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Abstract

Motivation: Pairwise alignment is a predominant algorithm in the field of bioinformatics. This algorithm
is quadratic — slow especially on long sequences. Many applications utilize identity scores without the
corresponding alignments. For these applications, we propose FASTCAR. It produces identity scores for
pairs of DNA sequences using alignment-free methods and two self-supervised general linear models.
Results: For the first time, the new tool can predict the pair-wise identity score in linear time and space.
On two large-scale sequence databases, FASTCAR provided the best compromise between sensitivity
and precision while being faster than BLAST by 40% and faster than USEARCH by 6–10 times. Further,
FASTCAR is capable of producing the pair-wise identity scores of long DNA sequences — millions-of-
nucleotides-long bacterial genomes; this task cannot be accomplished by any alignment-based tool.
Availability: FASTCAR is available at https://github.com/TulsaBioinformaticsToolsmith/FASTCAR and as
the Supplementary Dataset 1.
Contact: hani-girgis@utulsa.edu
Supplementary information: Supplementary data are available online.

1 Introduction
We live in an era when sequences are generated at an unprecedented
rate. Analyzing these countless sequences requires efficient computational
methods. Algorithms for comparing sequence similarity are among the
most fundamental tools for analyzing DNA, RNA, and protein sequences.

Alignment algorithms (Needleman and Wunsch, 1970; Gotoh, 1982)
have been the standard methods for assessing sequence similarity over the
past 40 years. Multiple software tools for alignment are available (Rice
et al., 2000; Rizk and Lavenier, 2010). Applications include gene
finding (Korf, 2004), genome assembly (Butler et al., 2008; Luo et al.,
2012; Eaton, 2014), function prediction (Peled et al., 2016; Carradec et al.,
2018), phylogenetic trees (Costello et al., 2009), and other applications.

Many advancements have been made since the Needleman-Wunsch
alignment algorithm was devised (Edgar, 2010; Gotoh, 1982; Altschul
et al., 1990; Loh et al., 2012), but these new algorithms still depend on slow,
quadratic, dynamic programming. This limitation is well manifested when
comparing two very long sequences or scanning a very large sequence
database. Almost all of the speed-ups are based on heuristics methods.

This shortcoming of alignment algorithms has led the field to develop
plenty of faster, alignment-free methods (Blaisdell, 1986; Zharkikh and
Rzhetsky, 1993; Wu et al., 2001; Almeida and Vinga, 2002; Lippert et al.,
2002; Pham and Zuegg, 2004; Kantorovitz et al., 2007; Dai et al., 2008;
Reinert et al., 2010; Sims et al., 2009; Costa et al., 2011; Liu et al., 2011;
Zhang and Chen, 2011; Göke et al., 2012; Ren et al., 2013; Ghandi et al.,
2014; Haubold, 2014; Leimeister et al., 2014; Pinello et al., 2014; Borozan
et al., 2015; Liao et al., 2016). Multiple reviews of alignment-free methods
have been published (Vinga and Almeida, 2003; Vinga et al., 2012;
Bonham-Carter et al., 2014; Song et al., 2014; Vinga, 2014; Chattopadhyay
et al., 2015; Luczak et al., 2017; Zielezinski et al., 2017), indicating the
importance and the abundance of such methods. One particular class of
these methods depends on comparing two histograms of short words called
k-mers, i.e. words of fixed length k. Building the histograms and comparing
them can be done very efficiently. Although these alignment-free methods
are very efficient, they have not been widely adapted by the field because
their scores are not as intuitive or biologically relevant as the identity scores
generated by alignment algorithms. However, k-mer statistics are often
used in alignment tools as heuristics, such as in BLAST and USEARCH.

Often times, the identity score alone is enough; generating the
alignment itself is not needed. For example, consider scanning GenBank
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for similar sequences to a particular gene. For another example, consider
the task of clustering a large number of sequences. In these two applications
there is no need to generate the alignment; only the identity score is used.

We propose a Fast and Accurate Search Tool for Classification
And Regression (FASTCAR) to predict global similarity of two DNA
sequences. FASTCAR (Supplementary Dataset 1) can predict global
identity scores in linear time and space for the first time. The tool
utilizes self-supervised machine learning algorithms in predicting global
identity scores using a small number of alignment-free, k-mer statistics.
FASTCAR overcomes the weaknesses of alignment algorithms and those
of alignment-free methods. It produces identity scores, which are intuitive,
biologically relevant, and the standard metric in the field. Because
calculating the k-mer statistics and predicting the identity score require
linear time, FASTCAR is more efficient than alignment algorithms.

