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Abstract

Background: The complex nature of biological data has driven the development of specialized software
tools. Scientific workflow management systems simplify the assembly of such tools into pipelines, assist with
job automation and aid reproducibility of analyses. Many contemporary workflow tools are specialized and
not designed for highly complex workflows, such as with nested loops, dynamic scheduling and parametriza-
tion, which is common in e.g. machine learning.

Findings: SciPipe is a workflow programming library implemented in the programming language Go, for
managing complex and dynamic pipelines in bioinformatics, cheminformatics and other fields. SciPipe helps
in particular with workflow constructs common in machine learning, such as extensive branching, parameter
sweeps and dynamic scheduling and parametrization of downstream tasks. SciPipe builds on Flow-based
programming principles to support agile development of workflows based on a library of self-contained,
reusable components. It supports running subsets of workflows for improved iterative development, and
provides a data-centric audit logging feature that saves a full audit trace for every output file of a workflow,
which can be converted to other formats such as HTML, TeX and PDF on-demand. The utility of SciPipe
is demonstrated with a machine learning pipeline, a genomics, and a transcriptomics pipeline.

Conclusions: SciPipe provides a solution for agile development of complex and dynamic pipelines, espe-
cially in machine leaning, through a flexible programming API suitable for scientists used to programming
or scripting.

Findings
Driven by the highly complex and heterogeneous nature of biological data [1, 2], computational biology is
characterized by an extensive ecosystem of command-line tools, each specialized on one or a few of the many
aspects of biological data. Because of their specialized nature these tools generally need to be assembled into
sequences of processing steps, often called “pipelines”, to produce meaningful results from raw data. Due to
the increasingly large sizes of biological data sets [3, 4], such pipelines often require integration with High-
Performance Computing (HPC) infrastructures or cloud computing resources to complete in an acceptable
time. This has created a need for tools to coordinate the execution of such pipelines in an efficient, robust and
reproducible manner. This coordination can in principle be done with simple scripts in languages like Bash,
Python or Perl, but such scripts can quickly become fragile.

When the number of tasks becomes sufficiently large, and the execution time sufficiently long, the risk for
failures during the execution of such scripts increases almost linearly with time, and simple scripts are not a good
strategy for when large jobs need to be restarted from a failure. They lack the ability to distinguish between
finished and half-finished files, and can not by default detect if intermediate output files are already created and
can be reused to save computing time and resources. These limits with simple scripts calls for a strategy with
a higher level of automation. This need is addressed by a class of software commonly referred to as “scientific
workflow management systems” or simply “workflow tools”. Through a more automated way of handling the
execution, workflow tools can improve the robustness, reproducibility and understandability of computational
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analyses. In concrete terms, workflow tools provide means for handling atomic writes (making sure finished
and half-finished files can be separated after a crashed or stopped workflow), caching of intermediate results,
distribution of tasks to the available computing resources and automatically keeping or generating records of
exactly what was run, to make analyses reproducible.

It is widely agreed upon that workflow tools generally make it easier to develop automated, reproducible and
fault-tolerant pipelines, although many challenges and potential areas for improvement still do exist with existing
tools [5]. This has made scientific workflow systems a highly active area of research. Numerous workflow tools
have been developed and many new ones are continuously being developed.

The workflow tools developed differ quite widely in terms of how workflows are being defined and what
features are included out-of-the box. This probably reflects the fact that different types of workflow tools can be
suited for different categories of users and use cases. Graphical tools like Galaxy [6, 7, 8] and Yabi [9] provide
easy to use environments especially well-suited for scientists without scripting experience. Text-based tools
like Snakemake [10], Nextflow [11], BPipe [12], Cuneiform [13] and Pachyderm [14] on the other hand, are
implemented as Domain Specific Languages (DSLs), that can often provide a higher level of flexibility, at the
expense of the ease of use of a graphical user interface. They can thus be well suited for “power users” with
experience in scripting or programming.

Even more power and flexibility can be gained from workflow tools implemented as programming libraries,
which provide their functionality through a programming API accessed from an existing programming language
such as Python, Perl or Bash. By implementing the API in an existing language, users get access to the full power
of the implementation language when writing workflows, as well as the existing tooling around the language.
One example of a workflow system implemented in this way is Luigi [15].

As reported in [5], although many users find important benefits in using workflow tools, many also ex-
perience limitations and challenges with existing workflow tools, especially regarding the ability to express
complex workflow constructs such as branching and iteration, as well as limitations in terms of audit logging
and reproducibility. Below we will briefly review a few of existing, popular systems, and highlight areas where we
found that the development of a new approach and tool was desirable for use cases that includes very complex
workflow constructs.

Firstly, graphical tools like Galaxy and Yabi, although being easy-to-use even for users without programming
experience, is often perceived to be limited in their flexibility due to the need to install and run a web server in
order to use them, which is not always permitted, or practical, on HPC systems.

Text-based tools implemented as DSLs, such as Snakemake, Nextflow, BPipe, Pachyderm and Cuneiform do
not have this limitation, but have other characteristics which might be problematic for for complex workflows in
some cases.

