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ABSTRACT 14 

Depression is characterized by deficits in the reinforcement learning (RL) process. Although 15 

many computational and neural studies have extended our knowledge of the impact of 16 

depression on RL, most focus on habitual control (model-free RL), yielding a relatively poor 17 

understanding of goal-directed control (model-based RL) and arbitration control to find a 18 

balance between the two. We investigate the effects of depression on goal-directed and 19 

habitual control in the prefrontal–striatal circuitry. We find that depression is associated with 20 

attenuated state and reward prediction error representation in the insula and caudate, a 21 

disruption of arbitration control in the predominantly inferior lateral prefrontal cortex and 22 

frontopolar cortex, and suboptimal value–action conversion. These findings fully characterize 23 

how depression influences different levels of RL, challenging previous conflicting views that 24 

depression simply influences either habitual or goal-directed control. Our study creates 25 

possibilities for various clinical applications, such as early diagnosis and behavioral therapy 26 

design. 27 

 28 

INTRODUCTION 29 

Major depressive disorder (MDD) has received considerable attention, as the lifetime 30 

prevalence of the disorder is higher than 10% worldwide1. MDD is characterized by deficits in 31 
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decision-making2,3 and its underlying reward learning processes4. Recently, with the 1 

development of computational models, several studies have explored how depression 2 

influences the reward learning system (for a review, see (Chen et al., 2015)). 3 

Reinforcement learning (RL), the process of learning to develop a behavioral policy to 4 

maximize reward5, has been known to be guided by the two distinct RL strategies: model-5 

based (MB) RL and model-free (MF) RL, each of which guides goal-directed and habitual RL, 6 

respectively6. Model-based RL guides context-sensitive and goal-directed behaviors through 7 

a sophisticated process in which the learning agent makes decisions by simulating an internal 8 

environmental model, whereas model-free RL is associated with habitual responses to reward-9 

predicting stimuli based on learned associations between stimuli and rewards6,7. Mounting 10 

evidence suggests that depression is characterized by impairments in either model-based or 11 

model-free RL. For example, behaviors in depressive individuals can be accounted for by 12 

impaired model-based RL8–10 or a transition from model-based to model-free RL11. However, 13 

most studies have only explored the effect of depression on model-free RL. For instance, 14 

depressive people exhibit an impaired ability to learn stimulus–reward associations 15 

accompanying inaccurate representations of reward prediction error12–17 or abnormal learning 16 

rate control11,18. 17 

Impairment in RL is associated with not only the onset of depressive symptoms, but also the 18 

development of depression. For instance, stress, one of the major risk factors for 19 

depression19,20, can induce deficits in RL. Previous findings have shown that people exhibit a 20 

reduced ability to engage in model-based RL under conditions of chronic21,22 and acute23,24 21 

stress. These findings suggest a gradual impairment of RL from the very early stages of 22 

depression. 23 

Although these studies have contributed to our understanding of depression in the context of 24 

RL, it is still unclear whether depression is best characterized by model-free RL, model-based 25 

RL, or an interaction between the two, or how depression influences the neural circuits guiding 26 

goal-directed and habitual behavioral control. Moreover, little is known about how these cases 27 

extend to early or mild depression. 28 

Here, we aim to provide a computational and neural account of how depression affects goal-29 

directed and habitual control in the prefrontal–striatal circuitry. First, to investigate the effects 30 

of depression on model-based and model-free RL, we ran a model comparison analysis to 31 

identify a version of arbitration control intended to account for various behavioral traits of 32 

depression. In particular, our computational models consider sub-optimality of RL, allowing us 33 

to explain choice behavior patterns across a wide spectrum of depression. We combine this 34 
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with model-based functional magnetic resonance imaging (fMRI) to identify the parametric 1 

effects of depression on neural systems associated with model-based and model-free RL. In 2 

the subsequent analysis, we attempt to fully characterize how depression disrupts the 3 

arbitration between model-based and model-free RL by combining the results from the 4 

computational modeling and model-based fMRI analyses and the multi-voxel pattern analysis 5 

(MVPA). 6 

 7 

RESULTS 8 

Effects of Depression on Behavior Performance of Goal-directed and Habitual Learning 9 

 10 

[Figure 1] Markov decision task structure 11 

  12 

Sixty-three participants conducted a sequential two-stage Markov decision task25. Of the 13 

subjects, 28 were scanned with an fMRI while performing the task. The task manipulated 14 

both prediction uncertainty and task goals to dissociate goal-directed and habitual behavior 15 

control (Figure 1; for more detail, see Methods). The task consisted of four types of blocks 16 

(high/low state–action–state transition uncertainty x specific/flexible goal condition). Before 17 

each experiment, participants completed the Center for Epidemiologic Studies Depression 18 

(CES-D) questionnaire26 (For the distribution of participant’s depression severity, see 19 

Supplementary Figure S2). 20 

 21 

[Figure 2] Behavioral results 22 

 23 

Overall task performance is negatively correlated with the self-reported depression score. 24 

The accumulated reward decreases significantly as individual depression score (CES-D) 25 

increases (correlation coefficient estimate=-0.584 [p=4.94e-07]; Figure 2a). The proportion of 26 

optimal choices, the measure that quantifies the extent to which a subject’s choice reflects an 27 

optimal policy, is also inversely proportional to the CES-D score (correlation coefficient 28 

estimate=-0.567 [p=9.32e-05]; Figure 2b). Finally, choice consistency, the proportion of 29 

making the same choice as in previous trials, decreases as the CES-D score increases 30 

(correlation coefficient estimate=-0.472 [p=1.24e-06]; Figure 2c). These results demonstrate 31 
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that depression has a damaging effect on both goal-directed and habitual control performance, 1 

leading to suboptimal choices. 2 

 3 

Computational Model of Arbitration Control Allowing for Suboptimal Decision-Making 4 

 5 

[Figure 3] Computational model of dynamic arbitration control 6 

 7 

We adopted the previous dynamic arbitration control hypothesis that respective prediction 8 

uncertainty—specifically, the amount of uncertainty in the state and reward prediction error of 9 

model-based and model-free RL—mediates the trial-by-trial value integration of the model-10 

based and model-free systems25. To fully explore the effects of depression on arbitration 11 

control, however, a model should be flexible enough to account for any individual variability 12 

arising from suboptimal learning and decision-making. 13 

To consider this, we redesigned the arbitration control scheme to allow for sub-optimality of 14 