The core of FASTCAR is an adaptive, hierarchical, linear model
for predicting the identity scores above a user provided threshold. This
design was inspired by our earlier research. We have successfully
implemented adaptive software tools using self-supervised learning
algorithms for locating cis-regulatory modules (Girgis and Ovcharenko,
2012), identifying DNA repeats (Girgis, 2015; Velasco II et al., 2018),
and for clustering DNA sequences (James et al., 2018; James and Girgis,
2018). Hierarchical models were reported to perform very well in ranking
the quality of predicted protein structures (Girgis and Corso, 2008; Girgis,
2008; Girgis et al., 2009). Multiple software tools we developed earlier
utilize General Linear Models (GLMs) (Girgis and Corso, 2008; Girgis,
2008; Girgis et al., 2009; Girgis and Sheetlin, 2013; James et al., 2018;
James and Girgis, 2018; Velasco II et al., 2018). Alignment-assisted
methods that can classify similar and dissimilar sequences and predict
identity scores were developed (James et al., 2018; Velasco II et al.,
2018); such methods use alignment-free statistics to predict the alignment
identity scores on which they are trained, i.e. they are not alignment-free
completely. These earlier tools justify our design choice of the adaptive,
hierarchical, linear model as the core of FASTCAR.

The main contributions of this research are: (i) calculating identity
scores in linear time and space for the first time, (ii) calculating the identity
scores for pairs of very long sequences for the first time, and (iii) the
FASTCAR software tool.

2 Methods

Method overview

FASTCAR is an instance of self-supervised learning; such learning
algorithms generate their own training data. To generate labeled data for
training and testing, FASTCAR first selects randomly a small number
of the input sequences — 300 by default. The selected sequences
are uniformly distributed with respect to length. A few semi-synthetic
sequences — 15 by default — are generated by mutating each of these
sequences to generate identity scores to simulate the actual data. Since the
mutated data has a known mutation rate, the identity score can be easily
calculated; therefore, alignment algorithms are avoided. After that, a k-
mer histogram is obtained from each sequence. A model can be trained
to predict identity scores from a few statistics calculated on pairs of k-
mer histograms. The advantage of this tool over the traditional alignment
algorithm is that it uses a limited number of efficient, linear, k-mer statistics
rather than the slow, quadratic dynamic programming utilized in alignment
algorithms. Two components comprise this new predictive model. The first
component is a classifier that recognizes whether the similarity between
two sequences is above the desired threshold or below it. The second
component is a regression model, which estimates the identity score of
two sequences if they are above the threshold. In some applications, the

user would be interested in finding similar sequences to a query sequence;
however, the user is not interested in the identity scores themselves. For
this reason, the user will also have the option to use the classifier only rather
than the classifier followed by the regression model (James et al., 2018;
James and Girgis, 2018). In other situations, the value of the threshold may
not have a biological meaning; thus, the user may select to use regression
without the preceding classification step (Velasco II et al., 2018). Next,
we explain how the semi-synthetic data are generated.

Semi-synthetic data generation

Semi-synthetic data are generated by mutating real sequences taken from
the input database. This data are then mutated using the following mutation
types: (i) single-point mutation or (ii) block mutation. In single-point
mutation, a single nucleotide is mismatched, deleted, or inserted. In
block mutation, a block of random nucleotides is inserted; or a block of
consecutive nucleotides is deleted; or a block of nucleotides is duplicated
and placed in tandem to the original block. The size of the block is chosen
at random at a minimum of 2 and a maximum of 50 nucleotides. To ensure
that the original nucleotide composition is conserved, random nucleotides
to be inserted or to be changed are generated from the same distribution of
nucleotides in the original sequence. For example, suppose that the original
sequence has the following nucleotide distribution: A: 0.4, C: 0.1, G: 0.1,
T: 0.4. When a random nucleotide to be inserted, A or T has the highest
probability of 0.4 each and C or G has the lowest probability of 0.1 each.
If the single-point and the block mutation models are applied together, the
ratio of each is determined randomly for each mutated sequence.

We invented this generative process to avoid using alignment
algorithms for three reasons. First, alignment algorithms are slow. Second,
the training dataset may not have enough sequence pairs with specific
identity scores to train the classifier or the regression model. Third,
alignment algorithms are almost infeasible on very long sequences.