For example, Snakemake is dependent on file naming strategies for defining dependencies, which can in
some situations be limiting, and also uses a “pull-based” scheduling strategy (the workflow is invoked by asking
for a specific output file, where after all tasks required for reproducing the file will be executed). While this
makes it very easy to reproduce specific files, it can make the system hard to use for workflows involving complex
constructs such as nested parameter sweeps and cross-validation fold generation, where the final file names might
be hard if at all possible to foresee. Snakemake also performs scheduling and execution of the workflow graph in
separate stages, which means that it does not support dynamic scheduling.

Dynamic scheduling, which basically means on-line scheduling during the workflow execution [16], is useful
both where the number of tasks is unknown before the workflow is executed, and where a task needs to be
scheduled with a parameter value obtained during the workflow execution. An example of the former is reading
row by row from a database, splitting a file of unknown size into chunks, or processing a continuous stream of
data from an external process such as an automated laboratory instrument. An example of the latter is training a
machine learning model with hyperparameters obtained from a parameter optimization step prior to the final
training step.

BPipe constitutes a sort of middle-ground in terms of dynamic scheduling. It supports dynamic decisions of
what to run by allowing execution-time logic inside pipeline stages, as long as the structure of the workflow does
not need to change. Dynamic change of the workflow structure can be important in workflows for machine
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learning though, e.g. if parametrizing the number of folds in a cross-validation based on a value calculated during
the workflow run, such as dataset size.

Nextflow, has push-based scheduling and supports full dynamic scheduling via the dataflow paradigm, does
not have this limitation. It does not, however, support creating a library of reusable workflow components,
because of its use of dataflow variables shared across component definitions, as this requires processes and the
workflow dependency graph to be defined together.

Pachyderm is a container-based workflow system which uses a JSON and YAML-based DSL to define
pipelines. It has a set of innovative features including a version-controlled data management component with
Git-like semantics and support for triggering of pipelines based on data updates, among others. These in
combination can provide some aspects of dynamic scheduling. On the other hand, the more static nature of the
JSON/YAML-based DSL might not be optimal for really complex setups such as creating loops or branches
based on parameter values obtained during the execution of the workflow. The requirement of Pachyderm to be
run on a Kubernetes [17] cluster can also make it less suitable for some academic environments where ability to
run pipelines also on traditional HPC clusters is required. On the other hand, because of the easy incorporation
of existing tools, it is possible to provide such more complex behavior by including a more dynamic workflow
tool as a workflow step in Pachyderm instead. We thus primarily see Pachyderm as a complement to other
light-weight workflow systems, rather necessarily than an alternative.

The usefulness of such an approach where an over-arching frameworks provide primarily an orchestration
role while calling out to other systems for the actual workflows, is demonstrated by the Arteria project [18].
Arteria builds on the event-based StackStorm framework to allow triggering of external workflows based on any
type of event, providing a flexible automation framework for sequencing core facilities.

Going back to traditional workflow systems, Cuneiform takes a different approach compared to most
workflow tools by wrapping shell commands in functions in a flexible functional language (described in [19]),
which allows leveraging common benefits in functional programming languages such as side-effect free functions,
to define workflows. It also leverages the distributed programming capabilities of the Erlang Virtual Machine
(EVM), to provide automatic distribution of workloads. It is still a new, domain specific language though, which
means that tooling and editor support might not be as extensive as for an established programming language.

Luigi is a workflow library developed by Spotify, which provides a high degree of flexibility due to its
implementation as a programming library, Python. For example, the programming API exposes full control over
file name generation. Luigi also provides integration with many Big Data systems such as Hadoop and Spark,
and cloud-centric storage systems like HDFS and S3.

SciLuigi [20] is a wrapper library for Luigi, previously developed by the authors, which introduces a number
of benefits for scientific workflows by leveraging selected principles from Flow-based programming (FBP)
(named ports and separate network definition) to achieve an API that makes iteratively changing the workflow
connectivity easier than in vanilla Luigi.

While Luigi and SciLuigi were shown to be a helpful solution for complex workflows in drug discovery,
they also have a number of limitations for highly complex and dynamic workflows. Firstly, since Python is an
untyped, interpreted language, certain software bugs are discovered only far into a workflow run, rather than
while compiling the program. Secondly, the fact that Luigi creates separate processes for each worker, which
communicate with the central Luigi scheduler via HTTP requests over the network, can lead to robustness
problems when going over a certain number of workers (around 64 in the authors’ experience) leading to HTTP
connection time-outs.

The mentioned limitations for complex workflows in existing tools is the background and motivation for
developing the SciPipe library.

