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ABSTRACT 

Background. Clinically approved antidepressants modulate the brain’s emotional valence 

circuits, suggesting that the response of these circuits could serve as a biomarker for 

screening candidate antidepressant drugs. However, it is necessary that these 

modulations can be reliably detected.  Here, we apply a cross-validated predictive model 

to classify emotional valence and pharmacologic effect across eleven task-based fMRI 

datasets (n=306) exploring the effect of antidepressant administration on emotional face 

processing.   

Methods. We created subject-level contrast of parameter estimates of the emotional faces 

task and used the Shen whole-brain parcellation scheme to define 268 subject-level 

features that trained a cross-validated gradient-boosting machine protocol to classify 

emotional valence (fearful vs happy face visual conditions) and pharmacologic effect 

(drug vs placebo administration) within and across studies.  

Results. We found patterns of brain activity that classify emotional valence with a 

statistically significant level of accuracy (70% across-all-subjects; range from 50-87% 

across-study).  Our classifier failed to consistently discriminate drug from placebo.  

Subject population (healthy or unhealthy), treatment group (drug or placebo), and drug 

administration protocol (dose and duration) affected this accuracy with similar 

populations better predicting one another. 
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Conclusions. We found limited evidence that antidepressants modulated brain response 

in a consistent manner, however found a consistent signature for emotional valence. 

Variable functional patterns across studies suggest that predictive modeling can inform 

biomarker development in mental health and in pharmacotherapy development.  Our 

results suggest that case-controlled designs and more standardized protocols are required 

for functional imaging to provide robust biomarkers for drug development. 

Keywords. antidepressant, emotional valence, machine learning, drug development, 

predictive analysis, task-based fMRI 
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1. INTRODUCTION 

 

Psychiatric drug development is difficult, expensive, and beset by a high failure rate. The 

slow onset, unclear biological markers, and variable clinical efficacy even of approved 

psychiatric drugs makes the potential efficacy of candidate drugs difficult to measure and 

has led many pharmaceutical companies to withdraw from drug development  

(1; 2). Biomarkers that capture how effective drugs modulate the brain’s functional 

anatomy could prioritize candidate compounds for large clinical trials, thus improving 

the productivity and cost-effectiveness of drug development.  

 

Clinically approved antidepressants modulate the brain’s emotional valence circuits, 

suggesting that the response of these cicruits could serve as a biomarker for screening 

candidate antidepressant drugs. The emotional faces task has been particularly useful in 

eliciting the emotional valence circuit (3; 4). In this task, a subject is instructed to view a 

human actors’ face and determine the gender of or the emotion expressed. Independent 

studies have shown that emotional valence networks engaged by this task are affected by 

antidepressant administration (5). The applicability of these studies to screen for potential 

antidepressant compounds rests on the ability of the emotional faces task to engage a 

spatially consistent emotional valence network across populations, specifically the aspect 

of this network that is affected by antidepressant administration.  This applicability may 
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be explored by assessing 2 contrasts: an emotional valence contrast (i.e. is there a 

consistent difference in activity when positive and negative faces are displayed?) and a 

pharmacologic contrast (is there a consistent difference when antidepressants are 

compared to placebos?).  

 

A second advantage of the emotional valence contrast described above is that it can be 

constructed in either a within or between-subject manner. Duff et al (2015) have 

previously successfully developed a cross-validated machine learning protocol which 

was able to predict pharmacologic class in analgesic studies within pain stimulation 

tasks. However, the analgesia literature tends to use within subject designs whereas the 

antidepressant literature uses between subject designs. The emotional valence contrast is 

therefore useful as a means of directly comparing classifier performance of within vs. 

between subject contrasts on the same dataset. 

