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Abstract14

The Pairwise Sequentially Markov Coalescent (PSMC), and its extension PSMC′, model past15

population sizes from a single diploid genome. Both models have been widely applied, even to16

organisms with scaffold-level genome reference assemblies of limited contiguity. However it is unclear17

how PSMC and PSMC′ perform on short scaffolds. We evaluated psmc and msmc, implementations of18

the PSMC and PSMC′ models respectively, on simulated genomes with low contiguity, and compared19

results to those from fully contiguous data. Simulations with scaffolds from 100 Mb to 10 kb revealed20

that psmc maintains high accuracy down to lengths of 100 kb, while msmc is accurate down to 1 Mb.21

The discrepancy is not due to differing models, but stems from an implementation detail of22

msmc—homozygous tracts at the ends of scaffolds are discarded, making msmc unreliable for low23

contiguity genomes. We recommend excluding data that are aligned to shorter scaffolds when24

undertaking demographic inference.25
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Introduction26

The process of joining (coalescing) and splitting (recombining) lineages backwards-in-time for a sample of27

homologous sequences is described by the coalescent with recombination (Hudson, 1990). An important28

consequence of recombination is that there can be many distinct genealogies, known as marginal genealo-29

gies, at different locations along the sequence (Griffiths and Marjoram, 1997). The sequentially Markov30

coalescent (SMC, McVean and Cardin (2005)) models recombination as a Poisson process left-to-right31

along the sequence, approximating the coalescent with recombination by treating the marginal genealogy32

on the right of a recombination as a modification of the marginal genealogy on the left of the recom-33

bination. In this sense the approximation is a Markovian process along the sequence, and substantially34

reduces model complexity for long sequences compared to the full coalescent with recombination (Wiuf35

and Hein, 1999).36

The Pairwise Sequentially Markov Coalescent (PSMC) uses a special case of the SMC approxima-37

tion, restricted to pairs of sequences, to estimate the distribution of coalescent times within a single38

diploid genome (Li and Durbin, 2011). PSMC scans along a contiguous segment of the genome and39

considers marginal genealogies, using their distinct pairwise coalescent times as the unknown states in a40

hidden Markov model (HMM). To enable parameter estimation, continuous time is approximated by a41

finite partition of time intervals, and transition probabilities are inferred by Baum-Welch iteration of the42

forward-backward algorithm. Each genotype at consecutive genomic coordinates provides a new observa-43

tion for the HMM, a homozygote or a heterozygote, with their emission probabilities determined by the44

pairwise coalescent time at the current locus, and the genome-wide mutation rate. The population size45

in a given time interval is inversely proportional to the rate of coalescence, as inferred by maximising the46

fit of the model to both the HMM transition matrix and the emission probabilities.47

The Multiple Sequential Markov Coalescent (MSMC, Schiffels and Durbin (2014)) is an extension to48

PSMC, and models the distribution of first-coalescent times of two or more haploid sequences. If used49

with only two haploid sequences, MSMC closely matches the PSMC model, with the exception that it50

implements SMC′ (Marjoram and Wall, 2006), a refinement of SMC incorporating recombinations that51

immediately coalesce back to the same lineage. For this reason the MSMC model, when applied to a52

diploid genome, is referred to as PSMC′. Compared to PSMC, the genome wide recombination rate53

is more accurately estimated under the PSMC′ model, but population size estimates are qualitatively54

similar (Schiffels and Durbin, 2014).55

Other approaches for inferring population size histories typically require either phased genotypes,56

multiple individuals, or both (Dutheil et al., 2009; Gutenkunst et al., 2009; Sheehan et al., 2013; Boitard57

et al., 2016; Terhorst et al., 2017). However, in small scale studies of non-model organisms, it is common58

for only one individual, or a few individuals, from a single population to be sequenced, and genotypes are59

unlikely to be phased. Population size history, particularly in the recent past, can also be estimated from60

the length distribution of tracts of identity-by-descent (Palamara et al., 2012), identity-by-state (Harris61

and Nielsen, 2013), or runs of homozygosity (MacLeod et al., 2013). While potentially useful for a single62

diploid individual, such approaches are not readily applicable to short scaffolds, where such tracts may63
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be broken across scaffold boundaries. In contrast, PSMC and PSMC′ are very attractive as they require64

only diploid genotypes for a single individual, which need not be phased.65

By using the sequentially Markovian approximation, PSMC and derived methods implicitly assume66

that genomic information is contiguous. While initially applied to human datasets, which have very67

high contiguity, PSMC and PSMC′ have since been applied to many non-model organisms where the68

contiguity of genomic sequences may be poor (Zhao et al., 2013; Dobrynin et al., 2015; Mays et al., 2018;69