RL in both learning values and converting learned values into choice behavior. We included 15 

the former by introducing separate learning rates for model-based and model-free RL and the 16 

latter by defining an exploitation sensitivity parameter as a function of model preference for 17 

either model-based or model-free RL (for more detail, see Methods). This model setting 18 

reflects the hypothesis that prediction uncertainty mediates not only value integration, but also 19 

value–action conversion (Figure 3a). 20 

 We compared prediction performance for the five different versions of arbitration control, 21 

including the original arbitration model and four other versions implementing our hypothesis 22 

in different ways. We used the Bayesian information criteria (BIC) as a performance measure 23 

to preclude overfitting. We found that the version implementing our hypothesis, in which the 24 

degree of exploitation is determined by the weighted sum of the model-based and model-free 25 

exploitation parameters with the model choice probability, explains the subjects’ behavior 26 

(t(62)=2.46, [p=0.017]; paired t-test comparison with the second-best model, Arbα), 27 

significantly better than the original model25 (Figure 3b; for a model comparison, see 28 

Supplementary Table S1; for estimated model parameters, see Supplementary Table S2). Our 29 

model comparison result not only corroborates the previous finding that prediction uncertainty 30 

mediates the arbitration between model-based and model-free RL, but also demonstrates the 31 

effect of prediction uncertainty on both value integration and value–action conversion. 32 
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 1 

Goal-directed and Habitual Control in the Prefrontal–Striatal Circuitry 2 

 3 

[Figure 4] Neural correlates of dynamic arbitration control 4 

 5 

To further examine whether our model explains the neural activity patterns of brain areas 6 

previously implicated in model-based and model-free RL, we ran a model-based fMRI analysis 7 

in which each of the key signals of our computational model were regressed against the fMRI 8 

data. 9 

First, we replicated previous findings concerning the neural correlates of prediction error for 10 

the model-based and model-free systems. The state prediction error (SPE) was found 11 

bilaterally in the insula and the dorsolateral prefrontal cortex (dlPFC) (all p<0.05 in cluster-12 

level corrected). The reward prediction error (RPE) was correlated with neural activity in both 13 

sides of the ventral striatum (p<0.05 in family-wise error [FWE] corrected). These results are 14 

fully consistent with previous findings25,27,28 (Figure 4, Supplementary Table S3). 15 

We also successfully replicated previous findings supporting the neural hypothesis of 16 

arbitration control. We found the max reliability signal, the key signal used to mediate 17 

arbitration between model-based and model-free RL, in the bilateral inferior lateral PFC (ilPFC, 18 

left: p<0.05 in cluster-level corrected; right: p<0.05 in small-volume corrected [SVC] at [8,6,-19 

2]) and the frontopolar cortex (FPC, p<0.05 in cluster-level corrected), fully consistent with 20 

previous results25,29 (Figure 4, Supplementary Table S3).  21 

Next, we tested the brain areas implicated in value computation. The chosen value of the 22 

model-based system (QMB) was found to be encoded in the precentral gyrus (p<0.05 in cluster-23 

level corrected) and the orbital and medial PFC (p<0.05 in SVC at [-14,36,-8])28,30. The chosen 24 

value of the MF system (QMF) was found in the dorsal ACC, supplementary motor area, 25 

premotor cortex, dorsolateral PFC (p<0.05 in cluster-level corrected), and dorsomedial PFC 26 

(p<0.05 in SVC at [9,35,40])31,32. Notably, this model-free value signal was also found in the 27 

posterior putamen, the brain area known to be involved in valuation for habitual learning 28 

(p<0.05 in SVC at [-27,-4,1])32–34. We also tested for the integrated value signal, expressed as 29 

a sum of the value estimates of the model-based and model-free systems weighted by the 30 

arbitration control signal (PMB). The ventromedial PFC was positively correlated with the 31 

difference between the integrated value signals for the chosen and unchosen actions (p<0.05 32 

in cluster-level corrected), fully consistent with previous reports on choice values35–37 (Figure 33 
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4, Supplementary Table S4). 1 

Unlike the previous arbitration hypothesis25, our computational model also predicted that 2 

arbitration control influences how integrated values are converted into actual choices. Finally, 3 

we attempted to identify the brain regions involved in value–action conversion. We found that 4 

the inferior parietal lobe, insula (p<0.05 in FWE corrected), middle frontal gyrus, globus 5 

pallidus, FPC, supplementary motor area, and thalamus (p<0.05 in cluster-level corrected) are 6 

positively correlated with the probability value of the chosen action, referred to as the output 7 

value of the softmax function38. This finding is consistent with previous findings indicating 8 

stochastic action selection39. Other brain areas, such as the orbitofrontal cortex, superior 9 

temporal gyrus, middle frontal gyrus, supramarginal gyrus (p<0.05 in FWE corrected), medial 10 

PFC, superior frontal gyrus (p<0.05 in cluster-level corrected), posterior medial cortex, and 11 

lateral PFC, are negatively correlated with the chosen action probability. The negative 12 

encoding of stochastic action selection in the posterior medial cortex and the lateral PFC also 13 

replicates previous findings, as these regions have been implicated in the valuation of 14 

counterfactual choices35,39,40 (Figure 4, Supplementary Table S5). 15 

 16 

Effects of Depression on Goal-directed and Habitual Learning 17 

 18 

[Figure 5] Parametric effect of depression on goal-directed and habitual learning 19 

 20 

 To fully explore how depression affects the neural computations underlying model-based 21 

and model-free RL, we examined the relationship between the individual depression score 22 

and neural representations in each brain region implicated in model-based and model-free 23 

RL. We found evidence indicating the effect of depression on RL in multiple brain areas 24 

encoding prediction errors. The correlation coefficient between left insula activation and the 25 

SPE ([-36,20,-4], z=4.49), which represents the efficiency of neural encodings of the SPE in 26 

the left insula, was inversely proportional to the depression score (estimated correlation 27 

coefficient=-0.396, p=0.037; Figure 5a). We also found a significant negative correlation 28 

between the neural efficiency for encoding the RPE in the bilateral caudate (left: [-4,6,-4], 29 

z=4.50, right: [4,8,-4], z=5.30) and the individual depression score (estimated correlation 30 

coefficient=-0.412/-0.376, p=0.029/0.049 for the left and right, respectively; Figure 5b). 31 

These findings directly demonstrate how depression affects value updates for goal-directed 32 

and habitual learning. 33 
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 1 

Effects of Depression on Prefrontal Arbitration Control 2 

 3 

[Figure 6] Parametric effect of depression on prefrontal arbitration control 4 

 5 

We also tested for the neural effects of depression on arbitration control. First, we found 6 

that the individual depression score is significantly correlated with the learning rate for MF 7 

reliability estimation, the key variable required to quantify the reliability of predictions made 8 

by the model-free RL strategy based on the RPE (estimated correlation coefficient=0.335, 9 

p=0.007; Figure 6a, left; Supplementary Figure S1). This offers a theoretical prediction that 10 

depression entails over-sensitivity to the RPE, making arbitration control more sensitive to 11 

the prediction of the model-free system (Figure 6a, right). This implies that the brain regions 12 

implicated in mediating arbitration control focus on information about the reliability of the 13 

model-free system, rather than encoding the reliability information of the RL system 14 

controlling behavior at the moment (i.e. max reliability), leading to the disruption of neural 15 

computation underlying normal arbitration control. 16 

 To test the prediction that depression disrupts neural processing pertaining to arbitration 17 

control, we conducted a GLM analysis with the max reliability signal. We found that the effect 18 

size (parameter estimates from the GLM analysis) of the max reliability signal for FPC 19 