 

Here, we apply a machine-learning classifier to a large set of studies of antidepressant 

effects on brain responses during an emotional faces tasks.  We explore the consistency of 

the emotional valance effect considered both within and between-subjects and the 

between-subject pharmacologic effect. Because these studies use protocols with 

considerable variability in scanners, experimental tasks and patient cohorts, we further 

aim to explore the effect of protocol variability on signature generalizability. To 
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accomplish this, we exploit a dimensionality reduction step(6) to reduce voxel-wise data 

to functionally homogenous parcels defined in an independent dataset by an 

unsupervised algorithm (7). We then apply the gradient boosted machine (GBM) 

classifier to predict emotional valence (fearful vs happy face presentation) and 

pharmacologic class (antidepressant versus placebo), to test whether a consistent, cross-

study signature may be identified, and to understand which study protocols generate a 

more generalizable signature. 
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2. METHODS AND MATERIALS 

 

For each of eleven datasets, subject-level contrast of parameter estimates of the emotional 

faces task were created and divided into 268 regions using the Shen whole-brain 

parcellation scheme. Each region was used as a feature within a cross-validated gradient-

boosting machine protocol that classified emotional valence and pharmacologic effect 

within and across studies. Feature weightings were then mapped onto the brain to allow 

anatomic localization and visualization. 

 

2.1 Datasets 

 

Eleven independent datasets from eight task-based fMRI studies of the effect of 

antidepressant administration on emotional face processing were available for analysis, 

representing 306 subjects (See Table 1 for key features of the dataset; NB: the number of 

subjects per study differs from the original publications, reflecting that some data could 

not be located for inclusion in our study and that one study (Warren) has recruited more 

participants since the time of our study). These studies were all performed in the Harmer 

lab from 2006-2015 and made use of healthy subjects (H) without previous history of 

mental illness and subjects selected based on the presence of symptoms consistent with a 

disorder (i.e. Major Depressive Disorder) or symptom (i.e. neuroticism or dysphoria). In 
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these studies, the Beck Depression Inventory and the Eysenck Personality Questionnaire, 

neuroticism dimension were used to assess these symptoms. Although specific aspects of 

the study varied (e.g. antidepressant dose and duration), all versions investigated group 

differences in whole-brain BOLD response when subjects viewed happy and fearful faces. 

In this study, we selected only happy and fearful emotional face presentation, as these 

were the most consistently used emotions in our available dataset. Individual studies 

each obtained ethical approval from the local ethics committee. 

 

2.2 MRI Processing 

 

Standard preprocessing and mapping analysis were employed using tools from FMRIB’s 

Software Library (FSL) package (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). The FSL FMRI 

Expert Analysis Tool (FEAT) was used for general linear modeling (GLM) (8). Subject-

level contrast of parameter estimate (COPE) maps for each contrast (e.g. happy versus 

fixation) were produced in native patient space. These COPE maps were used in 

subsequent classification analyses, as described below. See Supplementary Methods for 

more details and Figure 1 for an illustration of the analysis pipeline. 

 

2.3 Machine Learning Method 
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Cognitive models of depression suggest that patients process negative relative to positive 

stimuli differently from non patients, and that these cognitive processes are causative in 

the illness. Therefore a contrast looking at the emotional processing circuit activation to 

negative vs. positive faces may be able to identify illness specific signatures and how the 

brain’s emotional circuits change in response to treatment. We chose a forced-choice  

gradient boosting machine (GBM) for classification due to its robustness to outliers and 

its ability to map features back into anatomical brain space (9) .  

 

Predictive analyses are prone to overfitting when the number of features far outweighs 

the number of subjects(6). Given our available dataset of 306 subjects, we had to reduce 

the number of features from voxels (~900,000 in 2mm isotropic space). To this end, we 

selected the Shen 268-node resting-state fMRI atlas, defined by a group-wise spectral 

clustering algorithm applied to an independent dataset consisting of 45 subjects (7; 10). 

We transformed the Shen atlas from MNI-152 space into native patient space using linear 

and nonlinear FSL transforms (8) and used the average COPE values within each parcel 

to produce 268 features per subject for the classifier. 

 

We trained 2 overall types of classifiers: 

1) Emotional Valence Classifier. This analysis determined whether and where a 

signal for emotional valence was consistent enough to discriminate fear from 
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happy face visual conditions. We assessed the performance of the emotional 

valence classifier with two different types of feature inputs to determine the 

impact of inter-subject variability and task variability. The first subtracted fear and 

happy responses within-subject, to account for average differences in visual 

responses across subjects (i.e. the classifier compared the FvH COPE contrast 

image to the HvF COPE contrast image).  The second compared fear versus 

fixation COPE files and happy versus fixation COPEs and accounted for across-

study differences in task, without being able to minimize individual subject 

variability in the visual response.  Duff et al (11) were able to minimize inter-

subject variability through within-subject contrasts wherein each subject received a 

placebo and drug condition, thus allowing pharmacologic effect to be isolated 

from variability due to individual differences and/or task. Because the 

pharmacologic effect in our studies was necessarily between subjects, we used the 

valence contrast to compare the performance of a within vs. between subject 

classifier as the structure of the task allowed us to do this.  