Because mutated sequences are generated with specific mutation types
and rates, the identity scores can be calculated without using any alignment
algorithms. To calculate an identity score, we need to know the length of the
alignment and the number of matches — identical nucleotides — between
two sequences. Each mutation type affects these two numbers in a unique
way. If we keep track of the mutations applied and update the alignment
length and the number of matches accordingly, the corresponding identity
score can be obtained without actually aligning the two sequences. For a
very simple example, consider a 10-nucleotides-long sequence. We wish
to mutate 30% of this sequence. For simplicity, assume that the three
mutations are mismatch, insertion, and deletion. Initially, the length of the
alignment and the number of matches are equal to 10 — the length of the
original sequence. A mismatch does not affect the length of the alignment;
however, it decreases the number of matches. After this mismatch, the
length of the alignment is 10, and the number of matches is 9. An insertion
results in a gap in the original sequence if the two sequences were to be
aligned versus each other, i.e. it increases the length of the alignment by
1 and does not affect the number of matches. After this insertion, the
length of the alignment is 11, and the number of matches is 9. Deleting a
nucleotide results in a gap in the mutated sequence when it is aligned versus
the original sequence. This gap does not affect the alignment length; but
the number of matches is decreased by 1. After this deletion, the length of
the alignment is 11, and the number of matches is 8. These three mutations
lead to an identity score of 0.73. Table 1 lists the mutation types used in our
study and their effects on the alignment length and the number of matches.
This procedure is applied to generating two datasets discussed next.

Training and testing sets

When a database of DNA sequences is given, the first step is to sample
300 sequences to generate semi-synthetic data (4500 original-mutated
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Table 1. The effects of each mutation type on the identity score. The identity score is the ratio of identical nucleotides
between two sequences to the total length of the alignment, which may include gaps. Initially, the alignment length
and the number of matches are equal to the length of the original sequence that is the template to be mutated. As the
mutation process proceeds, a loaded coin is flipped to decide whether a single nucleotide or a block of nucleotides
will be mutated. Next, a mutation sub-type — e.g. mismatch, insertion, or deletion if single-point mutation — is
selected randomly. Each mutation type affects the alignment length and the number of matches in a unique way.
For example, a mismatch has no effect on the length of the alignment; it decreases the number of matches by 1.

Mutation Type Alignment Length Number of Matches

Mismatch No effect Subtract 1
Deletion No effect Subtract the number of the deleted nucleotide(s)
Insertion Add the number of the inserted nucleotide(s) No effect
Duplication Add the number of the duplicated nucleotides No effect

sequence pairs). The number of sequence pairs with identity scores above
the threshold is half of the number of pairs with identity scores below the
threshold. Specifically, for every original sequence, 5 sequences above
the threshold and 10 below the threshold are generated in order to more
accurately match real distributions of alignment identities. If the user
choose not to provide an identity threshold, sequence pairs with identity
scores are generated randomly between 35% and 100%. To ensure that the
model is not biased towards a particular segment in the identity scores,
each 5% segment of the identity scores is equally represented. Balancing
the pairs with identity scores above the threshold is done separately from
balancing those with identity scores below the threshold because of the
different sizes of these two sets. When a threshold is not provided, the
entire dataset is balanced together. Finally, the dataset is divided into
two mutually exclusive sets — the training set and the testing set. Next,
we illustrate how these datasets are represented to the classifier and the
regression model as few statistics calculated on pairs of k-mer histograms.

Calculating the k-mer statistics

Each sequence is represented as a k-mer histogram. Then statistics are
calculated on each pair of histograms. The choice of k — the size of k-
mers — guarantees that the histogram size is linear with respect to an
average input sequence. We calculate k according to Equation 1 (Luczak
et al., 2017; James et al., 2018; James and Girgis, 2018).

k =

 1

|database|

∑
i∈database

length of sequence i

− 1 (1)

Using our survey of alignment-free methods as a resource (Luczak
et al., 2017), we chose the following statistics: Earth Mover’s Distance,
Euclidean, Intersection, Kulczynski2, Length Difference, Manhattan,
Normalized Vectors, Pearson Correlation Coefficient, and Similarity
Ratio. These statistics are chosen because they are much faster while
still maintaining strong predictive power. We compute these 9 statistics
then normalize each of them between 0 and 1. Some statistics represent
distances and others represent similarities. We convert each distance to a
similarity by subtracting the normalized distance from 1. We call these
9 statistics single statistics. One of the primary results of our evaluation
study was that squared versions or multiplicative combinations can often
times outperform single statistics. For this reason, we square each of
the single statistics to create 9 additional statistics. Finally, the paired
statistics are generated by multiplying each unique combination of the 18
single and squared statistics. These statistics are the features, on which the
self-supervised GLMs are trained. Next, we illustrate GLMs briefly.