Kozma et al., 2016; Feigin et al., 2018). In particular, demographic history is regularly inferred from a70

de novo assembly as part of genome sequencing projects. Due to time and funding constraints, genome71

assemblies are often constructed from only short read sequencing data, and assembled into contigs or72

short scaffolds. These cannot be ordered or oriented with respect to one another (violating the SMC73

model), nor anchored to physical chromosomes. Where sequencing data is aligned to such assemblies, the74

genomic information used for population size inference inherits the low contiguity of the assembly. While75

small gaps in coverage along a scaffold can be handled gracefully, the HMM must be applied separately76

to each distinct scaffold, and it is not clear what the length threshold is to obtain robust population size77

inferences.78

Results and Discussion79

Simulations80

To assess the impact of reference genome contiguity on population size estimates, we simulated genomes81

for populations with three different demographic histories: a constant population size; a bottleneck; and82

recovery following a bottleneck (Fig. 1A). For each demographic scenario, we simulated 10 independent83

populations and sampled 20 × 100 Mb haploid chromosomes, representing 10 diploid genomes from each84

population. New datasets were then created by fragmenting each genome into equally sized scaffolds at85

four distinct lengths, 10 Mb, 1 Mb, 100 kb, and 10 kb. Population size histories were then inferred for all86

fragmented and unfragmented datasets using psmc (Li and Durbin, 2011) and msmc (Schiffels and Durbin,87

2014), implementations of PSMC and PSMC′ respectively.88

Mean squared error89

In measuring the error of estimates, Li and Durbin (2011) compared population size inferences to the90

values that were simulated, but excluded time intervals in the recent and distant past. Population91

size estimates are expected to be unreliable for times outside a certain range since a typical genome92

contains relatively few breakpoints corresponding to recombination events in the very recent or very93

distant past. However, excluding temporal intervals requires advance knowledge of where the method94

may lose resolution, and this is dependent upon the population size history itself.95

To quantify estimation error, we used inferences from the unfragmented datasets as the ‘truth’, not96

the values that were simulated. A loess smooth function (Cleveland et al., 1992) was fitted to the97

unfragmented inferences for each simulated population, separately for psmc and msmc, using population98
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Figure 1: A) Simulated population size histories. B) Mean squared error (MSE) of population size

inferences from simulations shown immediately above. Larger values indicate a loss of accuracy in the

population size estimate. Small hollow markers indicate MSE for distinct simulated individuals (100 Mb

per individual; 10 individuals each from 10 populations), with red squares for psmc and blue circles for

msmc. Data from each simulated individual was artificially fragmented to emulate genome sequences

aligned to a scaffold-level reference assembly. At each scaffold length, MSE was calculated by comparing

to inferences from unfragmented (100 Mb) scaffolds (see methods). Large solid markers and lines show

predicted MSE from a linear mixed effect model, with 95% prediction intervals based on simulation.
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size estimates from all individuals in a given population. Then for each simulated individual, the mean99

squared error (MSE) was measured between estimates from the fragmented datasets and the loess function100

for the corresponding population. The MSE was weighted, in discrete time intervals, using the inverse101

of the sample variance in estimates from the unfragmented datasets (the same individuals as used for102

the loess fit). This was done to avoid measuring error caused by limited genomic information about the103

recent and ancient past.104

Comparisons of the MSE at each fragmentation level (Fig. 1B) suggest that shorter scaffolds do indeed105

result in less accurate population size estimates. Qualitatively, msmc appears to decline in accuracy at106

scaffold lengths between 1 Mb and 100 kb for all demographic scenarios, whereas psmc declines in accuracy107

only in the Recovery scenario, at scaffold lengths between 100 kb and 10 kb.108

Mixed effects model109

To determine if the observed differences were significant, we fitted a linear mixed-effects model separately110

for each demographic scenario. The fixed effects were scaffold length and estimation program (psmc vs.111

msmc), and a random intercept was necessary to account for the repeated measures of each individual112

at multiple scaffold lengths. Both scaffold length and estimation program were found to be significant113

predictors of MSE in all demographic scenarios. Two-way interactions between scaffold length terms and114

estimation program were also significant in all scenarios.115

Empirical data116

Arguably, the simulated population history scenarios are unrealistic. Simulated data also provides the best117

possible case in terms of missing data in that there is none. To gauge the impact of using a scaffold-level118

assembly with real data, we artificially fragmented chromosome 1 from a high coverage human genome,119