2) Pharmacologic Effect Classifier. This analysis used contrasts between Fear and 

Happy conditions to discriminate patients with drug or placebo protocols within 

and across studies (i.e. the classifier compared the FvHdrug COPE contrast image to 

the FvHplacebo contrast image). We further observed whether this signal was 

consistent across antidepressant dose, frequency, and duration. 
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We tailored the predictive pipeline and cross validation strategy based on the level of the 

classification performed; these details (including an explanatory figure) are available in 

Supplementary Methods. In brief: (i) within-study classification: when subjects within 

one study were considered (i.e. to determine the reliability of effects within individual 

studies), the classifier was trained on all but two subjects (balanced for classification 

group) and then tested on those held out subjects in an iterative fashion, until the 

classifier was tested on all subjects; (ii) across-study classification: when subjects across 

two studies were considered (i.e. to assess the similarity of trained classifiers across 

individual studies), the classifier was trained on one study and tested on the other. (iii) 

across-all-subjects classification: when subjects across all studies were considered, to 

determine our ability to build classifiers that generalize across subjects, the classifier was 

trained on all but two subjects and then tested on those held out subjects in an iterative 

fashion, until the classifier was tested on all subjects; (iv) across-all-studies classification: 

when subjects across all studies were considered (i.e. to assess how a classifier trained on 

all studies performed on a held out study), the classifier was trained on all studies except 

one and tested on that held out study.   
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3. RESULTS 

 

3.1 Emotional Valence: Happy from Fearful Face Classification  

 

We first describe results associated with discrimination of parameter images subtracting 

fear and happy responses within-subject, which addresses individual variability in visual 

responses.  

 

(i) Within-study classifications (i.e. classifiers trained and tested on different subjects of 

same study) provide insight into those studies with the most discriminative signals. The 

five datasets from the Harmer, Murphy and Kumar studies provide the best performance 

(67-87% accuracy p<0.001; uncorrected for multiple comparison as each study was 

considered separately. See Table 2, p-values for each accuracy score are shown in the 

Supplementary Materials Figure 1). These five datasets represented participants who 

were healthy or showed dysphoric traits.  Accuracies were not better than chance for the 

Rawlings study of healthy participants, for the Warren and Disimplicio studies of 

participants with low or high neurotic traits, or for the Godlewska study of participants 

diagnosed with MDD. 
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(ii) Across-study classifications (i.e. classifiers trained on one study and tested on separate 

studies) show the ability of classifiers trained on one study to discriminate other studies.  

We found that results varied considerably depending on the study population evaluated. 

Classifiers trained and tested on studies of healthy, dysphoric, or major depressive 

disorder (MDD) performed notably better than studies of low or high neurotic trait 

(p<0.005, (α/10) Bonferroni correction for multiple comparisons given 10 classifications 

per study). We were unable to find a consistent discriminative signal within studies of 

neurotic subjects. Each train-test dyad may be referenced in Figure 2. Results when the 

classifier was trained on all studies or all healthy studies and tested on a held-out study 

may be referenced in Supplementary Materials Figure 1.  

 

(iii) Across-all-subjects classification achieved an average accuracy of 69% (p<0.001) in 

held out data. Classifiers trained and tested on only healthy subjects achieved an average 

accuracy of 66% (significant at p<0.005 level, no test for multiple comparinsons.). (iv) 

Across-all-studies classifications are presented in Supplementary Results. 

 

In contrast to the above results, we were unable to reliably discriminate the fearful-

versus-fixation contrast image from the happy-versus-fixation contrast image better than 

chance on any classification level (i.e. when fearful and happy  were not subtracted 

within subject, see Supplementary Results). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2018. ; https://doi.org/10.1101/382408doi: bioRxiv preprint 

https://doi.org/10.1101/382408
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3.2 Pharmacologic Effect: Drug from Placebo Classification  

 

Overall, we found limited ability to identify drug effects in the assessed studies. 