GLMs

The general form of the linear model is y = Fw where y is the target we
wish to predict. For classification, y is a vector of 1’s (the sequence pair
has similarity above the threshold) and 0’s (the sequence pair has similarity
below the threshold). For regression, y represents the identity scores. F
is the feature matrix; each of its columns represents a particular statistic
except the first column is all ones. The coefficients in the w vector are
found using the pseudoinverse solution (Equation 2).

w = (F TF )−1F Ty (2)

Now that we have the coefficients of the GLM, Equation 3 is used for
making predictions.

ŷ = Fw (3)

Here, ŷ represents the predicted labels, above or below the identity
threshold, or the predicted identity score for a given sequence pair. The
output of the GLM — ŷ — is processed further. For classification,
Equation 4 is used for assigning a label to a pair of sequences (1: above
the threshold and 0: below the threshold).

l = round( 1

1 + eŷ
+ 0.1) (4)

Here, l is the final predicted label and ŷ is the row output of the GLM
for one sequence pair. According to this equation a sequence pair with a
value of 0.6 or greater is classified as having an identity score above the
threshold. We used 0.6 instead of 0.5 to compensate for training on semi-
synthetic data — not on completely real sequences. For regression, if ŷ is
greater than 1 (less than 0), it is set to 1 (0).

Using a small number of features is necessary to the success of
a predictive model because it prevents the learning algorithm from
overfitting the training data. Therefore, we utilize a greedy feature-
selection procedure, which depends on GLMs. In the next step, we discuss
how to select the best four or five features, i.e. statistics.

Greedy feature selection

Features are selected automatically on each input dataset. A greedy
algorithm is used for selecting a strong group of features without trying
every possible combination. FASTCAR utilizes a GLM in selecting
features that maximize the testing accuracy for classification or minimize
the mean absolute error for regression. Two datasets are utilized in this
step: (i) the training set is used for training the GLM and (ii) the testing set
is used for measuring the accuracy or the mean absolute error. We assess
the performance on the testing set to guard against over-fitting.

First, we discuss how to select features for the classifier; this algorithm
is based on forward stepwise selection, which is often used in statistical
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Table 2. Conversion from BLAST’s local identity scores to global identity scores. These samples come from the Keratin
dataset. The query sequence is NM_002283.3. Equation 5 is applied to BLAST’s local identity score, the query coverage,
and the subject coverage to produce the corresponding global identity score, which is very similar to the one produced
by the global alignment algorithm (Global ID).

Subject Sequence BLAST Local ID% Query Coverage Subject Coverage BLAST Global ID% Global ID%

NM_001098570.1 99.1 0.98 0.98 95.9 95.2
XM_003939184.2 92.2 0.99 0.96 88.8 85.5
XM_010628605.1 82.4 0.95 0.94 74.1 73.6

learning. The algorithm selects 4 or 5 features. In each iteration of
the algorithm, the classifier is trained on the training set to recognize
if a pair of sequences have an identity score above or below a given
threshold. The testing accuracy is the number of correct classifications
divided by the number of sequence pairs in the testing set. The first step
involves training the classifier using one feature on the training set, then
evaluating the classifier due to this feature on the testing set to find the best
performing feature. Once found, it is added to the best-features set and is
excluded in the next iterations of the algorithm. After that, the tool goes
through the remaining features one by one, attempting to combine each
of these features with the best performing feature(s) found in the previous
iteration(s). Once this step is finished, the feature that results in the best
testing accuracy is added to the best-features set and is excluded in the
subsequent iterations. After selecting the minimum number of features —
4 — the fifth feature is added if it improves the testing accuracy. If no
improvement is attained or five features are selected, the algorithm stops.
Our research has shown that adding additional features beyond this point
does not increase the accuracy enough to warrant a speed reduction (James
et al., 2018). The end result is a set of 4 or 5 features that have very high
testing accuracy. A similar process is used for selecting the best 4 or 5
features for the regression model. The performance is measured according
to the mean absolute error, i.e. the average absolute difference between the
true identity score and the predicted one — the lower, the better.

Up to this point, we discussed how the training and the testing datasets
are generated and how the features are extracted and selected. Next, we
discuss three modes, in which the trained models can be applied.