HG00419, a Southern Han Chinese female (The 1000 Genomes Project Consortium, 2015). Population120

size histories were again estimated using psmc and msmc, for each of the fragmented and unfragmented121

datasets (Fig. 2).122

Both programs produced largely the same demographic history when processing long scaffolds, al-123

though msmc did not estimate population sizes for time intervals as far into the past as psmc (3 Mya vs.124

10 Mya). For 10 kb scaffold lengths, inferences from msmc are substantially different to those using longer125

scaffolds, and a small departure is also discernible in the recent past for 100 kb scaffolds. Estimates from126

psmc have noticeably poorer resolution at the 10 kb scaffold length, but are remarkably consistent for127

longer scaffolds.128

The data conversion script provided with psmc (fq2psmcfa) ignores scaffolds having fewer than 10000129

genotype calls by default. This excluded most of the 10 kb scaffolds, due to the presence of one or more130

missing genotypes. Disabling this filter to retain all scaffolds only marginally improved population size131

estimates, and only in more ancient time intervals (results not shown). We considered the possibility that132

with 10 kb scaffolds, psmc might still accurately recapitulate the population size history if provided with133

more information. To this end chromosome 2 was also partitioned into 10 kb scaffolds and appended134
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Figure 2: Population size history of HG00419, a Southern Han Chinese individual (The 1000 Genomes

Project Consortium, 2015), inferred by A) psmc and B) msmc. Empirical data was artificially fragmented

to emulate genome sequences aligned to scaffold-level reference assemblies. Population size inferences from

psmc are consistent down to 100 kb scaffold lengths, with loss of resolution at 10 kb. For msmc, stable

inferences can be made down to 1 Mb, but accuracy at 100 kb is poor in the recent past, and at 10 kb

even broad demographic trends are difficult to discern. Input data to psmc for the ‘10 kb (truncated)’

line style had trailing homozygous sites removed from all scaffolds, to match the information content of

msmc input. Plots were scaled to real time using a 25 year generation time and 1.25e− 8 mutations per

base per generation. kya: thousand years ago; Mya: million years ago;
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to the chromosome 1 data (doubling the information to ∼500 Mb in total). However, the additional135

information did not alter the result.136

msmc discards homozygous tracts at the ends of scaffolds137

An input file for msmc contains lines that specify the coordinate of a heterozygote site and its distance138

from the previous heterozygote on the same scaffold. Nothing is specified for coordinates after the last139

heterozygote, and the scaffold is implicitly truncated here. For short scaffolds this causes substantial140

information loss. Indeed, short scaffolds may contain no heterozygote sites at all, and input files for such141

scaffolds are empty.142

To determine if truncation was a major cause of the different behaviour between psmc and msmc, we143

ran psmc on 10 kb scaffolds that were artificially truncated to match the information available to msmc.144

Scaffolds containing no heterozygotes were omitted. This output (‘10 kb (truncated)’ in Fig. 2A), shows145

a similar trend to that for msmc on 10 kb scaffolds, although differences remain.146

Marginal genealogies with recent coalescent times have accumulated few mutations, so corresponding147

regions of the genome contain mostly homozygote genotypes. Truncation increases the proportion of148

heterozygotes, hence recent coalescent times appear older. On short scaffolds, all marginal genealogies149

are near a scaffold end, so inferences from short truncated scaffolds are more strongly biased to not observe150

recent coalescent events. Since the population size for each time interval is inversely related to the rate151

at which pairs of haplotypes coalesce, the smaller number of observations of high homozygosity genomic152

tracts also means that population size inferences are biased upwards. Both artefacts are noticeable,153

particularly in the more recent time bins, for psmc with artificially truncated 10 kb scaffolds (Fig. 2A)154

and for msmc with 10 kb and 100 kb scaffolds (Fig. 2B).155

Conclusion156

Reasonable parameter inference in a hidden Markov model relies on observations leading up to, and157

following, transitions in state. For PSMC, this corresponds to having sufficient sequence contiguity to158

observe genomic tracts on both sides of historical recombination breakpoints. The chance that a short159

scaffold will contain a tract covering a recombination breakpoint depends not only on the completeness160

of the reference assembly, but also the sparsity of breakpoints.161

Several factors contribute to breakpoint density, including population size, the per base recombination162

rate, and recombination hotspots. A population suffering a recent and very severe bottleneck will give163

rise to mostly recent pairwise coalescent times, and few recombination breakpoints, both of which are164

poorly represented within short scaffolds. Our simulations considered a mammalian recombination rate165