The SciPipe workflow library

SciPipe is a workflow library based on Flow-Based Programming principles, implemented as a library in the Go
programming language. The library is freely available as open source on GitHub [21]. All releases of GitHub
are also archived on Zenodo [22]. Similarly to Nextflow, SciPipe leverages the dataflow paradigm to achieve
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1 package main

2

3 import (

4 "github.com/scipipe/scipipe"

5 )

6

7 const dna = "AAAGCCCGTGGGGGACCTGTTC"

8

9 func main() {

10 // Initialize workflow, using max 4 CPU cores

11 wf := scipipe.NewWorkflow("DNA Base Complement Workflow", 4)

12

13 // Initialize processes based on shell commands:

14

15 // makeDNA writes a DNA string to a file

16 makeDNA := wf.NewProc("Make DNA", "echo "+dna+" > {o:dna}")

17 makeDNA.SetOut("dna", "dna.txt")

18

19 // complmt computes the base complement of a DNA string

20 complmt := wf.NewProc("Base Complement", "cat {i:in} | tr ATCG TAGC > {o:compl}")

21 complmt.SetOut("compl", "{i:in|%.txt}.compl.txt")

22

23 // reverse reverses the input DNA string

24 reverse := wf.NewProc("Reverse", "cat {i:in} | rev > {o:rev}")

25 reverse.SetOut("rev", "{i:in|%.txt}.rev.txt")

26

27 // Connect data dependencies between out- and in-ports

28 complmt.In("in").From(makeDNA.Out("dna"))

29 reverse.In("in").From(complmt.Out("compl"))

30

31 // Run the workflow

32 wf.Run()

33 }

Figure 1: A simple example workflow implemented with SciPipe. The workflow computes the reverse base
complement of a string of DNA, using standard UNIX tools. The workflow is a Go program and is supposed to
be saved in a file with the .go extension and executed with the go run command. On line 4, the SciPipe library
is imported, to be later accessed as scipipe. On line 7, a short string of DNA is defined. On line 9-33, the full
workflow is implemented in the program’s main() function, meaning that it will be executed when the resulting
program is executed. On line 11, a new workflow object (or “struct” in Go terms) is initiated with a name and
the maximum number of cores to use. On lines 15-25, the workflow components, or processes, are initiated,
each with a name and a shell command pattern. Input file names are defined with a placeholder on the form
{i:INPORTNAME} and outputs on the form {o:OUTPORTNAME}. The port-name will be used later to access
the corresponding ports for setting up data dependencies. On line 16, a component that writes the previously
defined DNA string to a file is initiated, and on line 17, the file path pattern for the out-port dna is defined
(in this case a static file name). On line 20, a component that translates each DNA base to its complementary
counterpart is initiated. On line 21, the file path pattern for its only out-port is defined. In this case, reusing the
file path of the file it will receive on its in-port named in, thus the {i:in} part. The %.txt part removes .txt
from the input path. On line 24, a component that will reverse the DNA string is initiated. On lines 27-29, data
dependencies are defined via the in- and out-ports defined earlier as part of the shell command patterns. On line
32, the workflow is being run.

dynamic scheduling of tasks based on input data, allowing many workflow constructs not easily coded in many
other tools.

Combined with design principles from Flow-based programming such as separate network definition and
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named ports bound to processes, this has resulted in a productive and discoverable API that enables agile
authoring of complex and dynamic workflows. The fact that the workflow network is defined separately from
processes, enables building workflows based on a library of reusable components, although the creation of ad-hoc
shell-command based components is also supported.

SciPipe provides a provenance tracking feature that creates one audit log per output file, rather than only one
for the whole workflow run. This means that it is always easy to verify exactly how each output of a workflow
was created.

SciPipe also provides a few features which are not very common among existing tools, or which are not
commonly occurring together in one system. These include support for streaming via Unix named pipes, ability
to run push-based workflows up to a specific stage of the workflow, and flexible support for file naming of
intermediate data files generated by workflows.

By implementing SciPipe as a library in an existing language, the language’s ecosystem of tooling, editor
support and third-party libraries can be directly used to avoid “reinventing the wheel” in these areas. By leveraging
the built-in concurrency features of Go, such as go-routines and channels, the developed code base has been kept
small compared with similar tools, and also does not require external dependencies for basic usage (some external
tools are used for optional features like PDF generation and graph plotting). This means that the code base
should be possible to maintain for a single developer or small team, and that the code base is practical to include
in workflow developers’ own source code repositories, in order to future-proof the functionality of workflows.

Below, we first briefly describe how SciPipe workflows are created. We then describe in some detail the features
of SciPipe that are the most novel or improves most upon existing tools, followed by a few more commonplace
technical considerations. We finally demonstrate the usefulness of SciPipe by applying it to a set of case study
workflows in machine learning for drug discovery and next-generation sequencing genomics and transcriptomics.

Writing workflows with SciPipe

SciPipe workflows are written as Go programs, in files ending with the .go extension. As such, they require
the Go tool chain to be installed for compiling and running them. The Go programs can be either compiled to
self-contained executable files with the go build command, or run directly, using the go run command.

The simplest way to write a SciPipe program is to write the workflow definition in the program’s main()
function, which is executed when running the compiled executable file, or running the file as script with go run.
An example workflow written in this way is shown in in figure 1, which provides a simple example workflow
consisting of three processes, demonstrating a few of the basic features of SciPipe. The first process writes a
string of DNA to a file, the second computes the base complement, and the last process reverses the string. All in
all, the workflow computes the reverse base complement of the initial string.