Prediction modes

The classifier determines whether a sequence pair falls above or below
the identity score threshold, which is provided by the user. Pairs classified
below the threshold are removed; the remaining sequence pairs are sent to
the regression model to predict their identity scores. Alternatively, there
are cases where classification only is desired (James et al., 2018; James
and Girgis, 2018); it is possible to disable regression. If identity scores
throughout the entire range of sequences are desired, regression alone can
be performed, not excluding any sequence pairs (Velasco II et al., 2018).
At this point, the description of FASTCAR’s method is complete.

Executing FASTCAR and the related tools

We chose 2 widely-used tools, USEARCH (Edgar, 2010) and
BLAST (Altschul et al., 1990), to compare to FASTCAR. Ground truth
sets, on which the three tools can be evaluated, were assembled. For this
purpose, we chose needleall from EMBOSS (Rice et al., 2000) because
of its ability to do all-versus-all global alignments. The program needleall
does not use heuristics like the ones used in the other two tools; it is much
slower than USEARCH and BLAST.

While BLAST is designed for local alignment, it also generates global
alignments, as they are a special case of local alignments. It is possible
to get global alignment scores by manipulating parameters and filtering

out BLAST results. To obtain the global identity score, we multiply the
identity score due to local alignment by the query coverage and by the
subject coverage (Equation 5).

IDglobal = IDlocal ×
|qend− qstart|

query length
×
|send− sstart|

subject length
(5)

Here, IDglobal and IDlocal are BLAST’s global and local identity scores;
qstart and qend are the start and the end of the aligned region in the query
sequence; sstart and send are the start and the end of the aligned region in
the subject sequence. Table 2 shows few examples of local identity scores
and their corresponding global scores due to Equation 5 and the global
alignment algorithm. The adjusted scores produced by Equation 5 are
very close to the scores calculated by the global alignment algorithm. To
get BLAST to print many alignments, the parameter “num_alignments”
can coax BLAST into printing out more alignments (1000000) than just
the few best local alignments. The maximum adjusted alignment score of
several alignments between the same sequence pair is considered as the
global identity score.

Additionally, we even created a multi-process module around both
BLAST and USEARCH to allow it to use 20 threads instead of the
maximum, 8 and 1 threads, respectively, to asses the speed-up due to the
linear algorithm of FASTCAR. Thus, we divided the database sequences
into 20 files, each of which was scanned using BLAST or USEARCH. This
means for BLAST, makeblastdb was run on each of the 20 files once. The
parameters used for BLAST were “-task blastn -strand plus -perc_identity
$cutoff -num_threads 1 -num_alignments 1000000 -reward 1 -penalty -1 -
gapopen 2 -gapextend 1”, where $cutoff is the alignment identity threshold
provided by the user. This command was executed in parallel on 20 cores
using the Unix Parallel utility. For USEARCH, the parameters were “-
search_global -strand plus -id $cutoff -threads 1 -blast6out”. Similarly,
this command was executed in parallel on 20 cores. FASTCAR was run
in its default mode, using classification followed by regression, using 20
threads. All tools were run on the same computer, Dell Precision Tower
5810, 10-core Xeon E5-2630 CPU, and 32 GB RAM.

We have just finished discussing how FASTCAR and the related tools
were executed. Next, we explain how we constructed 3 datasets, on which
FASTCAR, USEARCH, and BLAST were evaluated.

Datasets

Three datasets were used in evaluating the tools. The first set is the Keratin
set, which consists of 5220536 sequences with sequence lengths ranging
between 1353 base pairs (bp) and 3250 bp. The second set — the P27 —
consists of 7990947 sequences between 1500 bp and 4000 bp. The third
set consists of 3613 bacterial genomes; the lengths of these genomes range
from 112,031 bp to 14,782,125 bp. This dataset comes from the Ensembl
Bacteria release 40 (Zerbino et al., 2017). All genomes containing only one
contig were selected. Statistics about these sets are displayed in Table 3.

Searching a sequence database for similar sequences to a query
sequence is an important and common application of alignment tools and
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Table 3. Statistics of the datasets used in evaluating FASTCAR and the related tools.

