiotic. The accuracy of the entire 4500 genome model over all antibiotics and 

folds is depicted in the row marked “ALL”. 

 

Figure 3.  The accuracy of the MIC prediction model based on 4,500 diverse genomes.  The heat 

map depicts the accuracy within ±1 two-fold dilution step of the laboratory-derived MIC.  The X-

axis shows the MIC (μg/ml) and each antibiotic is shown on the Y-axis.  The accuracy for each 

antibiotic-MIC combination is depicted by color with bright yellow/green being the most 

accurate and red being the least accurate.  The values shown in each cell are the number of 

genomes with that MIC for a given antibiotic.   

 

Figure 4.  The average accuracy of the model based on 4,500 diverse genomes for predicting 

MICs for the Salmonella genomes from each state.  Light blue is most accurate and dark 

blue/black is least accurate.  Note that the scale starts at an accuracy of 0.90.  Each state is 

labeled with the number of genomes collected from that state.  States without a label contain 

no samples and are colored in grey; no genomes exist in the collection from Alaska and Hawaii.   
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