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How do dopamine neurons resolve a tradeoff between performance and energy? 1 

  2 

Abstract  3 

The reinforcement learning (RL) theory accounts for the two types of dopamine activity patterns: 4 

phasic and ramping. However, we still lack an understanding of when and why dopamine activity 5 

transitions between the two modes. This study examines a theoretical possibility that dopamine 6 

neurons ramp up, though it is a physiologically demanding job, to distribute cognitive resources 7 

in both space and time, while they transition to an energy-efficient phasic firing mode to 8 

concentrate cognitive resources on learning reward-predicting cues. These results lend better 9 

insight into how animals find tradeoffs between task performance maximization and resource 10 

consumption minimization.  11 

 12 

Introduction  13 

Midbrain dopamine neurons have been found to be important in RL. The dopamine neurons 14 

phasically respond to rewards and reward-predicting cues, the size of which reflects the reward 15 

prediction error (RPE) [1–6]. Phasic dopamine activity has been found to drive RL [7–10], and 16 

dopamine in the striatum modulates corticostriatal synaptic plasticity [11–13].   17 

Based on these findings, computational efforts have been made to account for the role of 18 

dopamine in RL. The models have often considered dopamine activity as the RPE and well-19 

simulated phasic dopamine responses to experimentally inserted cues and rewards [1,14–16]. RL 20 

models have also provided an explanation for the gradually increasing dopamine activity as 21 

animals approach a reward by considering internal spatial representation, the temporal decay of 22 

dopamine-dependent synaptic potentiation, the uncertainty of action timing or discounted vigor or 23 

by assuming dopamine as a value signal [17–20].  24 

However, the patterns of dopamine activity may change, rather than being fixed to phasic or 25 

ramping patterns. A recent study observed that dopamine activity transitions from ramping to 26 

phasic as learning proceeds and transitions from phasic to ramping when reward values change 27 
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[21]. No RL model has accounted for in which condition dopamine activity transitions between 28 

ramping and phasic. We hypothesize that the dopamine transitions might support the re-allocation 29 

of cognitive resources during RL.  30 

 31 

Dopamine modulates resource allocation 32 

Efficient resource allocation is as important as reward maximization for the survival of animals. 33 

Resource allocation is tightly linked with locomotion, attention and learning [22]. To use their 34 

biological resources efficiently, animals should quickly learn which stimuli are highly informative 35 

regarding rewards and be particularly responsive to more informative stimuli. Conversely, to 36 

quickly learn and respond to key stimuli, animals should allocate their resources to reward-37 

informative stimuli. Animals approach, learn, exploit, explore and pay attention to (potentially) 38 

important stimuli and changes that occur to these stimuli.  39 

A potential neural substrate for resource allocation is the midbrain dopamine neurons. Previous 40 

studies have found that a bilateral dopamine lesion reduces the possibility of high-effort, high-41 

reward choices, while increasing the possibility of low-effort, low-reward choices [23,24]. In the 42 

striatum, dopamine inhibition decreases the initiation and maintenance of instrumental response, 43 

while dopamine excitation raises the likelihood of movement initiation and accelerates locomotion 44 

and biases action selection [25–29]. Enhanced dopamine levels have been found to increase bias 45 

toward the exploration of novel choices as opposed to the exploitation of learned options [30–32]. 46 

Dopamine also drives the learning of reward-informative stimuli [33–35]. Dopamine neurons are 47 

necessary for the attention signal in the amygdala, which accelerates RL [36,37]. Prefrontal 48 

dopamine is involved in working memory maintenance and has been suggested to reflect cognitive 49 

effort [38,39]. These findings suggest that, in its target regions, dopamine guides which stimuli the 50 

agent learns to respond to in the environment. 51 

This case raises the theoretical possibility that midbrain dopamine may also be sensitive to 52 

changes in effective task dimensionality, which refers to the number of environmental stimuli or 53 

features associated with a task [40–42]. In addition to rewards and reward-predicting cues, 54 

previous studies have found phasic dopamine excitation to novel stimuli [35,43]. Dopamine 55 
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neurons are sensitive to changes in reward features or values [44,45]. Dopamine also responds to 56 

stimuli that are weakly or potentially related to rewards [34,46–49]. Regardless of which stimulus 57 

evoked phasic dopamine activity, phasic dopamine activity would promote learning and 58 

locomotion in the striatum and elsewhere. Taken together, these observations suggest the 59 

possibility that one of the fundamental features of dopamine is to manage cognitive and motor 60 

resources efficiently so as to detect changes in effective task dimensionality, to learn which stimuli 61 

are more informative of rewards and to initiate a behavioral response to learned stimuli.  62 