Dataset Sequence Count Nucleotide Count Maximum Length Minimum Length Mean Median

Keratin 5220536 12517803991 3250 1353 2398 2169
P27 7990947 19919189291 4000 1500 2493 3412
Bacterial 3613 12412294439 14782125 112031 3435454 1607556

the proposed tool. We utilized two datasets as databases to be searched.
Query sequences were selected for the Keratin and the P27 sets. The
Keratin query sequence is the NM_002283.3 — Homo sapiens keratin
85 (KRT85), transcript variant 1, mRNA sequence. The P27 query
sequence is the NM_004064.4 — Homo sapiens cyclin dependent kinase
inhibitor 1B. Both the P27 and the Keratin ground truth sets, i.e. similar
sequences to the query sequence, were found by searching the NCBI
database (O’Leary et al., 2016). The search parameters for Keratin were:
“srcdb_refseq[PROP] AND Keratin NOT Homo Sapiens”. This search
was restricted to animal sequences between 1700 bp and 3250 bp in
length. When gathered on 26 June 2018, this query resulted in 6669
sequences. To find similar sequences to the P27 query, we searched:
“srcdb_refseq[PROP] AND cyclin dependent kinase inhibitor 1B NOT
Homo Sapiens”. This search was restricted to animal sequences 2000–
3000 bp long, resulting in 131 sequences when gathered on 26 June 2018.
After that, sequences that have less than 70% identity with the query
sequence was removed from the ground truth sets, resulting in 56 and
66 sequences similar to the Keratin and the P27 query sequences.

We utilized the bacterial set in a hierarchical clustering application
requiring all-versus-all identity scores; therefore, no query or ground
truth set are needed. Additionally, the parameters passed to FASTCAR
included a 60% identity threshold and 150 as the number of samples —
the default is 300 — to reduce the time required to generate the semi-
synthetic sequences. Hierarchical clustering was carried out using the
ward2 algorithm in the R function hclust. The tree was generated using
the ete3 package (http://etetoolkit.org/) in Python.

Up to here, we described the computational principles behind
FASTCAR. Then the details of the related tools and the evaluation datasets
were illustrated. After that, the performances of the 3 tools on the 3 datasets
are reported and discussed.

3 Results

Evaluation measures

We evaluated the 3 tools using the following 6 measures:

1. Sensitivity: Sensitivity is the rate of True Positives (TP) to the
combined TP and false negatives. It measures the ability of a tool
to identify TP is a large dataset — the more TP found, the better.

2. Precision: Precision is the ratio of TP to TP and false positives (FP).
Precision measures the relevancy of returned results, since it rates TP
to the total predicted positive labels. This measure is very important
when experimental validations of the results are considered.

3. F-measure: F-measure combines sensitivity and precision by taking
the harmonic mean between them (Equation 6).

F-measure = 2×
Precision× Sensitivity
Precision + Sensitivity

(6)

4. Mean absolute error: This measure is used in regression analysis to
measure how close, on average, the predicted value is to the actual
value. The mean absolute error is the average absolute difference
between the predicted value and the actual value. Using this metric
allows a comparable benchmark for the error in estimating the identity

scores in relation to the ones due to global alignment algorithms.
Additionally, it can be used as an expected margin of error.

5. Time: Time reported is the wall clock time, as multi-threaded
applications are best estimated using real time.

6. Memory: Max memory used by a tool is measured, as the memory
requirement is set by the maximum amount.

We report sensitivity, precision, F-measure, and mean absolute error
as percentages. The time is measured in seconds and the memory
requirements in Gigabytes. Next, we discuss the performances of the tools.

Evaluations on large-scale datasets

Using the 2 datasets described earlier, FASTCAR, BLAST, and
USEARCH were evaluated by searching for one query sequence in a
database of 5–8 millions of sequences (Table 4).

We start by looking at the sensitivities of the 3 tools. On the Keratin set,
USEARCH was the most sensitive tool (100%), followed by FASTCAR
(95%), followed by BLAST (82%). On the P27 set, USEARCH and
FASTCAR achieved perfect sensitivities of 100%, whereas BLAST
achieved 85%. The number of FP is quite important because of the large
number of sequences to be searched. BLAST had the lowest number of FP
on the Keratin and the P27 sets (2 and 7), followed by FASTCAR (9 and 8).
USEARCH found a large number of FP on these two datasets (1268 and
6619). These numbers represent very small percentages of the databases
(0.02% – 0.08%), but they are much larger than the numbers of similar
sequences in each set (56 and 67). For this reason, we discuss the precision
metric next. BLAST was the most precise tool (95% and 89%) on the two
sets, followed by FASTCAR (85% and 89%). Because of the large numbers
of FP detected by USEARCH, it was the least precise tool (4% and 1%).
On the two datasets, FASTCAR had the highest F-measure. On the Keratin
dataset, FASTCAR’s F-measure was better than BLAST’s (90 versus 88)
and much better than USEARCH’s (90 versus 8). Similar results were
obtained on the P27 dataset (FASTCAR: 94, BLAST: 87, and USEARCH:
2). In addition, we evaluated how close the identity scores due to the three
tools to those calculated by the global alignment algorithm. BLAST had the
lowest error (4–5%). FASTCAR and USEARCH had comparable errors
of 7%–8%. Keep in mind that these errors were calculated on the TP
only. One of the main advantages of the proposed method is its speed.
FASTCAR was the fastest tool on the two sets. It required about 40% less
time than BLAST. FASTCAR was faster than USEARCH by 6–10 times.
Regarding memory, FASTCAR required more memory than BLAST and
USEARCH. However, the max amount of memory used — 1.6 GB —
is readily available on average personal computers. Moreover, once the
classifier and the regression model are trained, memory is kept low as
sequences are processed as they are read.