([8,44,40], z=3.83) was negatively correlated with the depression score (estimated 20 

correlation coefficient=-0.441, p=0.019; Figure 6b). Moreover, the effect sizes of the max 21 

reliability signal for the bilateral ilPFC ([-52,26,16], z-score=4.48; [42,20,-8], z-score=3.61) 22 

and FPC ([8,44,40], z-score=3.83), the brain areas previously implicated in arbitration 23 

control25,29,41, tended to be lower in the depressive group (CES-D score≥16) than in the 24 

control group (CES-D score<16) (Figure 6c, left; one-way ANOVA; F1,26=2.76 [p=0.108], 25 

F1,26=2.93 [p=0.099], F1,26=5.18 [p=0.031] for the left and right ilPFC and FPC, respectively).  26 

To further evaluate the prediction that depression makes neural processing for arbitration 27 

control more sensitive to the model-free system, we ran an MVPA for the bilateral ilPFC and 28 

FPC. This analysis quantifies the amount of information concerning the reliability of the 29 

model-free system embedded in these brain areas. We used a support vector machine, an 30 

optimal neural network for prediction and generalization, to conduct a binary classification of 31 

model-free reliability (high vs. low; upper/lower 33rd percentile threshold) and compared the 32 

prediction performance of the control and depression groups. 33 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 31, 2018. ; https://doi.org/10.1101/381152doi: bioRxiv preprint 

https://doi.org/10.1101/381152


 

8 

We found that the prediction performance of model-free reliability in the bilateral ilPFC and 1 

FPC was significantly higher in the depression group than in the control group (Figure 6c, 2 

right; one-way ANOVA; F1,26=4.57 [p=0.042], F1,26=4.33 [p=0.047], F1,26=4.89 [p=0.036] for 3 

the left and right ilPFC and FPC, respectively). On the other hand, the same analysis found 4 

no significant inter-group differences in model-based reliability signal or max reliability signal 5 

(Supplementary Table S6). Taken together, these results strongly support our arbitration 6 

control hypothesis that depression is associated with increased sensitivity to RPE, leading to 7 

instable arbitration in which the reliability of predictions of the model-free system becomes 8 

predominant and the reliability of predictions of the model-based system becomes less 9 

influential. 10 

 11 

Effects of Depression on Value–Action Conversion 12 

 13 

[Figure 7] Parametric effect of depression on value-action conversion 14 

 15 

 Our computational model also explains how the degrees of control allocated to the model-16 

based and model-free systems influence how value is converted into actual choice 17 

(exploitation sensitivity). For example, exploitative and explorative choices are associated with 18 

high and low exploitation sensitivity, respectively. We found that the exploitation parameter for 19 

model-based RL is negatively correlated with the individual depression score (correlation 20 

coefficient=-0.412, p=0.001; Figure 7a, left), indicating that subjects with higher depression 21 

scores exhibit more exploratory choices when their choices are guided by model-based RL 22 

(Figure 7a, right). 23 

 In the subsequent neural analysis, we explored the relationships between the depression 24 

score and the neural representations of value–action conversion. The parameter estimates of 25 

the probability value of taking the chosen action are significantly correlated with the depression 26 

score in two brain regions. The parameter estimates in the two seed regions—the right 27 

superior temporal gyrus (STG; [-46,-20,-8], z=4.21) and left middle temporal gyrus (MTG; [56,-28 

32,-8], z=3.55)—are positively and negatively correlated with the CES-D score, respectively 29 

(correlation coefficient=0.430, p=0.025 for STG; correlation coefficient=-0.430, p=0.022 for 30 

MTG; Figure 7b). 31 

 32 
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DISCUSSION 1 

By combining a computational model allowing for sub-optimality in learning and decision-2 

making, a model-based fMRI analysis, and an MVPA, the present study fully characterizes 3 

how depression influences the different levels and stages of RL: value computation, prefrontal 4 

arbitration control for value integration, and value–action conversion. We found that 5 

depression has a parametric effect on neural representations of prediction error for model-6 

based and model-free systems, respectively, explaining how depression hampers value 7 

computation ability. Another intriguing finding is that the brain areas implicated in arbitration 8 

control, bilateral ilPFC and FPC, become more sensitive to the predictions of the model-free 9 

system in people with depression, indicating that depression disrupts the balance between 10 

goal-directed and habitual control. We also found that depression increases the tendency to 11 

make exploratory choices during model-based control, but not during model-free control. 12 

 13 

Computational Theory of Prefrontal Goal-directed and Habitual Control 14 

 The present study’s computational model of dynamic arbitration control of model-based and 15 

model-free RL allows us to explore the full parametric effects of depression on prefrontal goal-16 

directed and habitual control. Although mounting evidence suggests that prediction uncertainty 17 

might be a key variable for prefrontal arbitration control6,25,27, little is known about the 18 

computational reasons people with depression tend to exhibit behavioral biases towards either 19 

goal-directed or habitual behavior. Addressing this issue involves a few challenges. First, 20 

simply evaluating the two separate hypotheses contradicts the prevailing view that the brain 21 

circuitries guiding goal-directed and habitual behavior interact with each other. Second, there 22 

is no guarantee that a rational arbitration control model is flexible enough to explain the 23 

individual variability associated with depression. Third, exploring a depression-specific model 24 

based on the assumption that depression follows a computational regime that substantially 25 

deviates from rational decision-making may enable us to explain severe depression, but 26 

cannot explain a continuum extending from a normal to a severely depressed state. 27 

To fully address these issues, we considered a computational model of dynamic arbitration 28 

control allowing for individual variability in suboptimal learning and decision making. 29 

Intriguingly, we found that the influence of prediction uncertainty is not confined to value 30 

integration25, but extends as far as value–action conversion. This also allowed us to test the 31 

full effect of depression on decision-making at different computation levels: model-based and 32 

model-free reinforcement learning, arbitration control for value integration and value–action 33 

conversion. 34 
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 1 

Effects of Depression on Neural Representations of Prediction Error 2 

 Our study found that depression has a parametric effect on the neural representations of the 3 

two distinct types of prediction errors associated with model-based and model-free RL: SPE 4 

and RPE. The neural analysis revealed that depression scores were correlated with an 5 

attenuation of the SPE signal in the left insula and the RPE in the bilateral caudate.  6 