 63 

Ramping and phasic dopamine depends on effective task dimensionality   64 

Animals do not perceive every stimulus in an environment, but they tend to recognize stimuli with 65 

saliency that exceed a certain threshold level (Fig 1A). Although experimentally inserted cues (e.g. 66 

tones, light) are usually more salient than others (e.g. wells, floor), pseudo-conditioning or 67 

generalization indicates that the latter are also informative of the reward [47–49]. Previous studies 68 

have suggested that the more salient a stimulus is, the more readily it should be learned [40,50,51]. 69 

To investigate the influence of effective task dimensionality on dopamine activity during RL, 70 

we considered a situation in which both weakly informative stimuli and highly informative, salient 71 

stimuli (key stimuli in Fig 1B) were present. We ran a simulation with a temporal difference (TD) 72 

learning model with an eligibility trace, the standard version known to well account for 73 

dopaminergic activity during RL [14,52]. Frequent exposure to stimuli in conditions of highly 74 

effective task dimensionality may shorten the effective time window for learning during which 75 

previously experienced stimuli affect task performance. An eligibility trace is useful to implement 76 

such an effect. Similarly to the Pearce-Hall model, we made more salient cues to be learned faster 77 

than less salient cues [50,53].  78 

When effective task dimensionality is high and the distribution of stimulus value is widely 79 

dispersed (Fig 1C), the learning agent finds difficulty screening candidates for a key stimuli. In 80 

such cases, it broadly distributes cognitive resources. Our model simulation suggested that a 81 

ramping RPE appears in this situation. As learning proceeds, the number of candidates for key 82 

stimuli decreases (i.e., decreasing effective task dimensionality), and the value of key stimuli 83 
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increases, which favors a focused allocation of resources to the key stimuli. Our model predicted 84 

that phasic RPE occurs in this condition (Fig 1D).  85 

 86 

 87 

 

Fig 1.  Dopamine modulates resource allocation depending on task dimensionality 

(A) Conceptual example of high and low effective task dimensionality conditions. (B) Model 

structure; value distribution in conditions of high (C) and low (D) effective task dimensionality. 

The bottom plot shows the weights of each stimulus over time. The top plot shows the prediction 

error and the weight of each stimulus summed across time.  
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To further examine this hypothesis, we tested whether the model replicates previous empirical 88 

findings. First, we tested whether the model reproduced dopamine activity in a low-effective task 89 

dimensionality experiment (Fig 2A-D). In this experiment, rats were placed in a simple, small 90 

chamber [14]. Two consecutive tone cues deterministically predicted a liquid reward for which 91 

animals only had to lick a spout. During early training, dopamine neurons showed strong phasic 92 

excitation to the reward, whereas the strong dopamine excitation was transferred to the initial 93 

experimental cue during late training. Regardless of the learning stage, the omission of the second 94 

experimental cue resulted in a larger phasic response to the reward. All the dopamine activity 95 

patterns were successfully simulated by the model. 96 

Next, we tested whether the model reproduced the ramping dopamine activity observed in 97 

Howe et al. (2013) (Fig 2E, F) [54]. In this experiment, rats had to travel through a large T-maze 98 

to earn a reward. The first and second tone cues indicated the start of each trial and which arm to 99 

visit to receive the reward, respectively. This experiment is more complicated than the previous 100 

one. For example, background stimuli—such as decreasing the distance between the animal and 101 

the corner of the T-maze—may provide subsidiary information to guide the animal’s behavior in 102 

a large maze, thereby increasing the effective task dimensionality. To implement a high effective 103 

task dimensionality, we increased the decay rate for the eligibility trace. The model successfully 104 

replicated the findings regarding ramping dopamine (Fig 2G).  105 

According to our simulation, it appears that both the non-experimental cues increasing the 106 

effective task dimensionality and the fast decay of the eligibility trace are necessary for the 107 

