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Abstract: 

 

Juvenile idiopathic arthritis (JIA) is the most common childhood rheumatic disease, with a 

strongly debated pathophysiological origin. Both adaptive and innate immune processes have 

been proposed as primary drivers, which may account for the observed clinical heterogeneity, 

but few high-depth studies have been performed. Here we profiled the adaptive immune 

system of 85 JIA patients and 43 age-matched controls, identifying immunological changes 

unique to JIA and others common across a broad spectrum of childhood inflammatory 

diseases. The JIA immune signature was shared between clinically distinct subsets, but was 

accentuated in the systemic JIA patients and those patients with active disease. Despite the 

extensive overlap in the immunological spectrum exhibited by healthy children and JIA 

patients, machine learning analysis of the dataset proved capable of diagnosis of JIA patients 

with ~90% accuracy. These results pave the way for large-scale longitudinal studies of JIA, 

where machine learning could be used to predict immune signatures that correspond to 

treatment response group.  
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Main Text: 

 

Introduction 

 

Juvenile idiopathic arthritis (JIA) is the most common childhood rheumatic disease. It is 

characterized by the onset of arthritis with no defined cause prior to 16 years of age, and the 

persistence of symptoms for more than six weeks. Evidence exists for roles of both genetic 

inheritance and the influence of unknown environmental triggers (1, 2). Elucidation of the 

precise etiology and pathogenesis of JIA remains complicated by the clinical heterogeneity in 

the group as a whole (3, 4). JIA patients were classified into 7 subtypes by the International 

League of Associations for Rheumatology (ILAR) according to clinical features, however it 

remains unknown as to whether each subtype has a distinct pathogenesis, and this 

classification may require revision with more complete understanding of the pathophysiology.  

 

Detailed analysis of cellular immunophenotypes and genetic variants associated with JIA 

subtypes could help improve the current classification system (5). T cells are central to the 

pathogenesis of JIA and research has focused on unraveling the dynamic balance between 

pro-inflammatory (T helper 17 (Th17), Th1) and anti-inflammatory regulators (regulatory T 

cells (Treg)), but the debate on the driving effector CD4 helper subset remains ongoing (6-8). 

In particular, the inflammatory nature of IFNγ-producing Th1 cells in an arthritic context has 

been questioned, with IFNγ-deficient mice developing systemic JIA (sJIA)-like symptoms 

upon immune stimulation (9). High-depth immunophenotyping of the innate immune 

response to stimuli has recently identified a sJIA signature (10), however a similar in depth 

study on the adaptive immune response has been lacking. While most JIA subtypes share a 

strong similarity with autoimmune diseases, systemic JIA (sJIA) is often considered an 

autoinflammatory disease, raising the possibility of distinct immunological drivers of disease.  

 

Identification of the immunological signature of JIA can substantially improve our 

understanding of the disease pathophysiology, can lead to better diagnosis and disease 

classification, and in the future may be used to stratify patients for appropriate therapeutic 

approaches.  Here we performed deep immunophenotyping on a large cohort of unrelated JIA 

patients. We found JIA-specific and common inflammatory immune signatures, driving a 

distinct immunological profile to that of healthy children. The immunological signature of 

JIA was identifiable through machine learning and was elevated in systemic JIA and active 
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JIA patients, leading to the potential future application of immune-led machine learning in 

JIA treatment selection trials.  

 

Methods 

 

Study population and sampling 

 

Patients were recruited through the pediatric rheumatology department of Leuven University 

Hospital. All individuals or their legal guardians gave written informed consent, and the study 

was approved by the Ethics Committee of the University Hospitals Leuven. JIA patients were 

classified via three distinct systems. First, patients were classified based on the International 

League of Associations for Rheumatology (ILAR) classification criteria {Petty, 1998 #96} 

into persistent oligoarticular, extended oligoarticular, rheumatoid factor positive (RF+) 

polyarticular, rheumatoid factor negative (RF-) polyarticular, enthesitis-related, and systemic 

juvenile idiopathic arthritis (sJIA). Second, we used a classification system that combined 

polyarticular arthritis with extended oligoarticular arthritis, resulting in three categories: 

persistent oligoarticular, combined polyarticular / extended oligoarticular and systemic. Third, 

we used a classification system that first distinguished systemic patients, and then secondarily 

divided non-systemic patients on anti-nuclear antibody (ANA) status (using a cut-off titer of 