As can be seen in figure 1 on line 11, a workflow object (or struct, in Go terminology) is first initialized, with a
name and a setting for the maximum number of tasks to run at a time. Furthermore, on line 15-19, processes are
defined with the Workflow.NewProc() method on the workflow struct, with name and a command pattern
which is very similar to the Bash shell command that would be used to run a command manually, but where
concrete file names have been replaced with placeholders, on the form {i:INPORTNAME}, {o:OUTPORTNAME}
or {p:PARAMETERNAME}. These placeholders define input and output files, as well as parameter values, and
works as a sort of templates, that will be replaced with concrete values as concrete tasks are scheduled and
executed.

As can be seen on lines 17, 21 and 25, output paths to use for output files are defined using theProcess.SetOut()
method, taking an out-port name and a pattern for how to generate the path. For simple workflows this can be
just a static file name, but for more complex workflows with processes that produce more than one output on
the same port – e.g. by processing different input files, or using different sets of parameters – it is often best to
reuse some of the input paths and parameter values configured earlier in the command pattern to generate a
unique path for each output.

Finally, on lines 27-29, we see how in-ports and out-ports are connected in order to define the data depen-
dencies between tasks. Here, the in-port and out-port names used in the placeholders in the command pattern
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1 {

2 "ID": "tuir75c24kxe4rrqmm2p",

3 "ProcessName": "Reverse",

4 "Command": "cat ../dna.compl.txt | rev \u003e dna.compl.rev.txt",

5 "Params": {},

6 "Tags": {},

7 "StartTime": "2018-07-26T13:02:16.855172344+02:00",

8 "FinishTime": "2018-07-26T13:02:16.863536059+02:00",

9 "ExecTimeNS": 8363715,

10 "OutFiles": {

11 "rev": "dna.compl.rev.txt"

12 },

13 "Upstream": {

14 "dna.compl.txt": {

15 "ID": "2g7tr2trhu9zubovwlua",

16 "ProcessName": "Base Complement",

17 "Command": "cat ../dna.txt | tr ATCG TAGC \u003e dna.compl.txt",

18 "Params": {},

19 "Tags": {},

20 "StartTime": "2018-07-26T13:02:16.845769702+02:00",

21 "FinishTime": "2018-07-26T13:02:16.854035213+02:00",

22 "ExecTimeNS": 8265532,

23 "OutFiles": {

24 "compl": "dna.compl.txt"

25 },

26 "Upstream": {

27 "dna.txt": {

28 "ID": "vu8ltmoujzo3vn2b39pr",

29 "ProcessName": "Make DNA",

30 "Command": "echo AAAGCCCGTGGGGGACCTGTTC \u003e dna.txt",

31 "Params": {},

32 "Tags": {},

33 "StartTime": "2018-07-26T13:02:16.842112643+02:00",

34 "FinishTime": "2018-07-26T13:02:16.84486747+02:00",

35 "ExecTimeNS": 2754810,

36 "OutFiles": {

37 "dna": "dna.txt"

38 },

39 "Upstream": {}

40 }

41 }

42 }

43 }

44 }

Figure 2: Example audit log file in JSON format [23], for a file produced by a SciPipe workflow. The workflow
used to produce this audit log in particular, is the one in figure 1. The audit information is hierarchical, with
each level representing a step in the workflow. The first level contains meta-data about the task executed last,
to produce the output file that this audit log refers to. The field Upstream on each level, contains a list of
all upstream task of the current task, indexed by the file paths that each of the upstream tasks did produce,
and which was subsequently used by the current task. Each task is given a globally unique ID, which helps to
deduplicate any duplicate occurrences of tasks, when converting the log to other representations. Execution
time is given in nanoseconds. Note that input paths in the command field, is prepended with ../, compared
to how they appear in the Upstream field. This is because each task is executed in a temporary directory created
directly under the workflow’s main execution directory, meaning that to access existing data files, it has to first
navigate up one step out of this temporary directory.
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described above, are used to access the corresponding in-ports and out-ports, and making connections between
them, with a syntax on the general form of InPort.From(OutPort).

The last thing needed to do to run the workflow, is seen on line 32, where the Workflow.Run() method is
executed. Provided that the workflow code in figure 1 is saved in a file named workflow.go, it can be run using
the go run command, like so:

$ go run workflow.go

This will then produce three output files and one accompanying audit log for each file, which we can be seen
by listing the files in a terminal:

dna.txt

dna.txt.audit.json

dna.compl.txt

dna.compl.txt.audit.json

dna.compl.rev.txt

dna.compl.rev.txt.audit.json

The filedna.txt should now contain the stringAAAGCCCGTGGGGGACCTGTTC, anddna.compl.rev.txt
should contain GAACAGGTCCCCCACGGGCTTT, which is the reverse base complement of the first string. In the
last file above, the full audit log for this minimal workflow can be found. An example content of this file is shown
in figure 2.

In this code example, it can be seen that both of the commands we executed are available, and also that the
Reverse process lists its ”upstream” processes, which are indexed by the input file names in its command. Thus,
under the dna.compl.txt input file, we find the Base Complement process together with its meta-data, and
one further upstream process (the Make DNA process). This hierarchic structure of the audit log ensures that
the complete audit trace, including all commands contributing to the production of an output file, is available
for each output file from the workflow.