When it comes to searching large databases, USEARCH is the most
sensitive tool, whereas BLAST is the most precise tool. FASTCAR
provides the best compromise between sensitivity and precision while
being the fastest tool. Next, we report the results on another application.
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Table 4. Evaluations of FASTCAR, BLAST, and USEARCH. We tested the tools’ abilities to search large databases for a
query sequence. Alignment scores were generated with needleall, which is a tool for global alignment. These evaluations
were conducted on two datasets: Keratin and P27. The Keratin dataset has 5,220,536 sequences, ranging between 1353 bp
and 3250 bp. There is only one query sequence for the Keratin dataset. We searched for sequences that at least 70% identical
to the query sequence, resulting in a ground truth set consisting of 56 sequences. The P27 set consists of 7,990,947 sequences
between 1500 bp and 4000 bp. Similar to the Keratin set, there is one query sequence. Sequences with at least 70% identity
to the Keratin query sequence — 67 sequences — are considered True Positives (TP). Sequences detected by a tool and do
not belong to the ground truth set are considered False Positives (FP). Sensitivity and precision are reported as percentages.
F-measure could be thought of as percentage. The mean absolute error is displayed as percentage; it is measured on the
TP only. The time is reported in seconds (s), and the memory requirement in Gigabytes (GB).

Dataset Tool TP FP Sensitivity Precision F-measure Mean Absolute Error Time (s) Memory (GB)

Keratin
FASTCAR 53 9 95 85 90 6.8 160 1.6
BLAST 46 2 82 95 88 4.9 274 0.7
USEARCH 56 1268 100 4 8 6.7 915 0.7

P27
FASTCAR 67 8 100 89 94 7.8 242 1.6
BLAST 57 7 85 89 87 3.9 396 0.8
USEARCH 67 6619 100 1 2 7.2 2320 1.1

Evaluations on long sequences

In this experiment, we show that it is possible to use entire genomes and
their identity scores to provide hierarchical clusterings/phylogenetic trees
with high accuracy. Comparing long sequences — millions of nucleotides
long — using alignment algorithms require prohibitive long time. Because
the bacterial genomes are too long (3.4 mega bp on average) to be aligned
with the other methods feasibly, we were able to apply FASTCAR only.
Often times, all-versus-all comparisons can generate useful information
such as phylogenetic trees. To generate these all-versus-all comparisons,
an external script was run (Supplementary Data 2). This script generated
the upper triangular matrix, which is the input to the hierarchical clustering
algorithm. The clustering produced match most subspecies within the same
cluster. Additionally, the same is true for matching species, as well as
extending out to higher taxonomies such as genus. The full tree is provided
as Supplementary Data 3. A subset of that tree is shown in Fig. 3, which
displays all of Listeria and Pseudomonas as complete subtrees not mixed
with other genus. For another example, the species L. monocytogenes is
all in one cluster, as well as L. ivanovii, P. protegens, and P. chlororaphis.

In sum, aligning long sequences such as bacterial genomes cannot be
accomplished by any of the currently available alignment-based tools. Our
results demonstrate that FASTCAR is the first tool capable of assessing
the similarity between very long DNA sequences via identity scores.

4 Discussion
In this section we discuss few points. We start by giving the rational of
using GLMs as the core of FASTCAR. Then we analyze its time and
memory requirements. After that we give the details of similar tools that
were not evaluated. Finally, we outline some directions for future research.