Dopamine is crucial for both model-free and model-based RL. Numerous previous studies 7 

have reported dopamine’s role in guiding the RPE42,43, and a recent finding discussed the 8 

essential role of dopamine in stimulus-stimulus associative learning44, implicating the 9 

involvement of dopamine in SPE representation. Depression is characterized by decreased 10 

dopamine levels45,46, which may impair learning in both model-free and model-based systems. 11 

In fact, RPE signals in depression have reportedly been reduced in various experimental 12 

conditions (both Pavlovian learning12 and instrumental learning13–17). Our study not only 13 

corroborates previous findings concerning RPE deficits in depression, but also further 14 

suggests that depression may impact neural representations of SPE. 15 

 16 

Effects of Depression on Prefrontal Arbitration Control 17 

One interesting prediction of the model is that CES-D is positively correlated with the 18 

parameter value for controlling the learning rate for updating model-free reliability based on 19 

the RPE, indicating that reliability estimation for the model-free strategy is very sensitive to 20 

RPE changes. This suggests that, in people with high CES-D scores, arbitration control might 21 

be predominantly driven by the model-free reliability signal, rather than by a fair comparison 22 

of the model-free and model-based reliability signals. We explored this possibility through a 23 

combination of a general linear model (GLM) and MVPA. 24 

Our GLM analysis showed the negative effect of the depression on the neural representations 25 

of arbitration control in the prefrontal cortex. In bilateral inferior lateral PFC and frontopolar 26 

cortex, the brain areas reportedly encoding the key variable for arbitration control25, neural 27 

representations tend to be weaker in the high CES-D score group. Critically, the subsequent 28 

MVPA shows that the amount of reliability information of the model-free system is significantly 29 

higher in the high CES-D score group. Taken together, these findings theoretically implicate 30 

that depression may hinder the PFC’s ability to estimate the reliability of each learning strategy 31 

from the corresponding prediction error. 32 

 33 
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Effects of Depression on Valuation–Action Conversion 1 

The present study also provides a computational and neural account of how depression 2 

causes sub-optimal action selection. Our computational model predicts that depression 3 

increases the tendency to make exploratory choices during model-based control, rather than 4 

model-free control.  5 

This finding could also clarify the two conflicting views of choice consistency behaviors in 6 

depression47,48. Beever et al. (2013) found no significant difference in exploration pattern in a 7 

reward-maximizing task between a normal and a depressed group. Blanco et al. (2013), on 8 

the other hand, found that a depression group tended to explore more. This conflict might be 9 

attributable to differences in task structure. Beever et al.’s study used a task with a relatively 10 

stable environmental structure, such that people performed tasks relying on the model-free 11 

system. This is consistent with our view that depression has a relatively weak influence on 12 

exploration during model-free control. However, the reward structure used in Blanco’s study 13 

encouraged more frequent policy changes, accommodating the need for model-based control. 14 

This is also consistent with our view that exploratory choice behavior becomes more 15 

pronounced during model-based control. 16 

The neural results of the present study, which show that the STG response is higher in people 17 

with depression, are fully consistent with previous finding that STG response increases when 18 

people switch to other options rather staying49. Our results address not only the implication for 19 

the role of STG in exploration, but also how depression influences exploration at the neural 20 

level.  21 

Our finding that the degree of exploitation decreases as CES-D score increases (shown in 22 

Figure 7) explains why reward sensitivity is reduced in people with depression. A decreasing 23 

degree of exploitation decreases the tendency to convert a learned policy into an actual choice, 24 

reducing the efficiency of translating changes in the reward structure into changes in actual 25 

choices. This is also consistent with the view that our model’s degree of exploitation parameter 26 

can be interpreted as reward sensitivity16,50. In addition to supporting existing evidence of 27 

declined reward sensitivity in depression51–53, the present study advances the view by 28 

proposing that this tendency becomes stronger during model-based control.  29 

 30 

Potential clinical applications 31 

The present findings suggest how depression influences goal-directed and habitual control 32 

in the prefrontal–striatal circuitry. The full characterization of the effects of depression on 33 
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different stages of learning and decision-making creates possibilities for various clinical 1 

applications. First, our neural results explain why such brain stimulus techniques as repetitive 2 

transcranial magnetic stimulation (rTMS) and deep brain stimulus (DBS) to the frontopolor 3 

cortex54 or ventral striatum55 are effective in alleviating depressive symptoms. Second, our 4 

theoretical idea suggests that behavioral therapy to reduce sensitivity to reward prediction 5 

errors might help people with depression regain a balance between goal-directed and habitual 6 

control. Intriguingly, our findings also indicate a parametric effect of depression on learning 7 

and decision-making in a relatively young age group (average=22.8 yrs). Considering the 8 

onset of MDD is approximately 25 to 45 yrs56, our study offers possibilities for not only 9 

investigating how mild depression transitions to MDD, but also developing clinical applications 10 

for the early diagnosis of MDD. 11 

 12 

METHODS  13 

Participants 14 

Sixty-five right-handed Koreans (28 females; mean age of 22.8±3.8) participated in the study. 15 

Participants were recruited from the local society through the online announcement. Only 28 16 

subjects were scanned with fMRI during the task. Two subjects whose total accumulated 17 

reward are below the chance-level (mean amount of rewards with 10,000 random simulations) 18 

were excluded from the analysis. Thus, a total of sixty-three behavioral data and twenty-eight 19 

fMRI data were left for the analysis. To acquire the depressive level of individuals, people were 20 

instructed to complete the Center for Epidemiologic Studies Depression (CES-D) 21 

questionnaires26 before the experiment (For the distribution of participant’s depression severity, 22 

see Supplementary Figure S2). 23 

No subjects had the history of neurological of psychiatric disease. Every subject provided 24 

written consent to the experimental protocols which were approved by the Institutional Review 25 

Board (IRB) of the Korea Advanced Institute of Science and Technology (KAIST). 26 

 27 

Task  28 

 We used the sequential two-stage Markov decision task proposed to dissociate model-based 29 

and model-free learning strategy25. In this task, subjects make a binary choice (either left or 30 

right) and proceed to the next state with a certain probability. When the next state is appeared 31 

in the screen, participants make another choice. The two consecutive choices is followed by 32 

a transition to an outcome state. Subjects perform 100 trials in the pre-learning session to 33 
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learn the structure of the task. Four main sessions with 80 trials on average follow the pre-1 

learning session. Participants are instructed to collect as many coins as possible in the main 2 

sessions. 3 

The task consists of two conditions: a specific-goal condition and flexible-goal condition. The 4 

goal condition is indicated by a color of a box at the beginning of each trial. In the specific-goal 5 

condition, participants are presented with a box with a specific color (red, blue, yellow). A 6 

monetary reward is given only when the coin color matches with the color of the given box. In 7 

the flexible-goal condition, on the other hand, participants are given a white coin box with 8 

which all types of coins become redeemable. Two types of state-transition probability are used 9 

to control the uncertainty of the environment. The state-transition probability (0.5, 0.5) and (0.9, 10 