More information about how to write workflows with SciPipe is available on the documentation website [24].
Note that the full documentation on this website is also available in a folder named docs inside the SciPipe Git
repository, which ensures that documentation for the version currently used, is always available.

Dynamic scheduling

Since SciPipe is built on the principles from Flow-based programming (see the methods section for more details),
a SciPipe program consists of independently and concurrently running processes, which schedule new tasks
continually during the workflow run. This is here referred to as dynamic scheduling. This means that it is possible
to create a process that obtains a value and passes it on to a downstream process as a parameter, so that new
tasks can be scheduled with it. This feature is important in machine learning workflows, where hyper parameter
tuning is often employed to find an optimal value of a parameter, such as cost for Support Vector Machines
(SVM), which is then used to parametrize the final training part of the workflow.

Reusable components

Based on principles from Flow-based programming, the workflow graph in SciPipe is defined by making connec-
tions between port objects bound to processes. This enables to keep the dependency graph definition separate
from the process definitions. This is in contrast to other ways of connecting dataflow processes, such as with
dataflow variables, which are shared between process definitions. This makes processes in flow-based program-
ming fully self-contained, meaning that libraries of reusable components can be created and that components
can be loaded on-demand when creating new workflows. A graphical comparison between dependencies defined
with dataflow variables and flow-based programming ports, is shown in figure 3.
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Figure 3: Comparison between dataflow variables and Flow-based programming ports in terms of dependency
definition. a) shows how dataflow variables (blue and green) shared between processes (in gray) make the pro-
cesses tightly coupled. In other words, process- and network definitions get intermixed. b) shows how ports (in
orange) bound to processes in Flow-based programming allows keeping the network definition separate from
process definitions. This enables processes to be reconnected freely without changing their internals.

Running subsets of workflows

With pull-based workflow tools like Snakemake or Luigi, it is easy to on-demand reproduce a particular output
file, since the scheduling mechanism is optimized for the use case of asking for a specific file and calculating all
the tasks required to be executed based on that.

With push-based workflow tools though, reproducing a specific set of files without running the full workflow
is not always straight-forward. This is a natural consequence of the push-based scheduling strategy, and dataflow
in particular, as the identities and quantities of output files might not be known before the workflow is run.

SciPipe provides a mechanism for partly solving this lack of “on demand file generation” in push-based
dataflow tools, by allowing to reproduce all files of a specified process, on-demand. That is, the user can tell the
workflow to run all processes in the workflow upstream of, and including, a specified process, while skipping
processes downstream of it.

This has turned out very useful when iteratively refactoring or developing new pipelines. When a part in the
middle of a long sequence of processes need to be changed, it is helpful to be able to test-run the workflow up to
that particular process only, not the whole workflow, to speed up the development iteration cycle.

Other characteristics

Below are a few technical characteristics and considerations that are not necessarily unique to SciPipe, but could
be of interest to potential users assessing whether SciPipe fits their use cases.

Data centric audit log

The audit log feature in SciPipe collects meta data about every executed task (concrete shell command invocation)
which is passed along with every file that is processed in the workflow. It writes a file in the ubiquitous JSON
format, with the full trace of tasks executed for every output in the workflow, with the same name as the output
file in question but with the additional file extension .audit.json. Thus, for every output in the workflow, it
is possible to check the full record of shell commands used to produce it. An example audit log file can be seen in
figure 2.

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 6, 2018. ; https://doi.org/10.1101/380808doi: bioRxiv preprint 

https://doi.org/10.1101/380808
http://creativecommons.org/licenses/by/4.0/


This data-oriented provenance reporting contrasts to provenance reports common in many workflow tools,
which often provide one report per workflow run only, meaning that the link between data and provenance
report is not as direct.

The audit log feature in SciPipe in many aspects reflects the recommendations in [25] for developing
provenance reporting in workflows, such as producing a coherent, accurate, inspectable record for every output
data item from the workflow. By producing provenance records for each data output rather than for the full
workflow only, SciPipe could provide a basis for the problem of iteratively developing workflow variants, as
outlined in [26].

SciPipe also loads any existing provenance reports for existing files that it uses, and merges these with the
provenance information from its own execution. This means that even if a chain of processing is spread over
multiple SciPipe workflow scripts, and executed at different times by different users, the full provenance record is
still being kept and assembled, as long as all workflow steps were executed using SciPipe shell command processes.
The main limitation to this “follow the data” approach, is for data generated externally to the workflow, or by
SciPipe components implemented in Go. For external processes, it is up to the external process to generate any
reporting. For Go-based components in SciPipe, these can not currently dump a textual version of the Go code
executed. This constitutes an area of future development.

SciPipe provides experimental support for converting the JSON-structure into reports in HTML and TeX
format, or into executable Bash scripts that can reproduce the file which the audit report describes from available
inputs or from scratch. These tools are available in the scipipe helper command. The TeX report can be easily
further converted to PDF using the pdflatex command of the pdfTex software [27]. An example of such a
PDF report, is shown in figure 4, which was generated from the audit report for the last file generated by the
code example in figure 1.