ramping RPE. Although the rapid decay of the eligibility trace alone contributes to a ramping trend 108 

of RPE to some extent, the RPE inevitably peaked at the intermediate experimental cue (Fig 2H), 109 

which contradicts earlier findings that dopamine activity ramps up during the early stages of 110 

learning. Non-experimental cues were required for smoothly ramping dopamine activity because 111 

these factors cause an increase in the effective task dimensionality and a dispersion of cognitive 112 

resources. The magnitude of the RPE protrusion at the intermediate cue was dependent on the 113 

saliency contrast between experimental and non-experimental cues (Fig 2I).  114 

 115 
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Fig 2. Phasic and ramping dopamine in conditions of low and high effective task 

dimensionality.  

(A) The experimental paradigm of Pan et al. (2005). (B) The empirical results from Pan et al. 

(2005) during early and late training. (C) The simulation results of the model during early and 

late training. The agent was assumed to have completed training when the values of the first 

experimental cue converged. To clearly demonstrate how the shape of the RPE signal changed 

during the learning, the 10th, 20th and 80th percentiles of training were used to simulate early, 

middle and late training stages. 𝜆,  α, and γ were 0.9, 0.005 and 0.9, respectively. The 𝛽 of 

the experimental stimuli were 2, and the 𝛽 of other stimuli were 1. (D) The simulation results 
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of the model throughout learning. (E-F) The experimental results of Howe et al. (2013). (G) The 

model behavior during early training. All other values were the same as (C). (H) The behavior 

of a model that does not have non-experimental stimuli. The RPE signal of the model 

throughout learning (left). The RPE signal of the model during early, middle and late training 

(right). 𝜆  of 0.5 was used. (I) As the saliency contrast between experimental and non-

experimental cues increased, the RPE at the intermediate experimental cue protruded 

accordingly. The level of the protrusion of the RPE at the intermediate experimental cue was 

measured as the RPE at the intermediate experimental cue minus the average of the RPE 

immediately before and after the experimental cue. The inset shows the RPE trajectory during 

early training.  

 116 

 117 

Transition from ramping to phasic as RL focuses resources on a few important cues 118 

The model predicted that the RPE peaks at reward onset in the early stage of learning, but as 119 

learning proceeds, the peak time point gradually transitions to the onset of an initial cue (Fig 3 B, 120 

D). This simulation result is consistent with previous experimental result [21]. In the study, rats 121 

were trained to press two different levers to collect a reward, and this training continued for a few 122 

days after their performance reached an asymptote. The authors observed that the ramping 123 

dopamine activity appeared during early training but that dopamine activity peaked at the first cue 124 

after extended training (Fig 3A, C).  125 

Unpublished data also support our hypothesis. In this experiment, rats freely choose one of the 126 

two arms of a modified T-maze (Fig 3E inset). The reward probability of one arm was higher than 127 

that of the other, which remained constant within a block of 35-45 trials. The reward probability 128 

values were reversed across four blocks without any sensory cues indicating this change. Fig 3E 129 

shows dopamine activity around the reward onset. As the learning proceeded, the dopamine 130 

activity before the reward onset decreased, while phasic excitation to the reward diminished and 131 

moved to the earlier time points. This finding is fully consistent with our simulation results (Fig 132 

3B, D).  133 

 134 
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Fig 3. Dopamine transitions from ramping to phasic as RL decreases the effective task 

dimensionality.  

(A) and (C) show the experimental results of Collins et al. (2016). (B) and (D) show the 

simulation results. The 1st, 10th, 30th and 80th percentiles were considered the initial 

acquisition, pre-asymptote, at asymptote and extended training, respectively. The 30th 

percentile was chosen as the asymptote because the PE of the model peaks at the first cue 

around the 30th percentile. The parameter values were the same as in Fig 2G. (E) Dopamine 
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activity at the beginning and at the end of each block (4 rats, 62 dopamine cells). The inset 

shows the experimental apparatus. Firing rates in the red region of the inset were normalized 

by subtracting the mean firing rate in the green region. The right plot shows smoothened PSTHs 

on the left plot. (F) The model prediction of the RPE at reward delivery when the size of the 

reward was doubled during early or late training. 