However, some studies show evidence of a positive drug effect.   

 

(i) Within-study classification (i.e. classifiers trained and tested on different subjects of 

same study) performed best on two of the Kumar datasets representing healthy 

participants (Kumar A 84% p<0.001; Kumar B 77%, p=0.01; no test for multiple 

comparisons as there was one comparison of interest) and dysphoric participants (Kumar 

A, 74%, p=0.02).  These studies also showed a robust effect for emotional valence.  

 

(ii) Across-study classification performed poorly. Overall, clinical state had less of an 

impact on prediction accuracy than the dose and frequency of antidepressant 

administration. Studies that used 20mg of citalopram or escitalopram for 7 days showed a 

trend towards higher accuracy than studies that administered a single dose of 

antidepressant. 

 

(iii) Across-all-subjects classification achieved an average accuracy of 56% in held out 

data. Classifiers trained and tested on only healthy subjects achieved an average accuracy 
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of 50%.  These poor results may be associated with the fact that drug and placebo sessions 

were acquired in separate subjects, so could not be subtracted within subjects. (iv) 

Across-all-studies classifications achieved an average accuracy no better than chance; 

these results are presented in Supplementary Results. 
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4. DISCUSSION 

 

We localized an anatomically consistent emotional valence signature in individuals 

performing the emotional faces task. This valence signature was consistent across subject 

treatment group (drug or placebo) and drug administration protocol (dose and duration), 

with similar populations better predicting each other. These results confirm that the 

emotional valence task strongly probes the brain’s valence circuits notwithstanding 

differences in task design and clinical population. However, we were unable to find a 

comparably robust signature for pharmacologic effect.  An explanation for this can be 

inferred from the fact that discrimination of emotional valence was poor when the 

fearful-versus-fixation contrast image was compared with the happy-versus-fixation 

contrast image, indicating that the effect of emotional valence could not be isolated from, 

e.g. te effect of face presentation. As these studies assessed drug effects in parallel groups 

designs, within-subject drug contrasts were not possible.  The present results question the 

extent to which results from parallel group design studies can generalize using a 

multivariate machine learning approach . Even minor differences across subjects and 

across drug protocol are likely to alter measurements of antidepressant effects on the 

brain’s functional anatomy assessed using this method.   

 

4.1 Emotional valence of faces  
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Our significant classification accuracy for emotional valence suggests that happy and 

fearful faces engage different aspects of the brain’s functional anatomy in a spatially 

consistent way across individuals and studies. In this classification, the most relevant 

parcels included areas reported in meta-analyses of emotional face processing, namely 

the amygdala and the fusiform gyrus (12). While healthy controls and patients with MDD 

appear to engage similar functional anatomy during this task, subjects with neurotic traits 

did not, consistent with previous reports that highly neurotic people have a different 

response to fear versus happy faces probably as they avert attention and therefore do not 

process the cues in the same way (13).  

 

In a similar gender-matching emotional faces task, Nord et al. (14) recently reported only 

moderate (0.4) within-subject, across-trial/day reliability of the BOLD response within the 

left amygdala and anterior cingulate cortex. Nord et al calculated within-subject 

reliability for each anatomical area separately, which is perhaps why their results were 

“surprisingly low.” In our analysis, we evaluated across-subject and across-study 

reliability in terms of classification accuracy derived from our predictive, multivariate 

approach which integrated responses from across the entire brain, increasing our 

sensitivity. Applying a predictive whole-brain approach to investigate within-subject, 

across-trial reliability will be a useful future analysis. 
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4.2 Pharmacologic effects 

 

Our classifier failed to consistently discriminate drug from placebo.  As a general trend, 

the classifier performed better when trained and tested on similar drug administration 

protocols, which used the same dose and frequency. And, overall, drug protocols with 

higher doses for a longer duration (i.e. 20mg for 7 days versus 20mg for 1 day) showed a 

trend towards higher accuracy. However, we present a guarded interpretation of these 

results as they could represent false positive results (even though we corrected for 

multiple comparisons). Why this classification failed could be explained by 

methodological factors, as well as more general factors that plague drug development 

studies.  