160), resulting in three categories: ANA+ JIA, ANA- JIA and sJIA. Disease activity was 

assessed according to the Wallace criteria {Wallace, 2011 #97}. Disease controls consisted of 

two distinct populations, first, a group of patients diagnosed with juvenile-onset systemic 

lupus erythematosus, and second, a group of patients with non-arthritis systemic 

inflammatory diseases (including systemic autoinflammatory disorder and periodic fever 

autoinflammatory disease). The distribution of age at time of sampling in cases and controls is 

shown in Supplementary Figure 1. Blood samples from all participants were collected in 

heparin tubes and rested at 22 °C for 4 h before separation of serum and PBMCs using 

lymphocyte separation medium (LSM, MP Biomedicals). PBMCs were frozen in 10% DMSO 

(Sigma) and stored at −80 °C for a maximum of 10 weeks.  

 

Flow cytometry phenotyping 

 

Thawed cells were stained with antibodies to allow deep immunophenotyping 

(Supplementary Table 1). Ki67 and FOXP3 staining was performed after treatment with 
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fixation-permeabilization buffer (eBioscience). Cytokine staining was performed after ex vivo 

stimulation for 5 hours in 50ng/ml PMA (Sigma) and 500ng/ml ionomycin (Sigma) in the 

presence of GolgiStop (BD Biosciences). Stimulated cells were surface stained, fixed and 

permeabilized with Cytofix/Cytoperm (BD), before staining for cytokines. Data were 

acquired on a BD FACSCantoII and analyzed with FlowJo (Tree Star).  

 

Statistical analysis 

 

Data on 42 immunological parameters (Supplementary Table 2), with a focus on cellular 

subsets within the adaptive immune system, were generated for 43 age-matched controls, 16 

disease controls and 85 JIA patients (see Supplementary Dataset 1 and 2). Data 

(phenotypic, flow cytometric and serological) were collated and stored in Microsoft Excel. 

All data analysis was performed using R (http://www.r-project.org version 3.1.2 (11)). The 

flow cytometry data were expressed as percentages as exported from FlowJo.  Statistical 

comparison was based on Kruskal-Wallis one-way ANOVA followed by Dunn post-hoc test 

implemented in R and P values were adjusted with the False Discovery Rate method 

(Supplementary Code 1 and 2). 

 

Machine learning 

 

In order to investigate the ability of machine learning to classify patient groups, the following 

model selection procedure was performed:  the cohort was randomly split into ten almost 

equally large groups, so-called folds. Using these groups/folds, ten-fold cross validation was 

performed in order to assess each method’s ability to generalize to previously unseen cases. In 

every test, hyperparameter selection was performed on a training set consisting of nine folds.  

Then the best hyperparameters were used to train a model on the nine training folds, and the 

performance of this model was evaluated using the withheld test fold, which was neither used 

for training nor for the selection of hyperparameters. This procedure was performed for all ten 

folds. Dataset training was run using Random Forests, Artificial Neural Networks and 

Support Vector Machines, with the capacity of each to explain the data assessed on the basis 

of superior area under the ROC (receiver-operator characteristics).  

 

Random Forests were run using hyperparameter selection with out-of-bag estimates on the 

respective training sets (12, 13). We considered 5 and 11 features per split. The sampling 
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schemes trialed were: 1) Optimizing for accuracy, we considered the default sampling scheme 

which took the total number of samples, but the sampling was done with replacement. 

Moreover, sampling was performed independently of the samples’ class memberships. 2) 

Optimizing for balanced accuracy, the balanced random forest sampling scheme (14)  was 

applied: each tree is based on as many positive samples as there are in the training set and 

exactly as many negative samples. 3) Use of choice of sampling scheme as a second 

hyperparameter, to select for superior area under the ROC curve: in addition to the schemes 

above, two more sampling schemes were added, where each tree is based on as many negative 

samples (smaller class) as there are in the training set and 1.5 and 2 times as many positive 

samples (larger class). Regardless of the goal criterion, we always constructed ensembles of 

10,001 trees. Model selection was performed using R 3.3.0 (15) with the ‘randomForest’ 

package (16). 

 

Artificial neural networks. Hyperparameter selection was performed using nine-fold cross 

validation on the respective training sets. The following hyperparameters were considered, 

with 672 combinations: 

Network architecture: we considered networks with one hidden layer consisting of 25, 

50, 100 and 200 nodes as well as networks with two hidden layers with 25, 50, and 

100 nodes each (with 7 different architectures in total).  

Number of training epochs: 150 and 300. 

Learning rates: 0.005 and 0.01.  