Atomic writes

SciPipe ensures that cancelled workflow runs do not result in half-written output files being mistaken for finished
ones. It does this by executing each task in a temporary folder, and moving all newly created files into their final
location a�er the task is finished. By using a folder for the execution, any extra files created by a tool that are not
explicitly configured by the workflow system, are captured and treated in an atomic way. Examples of where this
is needed is for the five extra files created by bwa index [28], when indexing a reference genome in FASTA
format.

Streaming support

In data intensive fields like Next-Generation Sequencing, it is common that intermediate steps of pipelines
produce large amounts of intermediate data, often multiplying the storage requirements considerably compared
to the raw data from sequencing machines [29]. To help ease these storage requirements, SciPipe provides the
ability to optionally stream data between two tasks via Random Access Memory (RAM) instead of saving to
disk between task executions. This approach has two benefits. Firstly, the data does not need to be stored on
disk, which can lessen the storage requirements considerably. Secondly, it enables the downstream task to start
processing the data from the upstream task immediately as soon as the first task has started to produce partial
output. It thus enables to achieve pipeline parallelism in addition to data parallelism, and can thereby shorten
the total execution time of the pipeline.

Flexible file naming and data “caching”

SciPipe allows flexible naming of the file path of every intermediate output in the workflow, based on input file
names and parameter values passed to a process. This enables creating meaningful file naming schemes, to make
it easy to manually explore and sanity-check outputs from workflows.

Configuring a custom file naming scheme is not required though. If no file path is configured, SciPipe will
automatically create a file path that ensures that two tasks with different parameters or input data will never
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Figure 4: Audit report for the last file generated by the code example in figure 1, converted to TeX with SciPipe’s
experimental audit2tex feature and then converted to PDF with pdfTeX. In the top, the PDF file includes
summary information about the SciPipe version used and the total execution time. After this follows an exe-
cution time line, in a gantt-chart style, that shows the relative execution times of individual tasks in a graphical
way. After this follows a comprehensive list of tables with information for each task executed towards produc-
ing the file for which the audit report belongs. The task boxes are color coded and ordered in the same way that
the tasks appear in the timeline.

clash, and that two tasks with the same command signature, parameters and input-files, will reuse the same
cached data.

Known limitations

Below we list some design decisions and known limitations of SciPipe that might affect the decision whether to
use SciPipe for a particular use case or not.

Firstly, the fact that writing SciPipe workflows requires some basic knowledge of the Go programming
language, can be off-putting to users who are not well acquainted with programming. Go code, although having
taken inspiration from scripting languages, is still markedly more verbose and low-level in nature than Python,
and can take a little longer to get used to.

Secondly, the level of integration with HPC resource managers is currently quite basic compared to some
other workflow tools. The SLURM resource manager can readily be used by using the Prepend field on
processes to add a string with a call to the salloc SLURM command, but more advanced HPC integration is
planned to be addressed in upcoming versions.

Furthermore, reproducing specific output files is not as natural and easy as with pull-based tools like Snake-
make, although SciPipe provides a mechanism to partly resolve this problem.
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Finally, SciPipe does not yet support integration with the Common Workflow Language [30], for interoper-
ability of workflows. This is a prioritized area for future development.

Case Studies
To demonstrate the usefulness of SciPipe, we have used it to implement a number of representative pipelines
from drug discovery and bioinformatics with different characteristics and hence requirements on the workflow
system. These workflows are available in a dedicated git repository on GitHub [31].

Machine learning pipeline in drug discovery

Figure 5: Directed graph of the machine learning drug discovery case study workflow, plotted with SciPipe’s
workflow plotting function. The graph has been modified for clarity by collapsing the individual branches of the
parameter sweeps and cross validation fold-generation. The layout has also been manually made more compact
to be viewable in print. The collapsed branches are indicated by intervals in the box labels. tr{500-8000}
represent branching into training dataset sizes 500, 1000, 2000, 4000, 8000. c{0.0001-5.0000} represent
cost values 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4 and 5, while fld{1-10}
represent cross validation folds 1-10. Nodes represent processes, while edges represent data dependencies. The
labels on the edge heads and tails represent ports. Solid lines represent data dependencies via files, while dashed
lines represent data dependencies via parameters, which are not persisted to file, only transmitted via RAM.

The initial motivation for building SciPipe stemmed from problems encountered with complex dynamic
workflows in machine learning for drug discovery applications. It was thus quite natural to implement an
example of such a workflow in SciPipe. To this end we re-implemented a workflow implemented previously for
the SciLuigi library [20], which was itself based on an earlier study [32].

In short, this workflow trains predictive models using the LIBLINEAR software [33] with molecules
represented by the signature descriptor [34]. For linear SVM a cost parameter needs to be tuned, and we tested
15 values (0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5) in a 10-fold cross-validated
parameter sweep. Five different training set sizes (500, 1000, 2000, 4000, 8000) were tested and evaluated with a
test set size of 1000. The raw data set consists of 10,000 logarithmic solubility values chosen randomly from
a dataset extracted from PubChem [35] according to details in [20]. The workflow is schematically shown in
figure 5 and was plotted using SciPipe’s built-in plotting function. The figure has been modified for clarity by
collapsing the individual branches of the parameter sweeps and cross validation folds, as well as by manually
making the layout more compact.
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The implementation in SciPipe was done by creating components which are defined in separate files (named
comp COMPONENTNAME in the repository), which can thus be reused in other workflows. This shows how
SciPipe can successfully be used to create workflows based on reusable, externally defined components.