Rationale of choosing GLMs

A number of machine learning algorithms for classification and regression
are available. These algorithms include Support Vector Machines (SVMs)
and Artificial Neural Networks (ANNs). We are attracted to GLMs
because they are parameter-free models, which are well suited to the
idea of adaptive training. We chose GLMs primarily because of their time
efficiency, which is due to the absence of parameters to be optimized.
Both the SVMs and the ANNs can be highly accurate if given enough
time to train. However, they require several variables that need to be

optimized which does not fit well into our adaptive training idea. On the
other hand, GLMs only require calculating the pseudo-inverse solution to
find the linear coefficients. This operation is much cheaper than searching
for optimal parameters required by the other algorithms. Our experiments
show that the hierarchical GLM can obtain comparable results to SVMs
and ANNs — without parameter optimization however.

Runtime and space analysis

The algorithm behind FASTCAR is a linear algorithm. We start by
analyzing the time required by the training stage. Then we analyze the
time required by the prediction stage. First, the size of k-mers and the
histogram data type are determined in constant time by scanning a fixed
number of sequences — 10000. The training stage involves (i) generating
semi-synthetic sequences, (ii) selecting features, and (iii) training two
final models. Generating a fixed number of semi-synthetic sequences takes
constant time. There are 162 features, from which 5 features at most are
selected using the greedy selection algorithm. Therefore, 800 GLMs are
trained as classifiers and 800 GLMs are trained as regression models.
Because the number of the features is fixed, this operation takes constant
time too. Training the final models are done while selecting the features.
Thus, the entire training process takes constant time. Next, we discuss the
time requirement for the prediction stage. The training process results in
at most 6 parameters for the classifier and 6 parameters for the regression
model because the maximum number of features is 5 and each model uses
an additional parameter representing bias. To predict the identity score
of a pair of sequences, the two sequences are read (linear time). Then
the histograms are generated (linear time). Assuming that each of the
10 features are unique and each is a multiplicative combination of two
features, the algorithm scans the two histograms 20 times in the worst
case scenario. Because the histogram size is guaranteed to be linear with
respect to an average sequence in the database, calculating the features is
done in linear time. In sum, the identity score of a pair of sequences is
produced in linear time.

With regard to the space requirement, the training stage requires
loading 10000 sequences in memory. Once these are read, 300 of them are
selected and the rest are discarded. Then 4500 semi-synthetic sequences
are generated and kept in memory. Therefore, the entire training process
requires constant space to store a fixed number of sequences. To predict
the pair-wise identity score, the space requirement is linear because only
two histograms representing the two sequences are needed.
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Fig. 1. FASTCAR was applied to about 3600 bacterial genomes to generate all-versus-all identity scores, which were used for building a phylogenetic tree using hierarchical clustering.
Here, we show only a part of the tree. All of Listeria and Pseudomonas are in complete subtrees with no other genus. The species L. monocytogenes is all in one cluster, as well as L.
ivanovii, P. protegens, and P. chlororaphis. Even the subspecies londoniensis and ivanovii are distinctly clustered.

Other methods

MASH (Ondov et al., 2016) is a program, which can accurately estimate
genomic distances using MinHash and Jaccard similarity to estimate pair-
wise similarity. However, MASH does not report the identity scores,
instead opting for a novel distance metric based on Jaccard similarity,
which the authors of MASH argue may correlate with other similarity
metrics such as average nucleotide identity. We could not evaluate MASH
because it does not output identity scores. Local alignment tools (other
than BLAST) were not compared. Tools that are purely computational
improvements such as SWIPE (a SIMD-parallel optimized version of
BLAST) (Rognes, 2011) were not considered since the results other
than time should be very similar to BLAST. Our rationale is that
these improvements — using specialized instructions or hardware —
could be applied to other tools (such as FASTCAR and USEARCH) to
similarly speed up these tools with no change in output. In this way, our
comparisons are focused on highlighting improvements due to algorithmic
advancements. We could not compare to CaBLAST (Loh et al., 2012);
although novel, the currently available proof-of-concept is too slow.
CaBLAST applies BLAST to compressed representations of the sequences
rather than to the original sequences themselves.

5 Conclusion
A very important algorithm in bioinformatics, pairwise alignment, is
slow. Fast alternatives such as k-mer distances produce scores that do
not have relevant biological meanings as the identity scores produced by
alignment algorithms. We developed a novel software tools, FASTCAR,
for estimating identity scores of DNA sequence pairs. On an input
database, FASTCAR trains a self-supervised classifier and a self-
supervised regression model to predict identity scores using few, efficient,
k-mer statistics. Training these models is done with a novel method of

generating sequences with known identity scores, allowing for alignment-
free prediction of alignment identity scores. This is the first time identity
scores are obtained in linear time using linear space.
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