 

When looking for a subtle signal within the brain’s large-scale networks, individual 

variability in brain structure and function understandably becomes a significant 

confounder. Duff et al (2015) reported robust predictions for analgesic studies wherein 

subjects served as their own placebo control. In addition, each study reported a global 

effect on brain function that reflected a large pharmacologic effect. Here, we investigated 

parallel groups-design antidepressant studies where different groups of subjects 

receiving placebo and drug. While within subject crossover designs could introduce 

variability associated with order effects, the overall ability to discriminate pharmacologic 
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effects is likely to improve because it will not be muddled with individual variability. 

Based on our results, we recommend future pharmacologic studies apply a crossover 

design as a way to minimize individual variability and more ably isolate pharmacologic 

effect when using classication based machine learning analysis.    

 

In these short, CNS drug administration studies, it is difficult to assess whether 

therapeutic (here, to affect emotional face processing) CNS drug levels have been reached 

in each individual due to individual differences in transport proteins that affect blood-

brain-barrier permeability (15). Group-wise analyses have shown that acute SSRI 

administration affects serotonin levels and emotional valence processing in the brain 

through PET tracer(16) and fMRI studies(17), respectively. Even if the CNS drug levels 

were known in each individual, however, it would still be difficult to tell whether the 

same drug level had the same pharmacologic effect in each individual given possible 

differences in receptor affinity and/or drug coverage. It is further possible that highly 

localized effects (i.e. like those reported in the largely region-specific antidepressant 

literature) are diluted and lost in a whole-brain multivariate analysis especially for small 

areas such as the amygdala which have been consistently reported to be affected with 

even acute doses of SSRI medication. These factors should be taken into account when 

interpreting results from CNS-active drug studies.   
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4.3 Implications for Future Work 

 

In the present studies, emotional bias was used to probe the neurobiology of depression 

based on past group-level observations that depressed individuals have negative 

emotional bias that corrects with successful treatment (18). While emotional bias is a 

useful experimental paradigm, the causal connection between emotional bias and 

depression’s etiology is likely quite complicated. Ramasubbu et al. (19) recently 

attempted to classify severely depressed patients from healthy controls based on fMRI 

data alone. They reported statistically significant classification accuracy only for resting-

state fMRI data (66%, p=0.012 corrected) while fMRI data acquired during an emotional-

face matching task performed at chance. This study suggests that depression may not 

modulate responses to the emotional-face matching task in a spatially consistent manner. 

Our results corroborate Ramsubbu et al’s finding by showing that antidepressants seem 

not to modulate responses to the emotional faces task in a manner that is consistent 

enough to classify medicated from non-medicated subjects across studies.  Because some 

studies showed some evidence of drug effect, it is possible that a specific, more 

standardized implementation of the emotional faces task could help probe this 

antidepressant effect across studies. In comparison to task-based fMRI, it remains to be 

seen whether resting-state fMRI could more ably probe networks modulated by 

antidepressants. 
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This highlights the fact that there are three ontological levels at play in our study: the 

clinical constructs of healthy, neurotic, dysphoric, and depressed; the experimental 

construct of emotional bias; and the etiological construct of receptor-specific treatment 

targets such as the 5-HT receptor. Each represents a different level of analysis. Using 

symptom-based clinical constructs to probe etiology-based treatments necessarily 

muddles group treatment effects; similarly diagnosed patients likely have multiple, 

diverse etiologies. Neurobiology or etiology-based diagnostic categories would likely 

help isolate the effect of a mechanism-based pharmaceutical by more logically pairing 

disease etiology with molecular target(20).  

 

Across these levels, it is unlikely that grouping patients by diagnosis (symptom or 

etiology-based) is the best way forward because patients may have varying symptoms or 

etiologies within a diagnostic category. Promising research has shown that within a 

diagnostic category, patients can be grouped by the presence of a specific cluster of 

symptoms which then predicts their response to a mechanism-based antidepressant (21). 

This suggests that symptom clusters would serve as reasonable groupings or even 

features for future predictive analyses. The possibility also remains that a patient’s 

behavioral performance (in a different experimental construct) will allow a more 
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quantative assessment of a specific cognitive domain, more in line with a dimensional 

approach to cognitive (dys)function (22).  

 

We suggest that future studies further study the effects of these ontological levels on drug 

studies and—as much as possible—select more neurobiologically-based means of 

selecting or probing patient groups.  