The fact that SciPipe supports parametrization of workflow steps with values obtained during the workflow
run, meant that the full workflow could be kept in a single workflow definition, in one file. This also made
it possible to create audit logs for the full workflow execution for the final output files, and to create the
automatically plotted workflow graph shown in figure 5. This is in contrast to the SciLuigi implementation,
where the parameter sweep to find the optimal cost, and the final training, had to be implemented in separate
workflow files (wffindcost.py and wfmm.py in [36]), and executed as a large number of completely separate
workflow runs (one for each dataset size) which meant that logging became fragmented into a large number of
disparate log files.

Genomics cancer-analysis pipeline
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Figure 6: Directed graph of workflow processes in the Genomics / Cancer Analysis pre-processing pipeline,
plotted with SciPipe’s workflow plotting function. Nodes represent processes, while edges represent data de-
pendencies. The labels on the edge heads and tails represent ports.

Sarek [37] is an open-source analysis pipeline to detect germ-line or somatic variants from whole genome
sequencing, developed by the National Genomics Infrastructure and National Bioinformatics Infrastructure
Sweden which are both platforms at Science for Life Laboratory.

To test and demonstrate the applicability of SciPipe to genomics use cases the pre-processing part of the
Sarek pipeline was implemented in SciPipe. See figure 6 for a directed process graph of the workflow, plotted
with SciPipe’s workflow plotting function.

The test data in the test workflow consists of multiple samples of normal and tumor pairs. The workflow starts
with aligning each sample to a reference genome using BWA [28] and forwarding the results to Samtools [38]
which saves the result as a sorted BAM file. After each sample has been aligned, Samtools is again used, to merge

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 6, 2018. ; https://doi.org/10.1101/380808doi: bioRxiv preprint 

https://doi.org/10.1101/380808
http://creativecommons.org/licenses/by/4.0/


the normal- and tumor samples into a one BAM [38] file for tumor samples, and one for normal. Picard [39] is
then used to mark duplicate reads in both the normal- and tumor sample BAM files, whereafter GATK [40] is
used to recalibrate the quality scores of all reads. The outcome of the workflow is two BAM files; one containing
all the normal samples and one containing all the tumor samples.

Genomics tools and pipelines have their own set of requirements, which was shown by the fact that some
aspects of SciPipe had to be modified in order to ease development of this pipeline. In particular, many genomics
tools produce additional output files apart from those specified on the command-line. One example of this is the
extra files produced by BWA when indexing a reference genome in FASTA format. The bwa index command
produces some five files, which are not explicitly defined on the command-line (with the extensions of .bwt,
.pac, .ann, .amb and .sa). Based on this realization, SciPipe was amended with a folder-based execution
mechanism which executes each task in a temporary folder, that keeps all output files separate from the main
output directory until the whole task has completed. This ensures that also files that are not explicitly defined
and handled by SciPipe, are also captured and handled in an atomic manner, so that finished and unfinished
output files are always properly separated.

Furthermore, agile development of genomic tools often requires being able to see the full command that
is used to execute a tool, because of the many options that are available to many bioinformatics tools. This
workflow was thus implemented with ad-hoc commands, which are defined in-line in the workflow. The ability
to do this shows that SciPipe supports different ways of defining components, depending on what fits the use
case best.

The successful implementation of this genomics pipeline in SciPipe, thus both ensures and shows that
SciPipe is works well for tools common in genomics.

RNA-seq / transcriptomics pipeline
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Figure 7: Directed graph of workflow processes in the RNA-Seq Pre-processing workflow, plotted with SciPipe’s
workflow plotting function. Nodes represent processes, while edges represent data dependencies. The labels
on the edge heads and tails represent ports.

To test the ability of SciPipe to work with software used in transcriptomics, some of the initial steps of
a generic RNA-sequencing workflow were also implemented in SciPipe. Common steps that are needed in
transcriptomics is to run quality controls and generate reports of the analysis steps.

The RNA-seq case study pipeline implemented for this paper uses FastQC [41] to evaluate the quality of
the raw data being used in the analysis before aligning the data using STAR [42]. After the alignment is done it
is evaluated using QualiMap [43], while the Subread package [44] is used to do a feature counting.

The final step of the workflow is to combine all the previous steps for a composite analysis using Mul-
tiQC [45], which will summarize the quality of both the raw data and the result of the alignment into a single
quality report. See figure 7 for a directed process graph of the workflow, plotted with SciPipe’s workflow plotting
function.

The successful implementation of this transcriptomics workflow in SciPipe ensures that SciPipe works well
for different types of bioinformatics workflows and is not limited to one specific sub-field of bioinformatics.
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Conclusions

SciPipe is a programming library that provides a way to write complex and dynamic pipelines in bioinformatics,
cheminformatics, and more generally in data science and machine learning pipelines involving command-line
applications.

