Abstract
The scientific community is increasingly embracing open science. This growing commitment to open science should be applauded and encouraged, especially when it occurs voluntarily and prior to peer review. Thanks to other researchers’ dedication to open science, we have had the privilege of conducting a reanalysis of a landmark experiment published as a preprint with data made available in a public repository. The study in question found that promoter DNA methylation is frequently insufficient to induce transcriptional repression, which appears to contradict a large body of observational studies showing a strong association between DNA methylation and gene expression. This study was the first to evaluate whether forcibly methylating thousands of DNA promoter regions is sufficient to suppress gene expression. The authors’ data analysis did not find a strong relationship between promoter methylation and transcriptional repression. However, their analyses did not make full use of statistical inference and applied a normalization technique that removes global differences that are representative of the actual biological system. Here we reanalyze the data with an approach that includes statistical inference of differentially methylated regions, as well as a normalization technique that accounts for global expression differences. We find that forced DNA methylation of thousands of promoters overwhelmingly represses gene expression. In addition, we show that complementary epigenetic marks of active transcription are reduced as a result of DNA methylation. Finally, by studying whether these associations are sensitive to the CG density of promoters, we find no substantial differences in the association between promoters with and without a CG island. The code needed to reproduce are analysis is included in the public GitHub repository github.com/kdkorthauer/repressivecapacity.
Footnotes
↵* rafa{at}jimmy.harvard.edu