(3.125×10−9 per base per generation) and population size histories that are relevant to many taxa. This166

suggests that PSMC inference can be reasonable from scaffolds as short as 100 kb for a wide range of167

datasets.168

Scaffold level reference assemblies are unlikely to contain equally sized scaffolds, as evaluated here.169

Generally, a scaffold-level assembly contains tens of long scaffolds and tens of thousands of short scaffolds.170
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In such cases, it is reasonable to exclude scaffolds shorter than 100 kb when running psmc, and scaffolds171

shorter than 1 Mb for use with msmc. However, we caution that this guideline may be too optimistic for172

severely bottlenecked populations or genomic data aligned to a very low quality reference assembly.173

Materials and Methods174

Simulations175

Simulations were performed using scrm (Staab et al., 2015), with mutation rate µ = 1.25 × 10−8 per176

base per generation and recombination rate µ/4 per base per generation. Simulation output was ar-177

tificially fragmented during conversion to psmc and msmc input formats, using a custom Perl script.178

Demographic inferences were obtained from psmc v0.6.5-r67 and msmc v1.0.0 for all inputs. Both psmc179

and msmc were run with the same time bin parameter (-p 1*2+15*1+1*2), although we note that each180

program calculates time boundaries for the discrete bins differently, so a completely fair comparison is181

not possible. Scripts used for simulation, format conversion, and running psmc/msmc are available from182

https://github.com/grahamgower/psmc-error-analysis/.183

184

Mean squared error185

For each simulated population history scenario and each estimation program, estimates from the unfrag-186

mented datasets were used to fit a loess function of log population (log(N)) against log time (log(t+10)).187

The offset of 10 was based on a sensitivity analysis and the smallest non-zero time. An optimal value188

for the loess smoothing parameter was selected by maximising the corrected AIC (AICc) (Hurvich et al.,189

1998). Mean squared error for individual i in population j was calculated as190

MSEij =
1

k

k∑
m=1

(nijm − ñ·jm)2/varj(m),191

where the sum extends over all k time intervals, nijm is the log of the population size estimate in interval192

m, and ñ·jm is the prediction for themth time interval from the loess function fitted for the jth population.193

The variance step function varj(m) at time interval m, for the jth population, was calculated by splitting194

time on a log scale into 10 even-width bins and calculating the variance in each bin.195

Mixed effects modelling196

Scatter-plots of MSE against scaffold length indicated a cubic relationship between MSE and log(scaffold197

length). This was confirmed by comparing residual plots for linear, quadratic, and cubic models. To help198

numerical consistency of the fitting process, we performed a location scaling of log(scaffold length).199

Bivariate analysis of each of the predictors—log(scaffold length), estimation program, population200

history scenario, sample ID, and population ID—were used for variable selection. Only log(scaffold201

length), estimation program, and population history scenario had a significant relationship with MSE.202
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The linear mixed effects model was fitted using the lme4 package (Bates et al., 2015) in R (R Core203

Team, 2017). The fixed effects were log(scaffold length) and estimation program. Up to two-way inter-204

action terms were considered for each of the cubic log(scaffold length) terms with estimation program.205

To account for repeated measures from each simulated individual due to multiple levels of fragmentation,206

we included random effects. Both random intercepts and random slopes were considered.207

All significance testing was performed using the lmerTest package (Kuznetsova et al., 2017). All208

assumptions of the linear mixed-effects models were assessed and regarded as reasonable. The 95%209

prediction intervals were based on simulation with the merTools package (Knowles and Frederick, 2016).210

Empirical dataset211

We downloaded the cram alignment file for HG00419, aligned to assembly GRCh38DH, from The 1000212

Genomes ftp server, and called genotypes with samtools -q20 -Q20 -C50 ... | bcftools call -c213

.... The resulting vcf was partitioned into scaffolds of a specific size by modifying the chromosome name214

and position to which each genotype call corresponded, and was performed separately for each of the215

scaffold sizes 100 Mb, 10 Mb, 1 Mb, 100 kb, and 10 kb. Input for both psmc and msmc were filtered to216

exclude sites with less than half, or greater than double, the mean depth (54.76). The vcf was converted217

to psmc input format with vcfutils.pl (distributed with samtools) and fq2psmcfa (distributed with218

psmc), then psmc was run with time bin parameter -p 4+25*2+4+6. The same vcf was converted to msmc219

input format with bamCaller.py and generate multihetsep.py, both distributed with msmc-tools,220

then msmc was run with parameters -R -p 15*1+15*2. The time bin parameters for both programs were221

chosen to be suitable for inferring human demography (Li and Durbin, 2011; Schiffels and Durbin, 2014).222
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