Dynamic scheduling allows parametrizing new tasks with values obtained during the workflow run, and the
Flow-based programming principles of separate network definition and named ports allow creating a library of
reusable components. By having access to the full power of the Go programming language to define workflows,
existing tooling is leveraged.

Scipipe adopts state-of-the art strategies for achieving atomic writes, caching of intermediate files and a
data-centric audit log feature that allows identifying the full execution trace for each output, that can be exported
into either human-readable HTML or TeX/PDF formats, or executable Bash-scripts.

SciPipe also provides some features not commonly found in many tools such as support for streaming via
Unix named pipes, ability to run push-based workflows up to a specific stage of the workflow, and flexible support
for file naming of intermediate data files generated by workflows. SciPipe workflows can also be compiled into
standalone executables, making deployment of pipelines maximally easy, requiring only Bash and any external
command-line tools used, to be present on the target machine.

By being a small library without required external dependencies apart from the Go tool chain and Bash,
SciPipe is expected to be possible to be maintained and developed in the future even without a large team or
organization backing it.

The applicability of SciPipe for cheminformatics, genomics and transcriptomics pipelines has been demon-
strated with case study workflows in these fields.

Methods

The Go Programming Language

The Go Programming Language (referred to as just ”Go”) was developed by Robert Griesemer, Rob Pike and
Ken Thompson at Google, to provide a statically typed and compiled language that makes it easier to build highly
concurrent programs, that can also make good use of multiple CPU cores (i.e. “parallel program”), than what is
the case in widespread compiled languages like C++ [46]. It tries to provide this by providing a small, simple
language, with concurrency primitives — go-routines and channels — built-in to the language. Go-routines,
which are so called light-weight threads, are automatically mapped, or multiplexed, onto physical threads in the
operating system. This means that very large numbers of go-routines can be created while maintaining a low
number of operating system threads, such as one per CPU core on the computer at hand. This makes Go an
ideal choice for problems where many asynchronously running processes need to be handled at the same time,
or “concurrently”, and for making efficient use of multi-core CPUs.

The Go compiler is statically linking all its code as part of the compilation. This means that all dependent
libraries are compiled into the executable file. Because of this, SciPipe workflows can be compiled into self-
contained executable files without external dependencies apart from the Bash shell and any external command
line tools used by the workflow. This makes deploying Go programs (and SciPipe workflows) to production
very easy.

Go programs are very performant, often an order of magnitude faster than interpreted languages like Python,
and in the same order of magnitude as the fastest languages, like C, C++ and Java [47].

Dataflow and Flow-based programming

Dataflow is a programming paradigm oriented around the idea of independent, asynchronously running pro-
cesses, that only talk to each other by passing data between each other. This data passing can happen in different
ways, such as via dataflow variables, or via first-in-first-out channels.
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Flow-Based Programming (FBP) [48] is a paradigm for programming developed by John Paul Morrison
at IBM in the late 60s / early 70s, to provide a composable way to assemble programs to be run at mainframe
computers at customers such as large banks.

It is a specialized version of dataflow, adding the ideas of separate network definition, named ports, channels
with bounded buffers and information packets (representing the data) with defined lifetimes. Just as in dataflow,
the idea is to divide a program into independent processing units called “processes”, which are allowed to
communicate with the outside world and other processes solely via message passing. In FBP, this is always done
over channels with bounded buffers which are connected to named ports on the processes. Importantly, the
network of processes and channels is in FBP described “separate” from the process implementations, meaning
that the network of processes and channels can be reconnected freely without changing the internals of processes.

This strict separation of the processes, the separation of network structure from processing units, and the
loosely-coupled nature of its only way of communication with the outside world (message passing over channels)
makes flow-based programs extremely composable, and naturally component-oriented. Any process can always
be replaced with any other process that supports the same format of the information packets on its in-ports and
out-ports.

Furthermore, since the processes run asynchronously, FBP is, just like Go, very well suited to make efficient
use of multi-core CPUs, where each processing unit can suitably be placed in its own thread or co-routine to
spread out on the available CPU-cores on the computer. FBP has a natural connection to workflow systems,
where the computing network in an FBP program can be likened to the network of dependencies between data
and processing components in a workflow [20]. SciPipe leverages the principles of separate network definition
and named ports on processes. SciPipe has also taken some inspiration for its API design from the GoFlow [49]
Go-based flow-based programming framework.

Availability of supporting source code and requirements
• Project name: SciPipe

• Documentation and project home page: http://scipipe.org

• Source code repository: https://github.com/scipipe/scipipe

• Persistent source code archive: https://doi.org/10.5281/zenodo.1157941

• Case study workflows: https://github.com/pharmbio/scipipe-demo

• Operating system(s): Linux, Unix, Mac

• Other requirements: Bash, GraphViz (for workflow graph plotting), LaTeX (for PDF generation)

• License: MIT

Availability of supporting data
• The raw data for the machine learning cheminformatics demonstration pipeline is available at:

https://doi.org/10.5281/zenodo.1324443

• The applications for the machine learning in drug discovery case study is available at:
https://doi.org/10.6084/m9.figshare.3985674.v1

• The raw data and tools for the genomics and transcriptomics workflows are available at:
https://doi.org/10.5281/zenodo.1324426
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