0.1) is intended to implement the highly-uncertain and relatively less uncertain environment, 11 

respectively. The four types of block (2 goal-conditions x 2 uncertainty conditions) are 12 

presented in pseudo-random order. Each block consists of 4-6 trials.  13 

 14 

Computational Models 15 

 The computational model of this study is motivated by the previous arbitration control 16 

hypothesis that prediction uncertainty of the model-based and model-free RL is a key variable 17 

to guide value integration of the two corresponding systems25. The model consists of the three 18 

processes: value learning, arbitration, and action selection (Figure 3a).  19 

In the value learning stage, both a model-based and model-free system learn action values 20 

for each state. A model-based system uses state prediction error (SPE = 1-expected transition 21 

probability) to update the state-action-state transition probability, by using a FORWARD 22 

learning27 and learns action values by combining the learned state-action-state transition 23 

probability and reward in the outcome state. For a model-free system, on the other hand, the 24 

state-action value learning is based on RPE (RPE = actual value-expected value). It is 25 

implemented with a SARSA algorithm5.  26 

In the arbitration process, the reliability estimation of the model-based system was 27 

implemented with a hierarchical empirical Bayes method using the history of the SPE, the 28 

reliability of the model-free system was implemented with the Pearce-hall associability rule 29 

using an unsigned RPE. These estimated reliability signal were then used to guide the 30 

competition between the two systems, which is implemented with a dynamic two-state 31 

transition model. The output of this model is a model choice probability (PMB), used as the 32 

control weight for value integration of the two systems. Finally, in the action selection stage, 33 
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the model selects the action stochastically using softmax rule38. For more details, refer Lee et 1 

al (2014).  2 

In this study, we suggested two variants of arbitration control, allowing for sub-optimality in 3 

value learning, arbitration, and action selection: one version with separate model-based and 4 

model-free learning and another version with a dynamic exploitation. The former type of the 5 

model assumes the different learning rates of a model-based and a model-free system. The 6 

latter class of models is based on the former model, with the further assumption that the 7 

degree of exploitation, an indicator of optimality of the RL agent’s policy, is a function of the 8 

model choice probability, PMB. We tested three different types of exploitation as follows: 9 

logistics, linear, weighted linear. Note that in all cases, we set the parameters of the model in 10 

a way that is reduced to the original RL with a single exploitation parameter. 11 

 12 

fMRI Data Acquisition 13 

Functional imaging was conducted on a 3T Siemens (Magnetom) Verio scanner located in 14 

the KAIST brain imaging center (Daejeon). Forty-two axial slices were acquired with 15 

interleaved-ascending order at the resolution of 3 mm x 3 mm x 3 mm, covering the whole 16 

brain. A one-shot echo-planner imaging pulse sequence was utilized (TR = 2800 ms; TE = 30 17 

ms; FOV = 192 mm; flip angle = 90º). The high resolution structural image was also acquired 18 

for each subject to the resolution of 0.7 mm X 0.7 mm x 0.7 mm.  19 

 20 

fMRI Data Pre-processing 21 

Images were processed and analyzed using the SPM12 software (Wellcome Department of 22 

Imaging Neuroscience, London, UK). The first two volumes were removed to reduce T1 23 

equilibrium effects. The EPI images were corrected for slice timing, motion movement and 24 

spatially normalized to the standard template imaging provided by SPM software.  25 

For the general linear model analysis (GLM), normalized images were smoothed with 6mm 26 

FWHM Gaussian Kernel and a high-pass filter (128s cut-off) was applied to remove the noise. 27 

For the multivoxel pattern analysis (MVPA), unsmoothed EPI image data was used. De-28 

trending and z-scoring were processed to reduce the linear trends and to match the range of 29 

the signal. 30 

 31 
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General Linear Model Analysis (GLM) 1 

Subject-specific value-related signals and arbitration control signals were computed from the 2 

arbitration model, and the signals were regressed against voxel-wise signals from the EPI 3 

image set. The order of the regressors is as follows: prediction error from the model-based 4 

system (SPE) and the model-free system (RPE), reliability comparison signal which is a key 5 

variable for arbitration control (=max (RelMB, RelMF); max reliability), the chosen value of model-6 

based system (Qfwd), the chosen value of model-free system (Qsarsa), the difference between 7 

chosen and unchosen integrated values (Qarb) and the probability of selecting chosen action 8 

(Pchosen action). The regressors were serially non-orthogonalized in the GLM analysis to prevent 9 

the effect of regressor orders in the interpretation of the results. MARSBAR software 10 

(http://marsbar.sourceforge.net) was used to extract parameter estimates from the region of 11 

interest57.   12 

 13 

Multivoxel Pattern Analysis (MVPA) 14 

The MVPA analysis was conducted to quantify types and amounts of information encoded in 15 

specific the region of interest (ROI). The classification performance is regarded as the amount 16 

of information pertaining to the variable of interest. Three ROIs, left/right inferior lateral 17 

prefrontal cortex (ilPFC) and Frontopolar prefrontal cortex (FPC), were selected, which were 18 

known to engage in the arbitration control process. Masks of each brain region were 19 

functionally defined from the GLM analysis. We used the clusters whose response to the Max 20 

reliability signal survived after the whole-brain correction (p<0.001, uncorrelated) as a mask 21 

for each ROI. We set the BOLD response time 4-6s.  22 

A binary Support Vector Machine (SVM) classifier was applied to learn voxels patterns with 23 

each ROI. For each subjects data, the SVM was trained to best match its output to a binarized 24 

reliability-related signal (MB reliability, MF reliability, or Max reliability); the 33th and 67th 25 

percentile threshold were used to define the two classes, ‘high value group’ and ‘low value 26 

group’, respectively. All voxels in the mask were used for learning. The input dimension is 196, 27 

79, 294 for left ilPFC, right ilPFC and FPC, respectively. The average number of data from 28 

each subject are 350 for MB reliability, 549 for MF reliability and 543 for Max Reliability. Thirty-29 

fold cross validation was conducted for evaluation. All processes were implemented based on 30 

the Princeton Multi-Voxel Pattern Analysis toolbox58. Finally, an ANOVA analysis was 31 

conducted to compare signal prediction accuracy between the normal and depression group; 32 

the two subject groups were defined by using the standard cutoff criteria of CES-D score, 33 

1659,60. 34 
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 1 

Data Availability 2 

All data analyzed in this study will be available upon request.   3 

 4 

ACKNOWLEDGEMENTS 5 

This research was supported by the Brain Research Program through the National Research 6 

Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-7 

2016M3C7A1914448), NRF funded by the Korea government (MSIT) (No. NRF-2017R1C 1B 8 

2008972), the research fund of the KAIST (Korea Advanced Institute of Science and 9 

Technology) (Grant code: G04150045), and Institute for Information & Communications 10 