 

4.4 Methodological considerations 

 

Dimensionality reduction proved a necessary and highly useful step (6). Whole-brain, 

voxel-wise data (unreported results, wherein each voxel was a feature) were untenable 

with our available sample size because the number of features greatly outweighted the 

number of subjects. Whole-brain analysis using data-driven parcellation schemes proved 

essential in capturing the underlying complex neural circuitry in the brain (10; 23). Given 

these results, we suggest that future predictive modeling studies use whole-brain 

parcellation schemes as feature reducers. 

 

An unresolved question is which behavioral task and overall study design best captures 

the normalizing effect of antidepressants in depression. We evaluated the emotional faces 

task and discovered differences in effect size which could be based on task presentation, 
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subject population, drug administration protocol or a combination of these. While we 

report progress in this direction, a more concerted study is required to further address 

these important questions.  

 

In summary, we applied a cross-validated predictive model to classify emotional valence 

and pharmacologic effect across eleven task-based fMRI datasets (n=306), exploring the 

effect of antidepressant administration on emotional face processing.  We found patterns 

of brain activity that successfully classified emotional valence, however could not find 

such patterns for the pharmacologic effect. Our results also suggest that case-controlled 

designs and more standardized protocols are required for functional imaging to provide 

robust biomarkers that can help increase the yield of the drug development pipeline. 
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Legends for Tables & Figures 

 

Table 1. Summary of Included Datasets. 

 

Table 2. Summary of within-study prediction accuracies. Accuracies give the average 

(across iterations) proportion of subjects for which the correct contrast was identified. P 

values indicate the probability of achieving this accuracy or better randomly (binomial 

test, chance = 50%). Range references the Wilson-Score confidence interval (alpha=0.05, 

sample size as indicated). Shown below are results for the within-study classification and 

across-all-subjects classification (Healthy, referring only to healthy subjects; ALL, 

referring to all subjects). Results for the across-study classification may be referenced in 

Figure 2. Results for the across-all-studies classification may be referenced in 

Supplementary Figure 2.  

 

Figure 1. Protocol Summary. Primary-data analysis (A) was performed at the subject 

level to model task effects. Study and group-level analyses took place in MNI152 space 

and served as a QA step (B, see Methods). Feature reduction (C ) took place in native 

subject space to maximize registration accuracy. The contrast of parameter estimates 

(COPE, see Methods) were used as features in the machine learning protocol (D). 

Illustrative faces in (A) are from Karolinska Institutet’s publically available database (24). 

 

Figure 2. Accuracies for the emotional valence (left) and pharmacologic effect (right) 

classification. Studies are organized on a clinical spectrum, from healthy (H), to low 

neurotic (LN), to high neurotic (HN), to dysphoric (DYS), to major depressive disorder 

(MDD). Green lines indicate significance at respective level: (i) within study classification: 

no correction for multiple comparisons; (ii) across-study: p<(0.05/10) Bonferroni 

correction for multiple comparisons; (iii) across all-subjects: no correction for multiple 

comparisons; (iv) across-all-studies p<(0.05/10) Bonferroni correction for multiple 

comparisons. Accuracies based on a bimodal distribution test, numerical p-values are 

shown in the Supplementary Materials. Yellow lines are illustrate groups with higher 

shared accuracies. Shown below are results for the within-study classification (diagonal) 

and across-study classification (off-diagonal). Results for the across-all-subjects 

classification may be referenced in Table 2 (final row) and Supplementary Figure 2. 

Results for the across-all-studies classification may be referenced in Supplementary 

Figure 2.  
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Table 1. Summary of Included Datasets. 
 