 135 

Our simulation results support the view that a longer training time is required until dopamine 136 

activity transitions from ramping to phasic when effective task dimensionality is relatively high. 137 

Since the ramping RPE appeared during early training, around five times more trials were needed 138 

until the RPE peaked at the initial key stimulus (Fig 3B). The reason this transition was not 139 

observed in Howe et al. (2013) [54] might be that the animals were not trained enough for their 140 

performance to reach an asymptote (see their Figure 4e) unlike Collins et al. (2016) [21]. Even in 141 

an experiment much simpler than that of Howe et al. (2013), hundreds of trials were required until 142 

dopamine excitation to the reward were suppressed [14]. 143 

As learning proceeded, RPEs around the reward onset diminished, which causes a weaker 144 

sensitivity to the change in the reward value (Fig 3F). This suggests that extended training eliciting 145 

a dopamine transition from ramping to phasic makes learned responses habitual and less 146 

susceptible to environmental changes [55]. Switching to a phasic activity pattern during RL would 147 

allow the learning agent to focus cognitive and motor resources on key stimuli at the expense of 148 

reduced behavioral flexibility.  149 

 150 

Transition from phasic to ramping upon changes in reward value  151 

Learning and underlying behavior are motivated by reward value. A change in the reward earned 152 

by an animal’s behavioral policy motivates it to re-learn which stimuli predict reward, and this 153 

process inevitably requires a re-allocation of resources. Our hypothesis, which concerns the role 154 

of ramping and phasic dopamine activity in resource allocation during RL, predicts that ramping 155 

activity will reappear upon changes in reward values. Both previous experimental results and our 156 

model simulation support this view. Collins et al. (2016) found that ramping activity reappears 157 

after doubling the reward value (Fig 4A), which was replicated in our model (Fig 4B) [21].  158 
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Fig 4. Dopamine transitions from phasic to ramping upon value changes.  

(A) The experimental results of Collins et al. (2016). (B) The model behavior. After extended 

training, the ramping activity disappeared (gray). The ramping activity reappeared when the 

size of the reward was doubled (blue). (C) Dopamine activity before and after reversal (4 rats, 

62 dopamine cells). (D) Simulation results of model behavior. The reward was delivered to the 

left arm until the 50th trial and to the right arm from the 51st trial onward. α , γ, and the 

temperature of the softmax function were 0.1, 0.9 and 2, respectively.  

 159 

A similar effect was found in the unpublished data (Fig 4C). At the end of each block, the phasic 160 

excitation to reward disappeared, and dopamine activity began to peak at earlier time steps. After 161 

the reward probabilities of the left and right arms were reversed, however, the phasic excitation to 162 

reward reappeared, and dopamine activity before the reward onset increased. Because no 163 

experimental stimulus was used in this experiment, we used a basic Q-learning model for 164 

simulation. The simulation indicates that ramping RPE gradually decayed in the first block but re-165 
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appeared after the reversal (Fig 4D). Overall, we showed that transitions from phasic to ramping 166 

activity reflect widespread resource distribution that allows for rapid adaptation to potential 167 

changes in the stimulus value.  168 

 169 

Conclusions  170 

In this paper, we tested the idea that dopamine transitions between ramping and phasic activities 171 

during RL reflect efficient resource allocation while the agent is learning to maximize reward. 172 

Both the simulation and experimental results suggest that dopamine activity transitions from 173 

ramping to phasic as the RL agent narrows down the candidate stimuli of the task to decrease the 174 

effective task dimensionality. The opposite occurred when the agent had to re-learn the candidate 175 

stimuli by increasing the effective task dimensionality. This affords insight into a more 176 

fundamental question: How does the animal resolve the tradeoff between prediction performance 177 

and efficient resource management? 178 

Although efficient resource management is as important as reward maximization for animals’ 179 

survival, efficient resource management has received relatively little attention. Recent empirical 180 

studies have found an increasingly diverse repertoire of dopamine activity, which has presented 181 

questions railing against the presumed role of dopamine [22,42,54,56–58]. Our hypothesis 182 

examining the role of dopamine in resource allocation explains why dopamine responds to novel 183 

and intense stimuli that do not encode the RPE [6,43]. RL has been found to be very inefficient in 184 

reducing task dimensionality [59]. Further work on the role of dopamine in resource allocation 185 

may shed light on how dopamine arbitrates RL and dimensionality reduction. 186 

 187 
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