Technology Promotion (IITP) grant funded by the Korea government (No. 2017-0-00451). 11 

 12 

Author Contributions 13 

S.H. and S.W.L. designed the study, analyzed the data and wrote the manuscript. S.H. 14 

conducted the experiments.  15 

  16 

Competing interests 17 

No conflict of interests.  18 

 19 

References 20 

1. Lim, G. Y. et al. Prevalence of Depression in the Community from 30 Countries 21 

between 1994 and 2014. Sci. Rep. 8, 2861 (2018). 22 

2. Leykin, Y., Roberts, C. S. & DeRubeis, R. J. Decision-Making and Depressive 23 

Symptomatology. Cognit. Ther. Res. 35, 333–341 (2011). 24 

3. Must, A., Horvath, S., Nemeth, V. L. & Janka, Z. The Iowa Gambling Task in 25 

depression - what have we learned about sub-optimal decision-making strategies? 26 

Front. Psychol. 4, 732 (2013). 27 

4. Admon, R. & Pizzagalli, D. A. Dysfunctional Reward Processing in Depression. Curr. 28 

Opin. Psychol. 4, 114–118 (2015). 29 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 31, 2018. ; https://doi.org/10.1101/381152doi: bioRxiv preprint 

https://doi.org/10.1101/381152


 

17 

5. Sutton, R. S. & Barto, A. G. Introduction to Reinforcement Learning. (MIT Press, 1 

1998). 2 

6. Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal 3 

and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8, 1704–1711 4 

(2005). 5 

7. Doya, K., Samejima, K., Katagiri, K. & Kawato, M. Multiple Model-Based 6 

Reinforcement Learning. Neural Comput. 14, 1347–1369 (2002). 7 

8. Markman, K. & Miller, A. Depression, Control, and Counterfactual Thinking: 8 

Functional for Whom? Journal of Social and Clinical Psychology 25, (2006). 9 

9. Quelhas, A. C., Power, M. J., Juhos, C. & Senos, J. Counterfactual thinking and 10 

functional differences in depression. Clin. Psychol. Psychother. 15, 352–365 (2008). 11 

10. Huys, Q. J. M., Daw, N. D. & Dayan, P. Depression: a decision-theoretic analysis. 12 

Annu. Rev. Neurosci. 38, 1–23 (2015). 13 

11. Maddox, W. T. et al. Elevated Depressive Symptoms Enhance Reflexive but not 14 

Reflective Auditory Category Learning. Cortex. 58, 186–198 (2014). 15 

12. Kumar, P. et al. Abnormal temporal difference reward-learning signals in major 16 

depression. Brain 131, 2084–2093 (2008). 17 

13. Gradin, V. B. et al. Expected value and prediction error abnormalities in depression 18 

and schizophrenia. Brain 134, 1751–1764 (2011). 19 

14. Dombrovski, A. Y., Szanto, K., Clark, L., Reynolds, C. F. & Siegle, G. J. Reward 20 

signals, attempted suicide, and impulsivity in late-life depression. JAMA psychiatry 70, 21 

1 (2013). 22 

15. Ubl, B. et al. Altered neural reward and loss processing and prediction error signalling 23 

in depression. Soc. Cogn. Affect. Neurosci. 10, 1102–1112 (2015). 24 

16. Rothkirch, M., Tonn, J., Kohler, S. & Sterzer, P. Neural mechanisms of reinforcement 25 

learning in unmedicated patients with major depressive disorder. Brain 140, 1147–26 

1157 (2017). 27 

17. Kumar, P. et al. Impaired reward prediction error encoding and striatal-midbrain 28 

connectivity in depression. Neuropsychopharmacology 43, 1581–1588 (2018). 29 

18. Chase, H. W. et al. Approach and avoidance learning in patients with major 30 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 31, 2018. ; https://doi.org/10.1101/381152doi: bioRxiv preprint 

https://doi.org/10.1101/381152


 

18 

depression and healthy controls: relation to anhedonia. Psychol. Med. 40, 433–440 1 

(2010). 2 

19. Plieger, T., Melchers, M., Montag, C., Meermann, R. & Reuter, M. Life stress as 3 

potential risk factor for depression and burnout. Burn. Res. 2, 19–24 (2015). 4 

20. Radley, J. J. et al. STRESS RISK FACTORS AND STRESS-RELATED 5 

PATHOLOGY: NEUROPLASTICITY, EPIGENETICS AND ENDOPHENOTYPES. 6 

Stress 14, 481–497 (2011). 7 

21. Dias-Ferreira, E. et al. Chronic stress causes frontostriatal reorganization and affects 8 

decision-making. Science 325, 621–625 (2009). 9 

22. Radenbach, C. et al. The interaction of acute and chronic stress impairs model-based 10 

behavioral control. Psychoneuroendocrinology 53, 268–280 (2015). 11 

23. Schwabe, L. & Wolf, O. T. Stress-induced modulation of instrumental behavior: from 12 

goal-directed to habitual control of action. Behav. Brain Res. 219, 321–328 (2011). 13 

24. Otto, A. R., Raio, C. M., Chiang, A., Phelps, E. A. & Daw, N. D. Working-memory 14 

capacity protects model-based learning from stress. Proc. Natl. Acad. Sci. 110, 20941 15 

LP-20946 (2013). 16 

25. Lee, S. W., Shimojo, S. & O’Doherty, J. P. Neural computations underlying arbitration 17 

between model-based and model-free learning. Neuron 81, 687–699 (2014). 18 

26. Radloff, L. S. The CES-D Scale: A Self-Report Depression Scale for Research in the 19 

General Population. Appl. Psychol. Meas. 1, 385–401 (1977). 20 

27. Glascher, J., Daw, N., Dayan, P. & O’Doherty, J. P. States versus rewards: 21 

dissociable neural prediction error signals underlying model-based and model-free 22 

reinforcement learning. Neuron 66, 585–595 (2010). 23 

28. O’Doherty, J. P., Cockburn, J. & Pauli, W. M. Learning, Reward, and Decision 24 

Making. Annu. Rev. Psychol. 68, 73–100 (2017). 25 

29. Bogdanov, M., Timmermann, J. E., Gläscher, J., Hummel, F. C. & Schwabe, L. 26 

Causal role of the inferolateral prefrontal cortex in balancing goal-directed and 27 

habitual control of behavior. Sci. Rep. 8, 9382 (2018). 28 

30. Wunderlich, K., Dayan, P. & Dolan, R. J. Mapping value based planning and 29 

extensively trained choice in the human brain. Nat. Neurosci. 15, 786–791 (2012). 30 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 31, 2018. ; https://doi.org/10.1101/381152doi: bioRxiv preprint 

https://doi.org/10.1101/381152


 