Study Year Scanner 
TR 

(sec) 

Task Presentation Drug Administration Patient Population* 

Presentation Instructions 

Acquisition 

Length 

(TRs) 

Emotional Face 

Stimulus Length 

(msec) 

Drug Protocol 
Clinical 

Condition 

Drug 

(n) 

Placebo 

(n) 

Total 
(n) 

Harmer 2004 
1.5T Siemens 

Sonata 
3 Masked 

Identify 

Gender 
190 

17 (followed by 

167 neutral face) 

Citalopram 

(SSRI) 

20mg/day, 

7 days 
Healthy 9 8 17 

Murphy 2009 
1.5T Siemens 

Sonata 
3 Unmasked 

Identify 

Gender 
330 200 (unmasked) 

Citalopram 

(SSRI) 

20mg, 

single dose 
Healthy 13 11 24 

Rawlings 2010 
1.5T Siemens 

Sonata 
2 Unmasked 

Identify 

Gender 
250 100 

Mirtazapine 

(NaSSA) 

15mg, 

single dose 
Healthy 14 14 28 

KumarA In prep 3T Siemens 3 Unmasked 
Identify 

Gender 
250 100 

Citalopram 

(SSRI) 

20mg/day, 

7 days 
Healthy 16 15 31 

KumarB In prep 3T Siemens 3 Unmasked 
Identify 

Gender 
250 100 

Citalopram 

(SSRI) 

20mg/day, 

7 days 
Healthy 17 13 30 

Warren In prep 3T Siemens 3 Unmasked 
Identify 

Gender 
270 500 

Escitalopram 

(SSRI) 

20mg/day, 

7 days 

Low 

Neurotic 
19 12 31 

Warren In prep 3T Siemens 3 Unmasked 
Identify 

Gender 
270 500 

Escitalopram 

(SSRI) 

20mg/day, 

7 days 

High 

Neurotic 
14 15 29 

DiSimplicio 2013 3T Siemens 3 Unmasked 
Identify 

Gender 
250 500 

Citalopram 

(SSRI) 

20mg/day, 

7 days 

High 

Neurotic 
14 7 21 

KumarA In prep 3T Siemens 3 Unmasked 
Identify 

Gender 
250 100 

Citalopram 

(SSRI) 

20mg/day, 

7 days 
Dysphoric 9 18 27 

KumarB In prep 3T Siemens 3 Unmasked 
Identify 

Gender 
250 100 

Citalopram 

(SSRI) 

20mg/day, 

7 days 
Dysphoric 16 14 30 

Godlewska 2012 3T Siemens 2 Unmasked 
Identify 

Gender 
250 100 

Escitalopram 

(SSRI) 

10mg/day, 

7 days 
MDD 19 19 38 

TOTALS           160 146 306 

 
 
 
 
 

 
 
 
  

* The number of subjects per study differs from the original publications. This reflects that some data were unable to be located for 

inclusion in our study and that one study (Warren) has recruited more participants since the time of our study. 
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Table 2. Summary of within-study prediction accuracies. 
 
                      

            Emotional Valence Pharmacologic Effect 

Study Population Antidepressant N= Drug Placebo Accuracy (Range)   Accuracy (Range)   

Harmer Healthy Citalopram 17 9 8 82% ( 58-93 ) * 35% ( 17-58 )   

Murphy Healthy Citalopram 24 13 11 66% ( 46-82 ) * 75% ( 55-88 ) * 

Rawlings Healthy Mirtazapine 28 14 14 58% ( 40-74 )   53% ( 35-70 )   

KumarA  Healthy Citalopram 31 16 15 80% ( 63-90 ) * 74% ( 56-86 ) * 

KumarB  Healthy Citalopram 30 17 13 86% ( 70-94 ) * 53% ( 36-69 )   

Warren  Low Neurotic Escitalopram 31 19 12 40% ( 25-57 )   54% ( 37-70 )   

Disimplicio High Neurotic Citalopram 21 14 7 19% ( 7-40 )   33% ( 17-54 )   

Warren  High Neurotic Escitalopram 29 14 15 44% ( 28-62 )   68% ( 50-82 )   

KumarA  Dysphoric Citalopram 27 9 18 62% ( 44-78 ) 37% ( 21-55 )   

KumarB  Dysphoric Citalopram 30 16 14 71% ( 53-84 ) * 66% ( 48-80 )   

Godlewska MDD Escitalopram 38 19 19 56% ( 40-71 )   34% ( 21-50 )   

Healthy - - 130 69 61 65% ( 56-73 )   46% ( 37-54 )   

ALL - - 306 160 146 70% ( 65-75 )   50% ( 45-56 )   

* = p<0.05, based on Binomial distribution                 
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Figure 1. Protocol Summary 
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Figure 2. Accuracies for the emotional valence (left) and pharmacologic effect (right) classification.  
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