19 

31. Rowe, J. B., Hughes, L. & Nimmo-Smith, I. Action selection: A race model for selected 1 

and non-selected actions distinguishes the contribution of premotor and prefrontal 2 

areas. Neuroimage 51, 888–896 (2010). 3 

32. Hare, T. A., Schultz, W., Camerer, C. F., O’Doherty, J. P. & Rangel, A. 4 

Transformation of stimulus value signals into motor commands during simple choice. 5 

Proc. Natl. Acad. Sci. U. S. A. 108, 18120–18125 (2011). 6 

33. Tricomi, E., Balleine, B. W. & O’Doherty, J. P. A specific role for posterior dorsolateral 7 

striatum in human habit learning. Eur. J. Neurosci. 29, 2225–2232 (2009). 8 

34. Horga, G. et al. Changes in corticostriatal connectivity during reinforcement learning 9 

in humans. Hum. Brain Mapp. 36, 793–803 (2015). 10 

35. Boorman, E. D., Behrens, T. E. J., Woolrich, M. W. & Rushworth, M. F. S. How green 11 

is the grass on the other side? Frontopolar cortex and the evidence in  favor of 12 

alternative courses of action. Neuron 62, 733–743 (2009). 13 

36. Jocham, G., Hunt, L. T., Near, J. & Behrens, T. E. J. A mechanism for value-guided 14 

choice based on the excitation-inhibition balance in prefrontal cortex. Nat. Neurosci. 15 

15, 960 (2012). 16 

37. Jocham, G. et al. Dissociable contributions of ventromedial prefrontal and posterior 17 

parietal cortex to value-guided choice. Neuroimage 100, 498–506 (2014). 18 

38. R Luce, D. Individual Choice Behavior: A Theoretical Analysis. New York 115, (2005). 19 

39. Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B. & Dolan, R. J. Cortical 20 

substrates for exploratory decisions in humans. Nature 441, 876–879 (2006). 21 

40. Boorman, E. D., Behrens, T. E. & Rushworth, M. F. Counterfactual choice and 22 

learning in a Neural Network centered on human lateral frontopolar cortex. PLoS Biol. 23 

9, (2011). 24 

41. Cole, M. W., Repovs, G. & Anticevic, A. The frontoparietal control system: a central 25 

role in mental health. Neuroscientist 20, 652–664 (2014). 26 

42. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and 27 

reward. Science 275, 1593–1599 (1997). 28 

43. Hollerman, J. R. & Schultz, W. Dopamine neurons report an error in the temporal 29 

prediction of reward during learning. Nat. Neurosci. 1, 304–309 (1998). 30 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 31, 2018. ; https://doi.org/10.1101/381152doi: bioRxiv preprint 

https://doi.org/10.1101/381152


 

20 

44. Sharpe, M. J. et al. Dopamine transients are sufficient and necessary for acquisition 1 

of model-based associations. Nat. Neurosci. 20, 735–742 (2017). 2 

45. Dunlop, B. W. & Nemeroff, C. B. The role of dopamine in the pathophysiology of 3 

depression. Arch. Gen. Psychiatry 64, 327–337 (2007). 4 

46. Malhi, G. S. & Berk, M. Does dopamine dysfunction drive depression? Acta Psychiatr. 5 

Scand. 115, 116–124 (2007). 6 

47. Blanco, N. J., Otto, A. R., Maddox, W. T., Beevers, C. G. & Love, B. C. The influence 7 

of depression symptoms on exploratory decision-making. Cognition 129, 563–568 8 

(2013). 9 

48. Beevers, C. G. et al. Influence of depression symptoms on history-independent 10 

reward and punishment processing. Psychiatry Res. 207, 53–60 (2013). 11 

49. Paulus, M. P., Feinstein, J. S., Leland, D. & Simmons, A. N. Superior temporal gyrus 12 

and insula provide response and outcome-dependent information during assessment 13 

and action selection in a decision-making situation. Neuroimage 25, 607–615 (2005). 14 

50. Huys, Q. J. M., Pizzagalli, D. A., Bogdan, R. & Dayan, P. Mapping anhedonia onto 15 

reinforcement learning: a behavioural meta-analysis. Biol. Mood Anxiety Disord. 3, 12 16 

(2013). 17 

51. Steele, J. D., Kumar, P. & Ebmeier, K. P. Blunted response to feedback information in 18 

depressive illness. Brain 130, 2367–2374 (2007). 19 

52. Chen, C., Takahashi, T., Nakagawa, S., Inoue, T. & Kusumi, I. Reinforcement 20 

learning in depression: A review of computational research. Neurosci. Biobehav. Rev. 21 

55, 247–267 (2015). 22 

53. Alloy, L. B., Olino, T., Freed, R. D. & Nusslock, R. Role of Reward Sensitivity and 23 

Processing in Major Depressive and Bipolar Spectrum Disorders. Behav. Ther. 47, 24 

600–621 (2016). 25 

54. Downar, J. & Daskalakis, Z. J. New Targets for rTMS in Depression: A Review of 26 

Convergent Evidence. Brain Stimul. Basic, Transl. Clin. Res. Neuromodulation 6, 27 

231–240 (2013). 28 

55. Delaloye, S. & Holtzheimer, P. E. Deep brain stimulation in the treatment of 29 

depression. Dialogues Clin. Neurosci. 16, 83–91 (2014). 30 

56. Kessler, R. C. et al. Age of onset of mental disorders: a review of recent literature. 31 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 31, 2018. ; https://doi.org/10.1101/381152doi: bioRxiv preprint 

https://doi.org/10.1101/381152


 

21 

Curr. Opin. Psychiatry 20, 359–364 (2007). 1 

57. Brett, M., Anton, J.-L. L., Valabregue, R. & Poline, J.-B. Region of interest analysis 2 

using an SPM toolbox - Abstract Presented at the 8th International Conference on 3 

Functional Mapping of the Human Brain, June 2-6, 2002, Sendai, Japan. Neuroimage 4 

16, Abstract 497 (2002). 5 

58. Detre, G. J. et al. The Multi-Voxel Pattern Analysis (MVPA) toolbox. Ohbm (2006). 6 

59. Comstock, G. W. & Helsing, K. J. Symptoms of depression in two communities. 7 

Psychol. Med. 6, 551–563 (1976). 8 

60. Weissman, M. M., Sholomskas, D., Pottenger, M., Prusoff, B. A. & Locke, B. Z. 9 

Assessing depressive symptoms in five psychiatric populations: a validation study. 10 

Am. J. Epidemiol. 106, 203–214 (1977). 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 31, 2018. ; https://doi.org/10.1101/381152doi: bioRxiv preprint 

https://doi.org/10.1101/381152


 

22 

Figures 1 

 2 

Figure 1. Markov decision task structure 3 

We use the two-stage Markov decision task proposed by Lee et al. (2014). In each stage, 4 

participants make a binary choice (left or right). After the first choice in the initial state (S1), 5 

they were moved forward to one of four states in the second stage (S2 - S5) with certain state-6 

action-state transition probability p. The transition probability (0.5, 0.5) and (0.9, 0.1) 7 

corresponds to a high-uncertainty and a low-uncertainty environment, respectively. The task 8 

consists of the two goal conditions: a specific-goal and a flexible-goal condition. In the specific 9 

goal condition, subjects can collect coins (redeemable for monetary reward) only if the coin 10 

color matches with the color of the token box (red, blue, yellow). In the flexible goal condition 11 

indicated by the white token box, all types of coins are redeemable. 12 
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 1 

Figure 2. Behavioral results 2 

(a) Relationship between the individual depression score (CES-D) and accumulated reward 3 

(n=63). The task performance decreases as the depression score increases. (b) Relationship 4 

between depression score and the proportion of optimal choices (n=63). The proportion of 5 

optimal choices is inversely proportional to the depression score. (c) Relationship between the 6 

depression score and choice consistency in the first state (S1) (n=63). The choice consistency 7 

index is negatively correlated with the depression score. 8 
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 1 

Figure 3. Computational model of dynamic arbitration control 2 

(a) Computational model to investigate dynamic control mechanisms to arbitrate between 3 

model-based (MB) and model-free (MF) RL. Two separate RL systems update an action value 4 

and reliability of its prediction by using prediction errors (SPE and RPE, respectively; green). 5 

The reliability values of the two systems were then used to compute the model choice 6 

probability (PMB) (blue). The model choice probability guides both the value integration and 7 

value-action conversion process; both effects are indicated by the orange arrow. (b) Model 8 

comparison analysis. We used Bayesian Information Criteria (BIC) for comparing the 9 

goodness of fit while penalizing for the model complexity. Arb refers to the computational 10 

model proposed in (Lee et al., 2014). Additional versions of arbitration control consider 11 

separate learning rates and dynamic exploitation. Arbα assigns separate learning rates to two 12 

different systems (i.e. use αMB, αMF instead of α). Arbα,τ is the same as Arbα, except for the 13 

assumption that the degree of exploitation is a function of the model choice probability. The 14 

best version of model uses the degree of exploitation (τ) as a weighted sum of the model-15 

based and the model-free exploitation parameter (τMB and τMF, respectively) with the model 16 

choice probability PMB  (i.e. τ = PMB ∗ τMB  + (1-PMB) ∗ τMF ). The error bar stands for the 17 

standard error mean. 18 
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 1 

Figure 4. Neural correlates of dynamic arbitration control 2 

Prediction error, value, reliability, action choice probability signals from the proposed model 3 

are shown as colored blobs. SPE and RPE refers to state prediction error and reward 4 

prediction error, respectively. Max reliability refers to the reliability of whichever system had 5 

the highest reliability index on each trial (=max(RelMB, RelMF)). QMB and QMF indicate the 6 

chosen value from the model-based and model-free system. Qarb refers to the difference 7 

between integrated chosen action value and unchosen action value. Pchosen action refers to the 8 

probability assigned to the chosen action. See more detailed information in Supplementary 9 

Table S3-S5. 10 
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 1 

Figure 5. Parametric effect of depression on goal-directed and habitual learning 2 

(a) Depression impacts on neural encoding of SPE information (n=28). The shaded circles 3 

represent seed regions for which parameter estimates of the GLM analysis were extracted. 4 

The seed region is the left insula, and the parameter estimates were extracted from our GLM 5 

analysis which regressed the SPE signal against the BOLD response ([-36,20,-4], z-6 

score=4.49; Figure 4). The estimated effect size for the left insula is negatively correlated with 7 

the depression score. (b) Depression impacts on RPE response (n=28). The estimated effect 8 

size of RPE for bilateral caudate (left: [-4,6,-4], z-score=4.50, right: [4,8,-4], z-score=5.30) is 9 

negatively correlated with the depression score. a.u. stands for arbitrary units.  10 
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Figure 6. Parametric effect of depression on prefrontal arbitration control 2 

(a) Depression effects on the model-free system’s sensitivity to RPE (n=63; the total number 3 

of subjects, including 40 who participated behavioral experiment only and 23 who were also 4 

scanned with the fMRI). (Left) Relationship between the depression score and the learning 5 

rate parameter for reliability estimation of the model-free system. Individuals with a higher 6 

depression score tend to exhibit a higher learning rate, indicating that their reliability estimation 7 

for the model-free system is more sensitive to RPE. (Right) Illustrative examples of reliability 8 

changes of people with a low (“normal group”) and a high depression score (“depressive 9 

group”), each of which is associated with a low and a high learning rate for reliability estimation, 10 

respectively. The depressive group shows rapid changes in MF reliability due to higher 11 

learning rate. (b) Relationship between the depression score and the estimated effect size of 12 

Max reliability for frontopolar cortex (FPC), the brain area implicated in arbitration control 13 

(n=28; the total number of subjects scanned with fMRI). The estimated effect size of the Max 14 

reliability signal for FPC (coordinates [8,44,40]; z-score=3.83) is negatively correlated with the 15 

depression score. (c) Comparison of reliability signal representation performance in normal 16 

(n=15) and depressive (n=13) group (GLM and MVPA analysis). The parameter estimates of 17 

the Max reliability for the bilateral ilPFC ([-52,26,16], z-score=4.48; [42,20,-8], z-score=3.61) 18 

and FPC ([8,44,40], z-score=3.83) tend to decrease in the depressive group. The MVPA 19 

analysis with these three seed regions reveals that the amount of information about the model-20 

free reliability was significantly higher in the depressive group in all three regions (one-way 21 

ANOVA). Asterisk (*) indicates significant difference at the 0.05 level. 22 
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Figure 7. Parametric effect of depression on value-action conversion 2 

(a) Depression effects on model parameters (n=63; the total number of subjects, including 40 3 

who participated behavioral experiment only and 23 who were also scanned with the fMRI). 4 

(Left) Relationship between the depression score and the degree of exploitation in MB strategy 5 

(τMB). The MB exploitation parameter decreases as the depression score increases. (Right) 6 

Examples illustrating exploitation parameter effects on action selection. Shown are the 7 

softmax functions that convert an action value into a choice probability value, between the 8 

normal and the depressive group for goal-directed and habitual control. Compared to the 9 

normal group (pink), the depressive group makes more exploratory choices especially as they 10 

rely more on the model-based system (blue). (b) Relationship between the depression score 11 

and the parameter estimate of the probability of selecting chosen action for the two seed 12 

regions, right Superior Temporal Gyrus (STG) ([-46,-20,-8]; z-score=4.21) and the left Middle 13 

Temporal Gyrus (MTG) ([56,-32,-8]; z-score=3.55). The effect size of right STG and left MTG 14 

increases and decreases with the individual severity of depression, respectively.  15 
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