Momentum: 0.5 and 0.9.  

Dropout: dropout both for input nodes and hidden activations at rates of 0.2 and 0.5 

(Srivastava et al., 2014).  

Classweights: the larger class was always weighted with 1 in the objective function, 

while we tried class weights of 1, 1.5, and 2 for the smaller class in order to allow the 

network to better deal with the unbalanced distribution of classes.  

Weight decay (aka L2 regularization):  with and without weight decay with a 

regularization parameter of 0.001. 

For all artificial neural networks we trained, we used ReLU activations (17) for the hidden 

nodes and a sigmoid activation for the output node along with binary cross-entropy as 

optimization objective. Training was performed by stochastic gradient descent using a mini-

batch size of 32 samples. All computational experiments were implemented in Python 3 using 

the KERAS framework (18) as simple interface to the TensorFlow framework (19). 
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Potential Support Vector Machine was employed due to superior performance with 

unbalanced data (20). PSVM model selection was performed twice, once without balancing 

(to optimize for accuracy) and once with balancing (to optimize for balanced accuracy). 

Hyperparameter selection was performed using ten-fold cross validation on the respective 

training sets using all combinations of cost factors C ∈{8,10,12,...,20} and shrinkage 

parameters ε ∈{0.5,0.7,0.9,...,2.3}. In all experiments, Potential Support Vector Machine was 

used in dyadic mode, i.e. the model’s discriminant function is a linear combination of a subset 

of features (20). 

 

Results 

 

A distinct immunological signature of Juvenile Idiopathic Arthritis 

 

To identify the potential immunological processes driving JIA, we recruited 85 JIA patients 

and 43 age-matched controls. JIA patients and healthy pediatric controls were assessed for 42 

immunological parameters by flow cytometry, using the immune phenotyping platform 

previously validated (21). This platform gives a strong representation of key subsets of the 

adaptive immune system (Supplementary Table 2). As previously observed (21), 

immunological variance within the healthy control population was structured, with strong 

correlations between variance in different immunological parameters (Figure 1A). While 

much of this interrelatedness was preserved in JIA patients, for several adaptive immune 

subsets, such as iNKT cells, multiple disjunctions were observed (Figure 1A). For example, 

the homeostatic weak negative relationship between NKT cells and plasmablasts, observed in 

healthy controls, was inverted to a strong positive relationship in JIA, where increased 

frequencies of iNKT cells were associated with elevated plasmablasts (Figure 1A). Taking 

into account the variance in all assessed parameters, the immunological composition of JIA 

patients diverged from healthy controls, with overlapping but distinct separation of the two 

clusters on a PCA analysis (Figure 1B). To determine whether this JIA immune signature 

was a generic inflammatory disease signature, or a JIA-specific signature, we recruited 15 

disease controls, juvenile patients with inflammatory disease but no arthritis, including 5 

patients with juvenile-onset SLE and 10 patients with juvenile-onset systemic inflammatory 

diseases. PCA analysis of disease controls showed a little separation from the JIA clusters on 
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a PCA plot (Figure 1B). As invariant traits compress PCA clusters, we reclustered 

individuals with a core immune set of 22 traits, limited to those showing significant variance 

(Figure 1C). In the core trait analysis, the JIA cluster showed separation from the disease 

control cluster, and both were in turn separated by a larger distance from the healthy cluster, 

albeit still with strong overlap between all three groups. These results demonstrate that 

juvenile inflammatory patients present with alterations in their immune profile, with both a 

core universal inflammatory signature and a JIA-specific immune signature underlying the 

separation.  

 

JIA is a heterogeneous disease. To determine whether the JIA immune signature identified 

above showed separation based on disease characteristics, we classified JIA patients into 

subsets. JIA patients were initially classified along the ILAR guidelines, into oligoarticular 

persistent JIA (n=15), oligoarticular extended JIA (n=13), RF- polyarticular JIA (n=33), RF+ 

polyarticular JIA (n=2), enthesitis-related JIA (n=3) and systemic JIA (n=19). The 

characteristics of the patient cohort as given in Table 1. Due to the small number of patients 

in some ILAR classifications, and the more recent observation that ANA positivity 

distinguishes a relatively homogeneous group irrespective of the number of affected joints 

(22), we also used a second classification system, an ANA-based classification. This led to a 

final grouping of 22 oligoarticular/polyarticular ANA negative (ANA-), 43 

oligoarticular/polyarticular ANA+, and 19 systemic JIA patients (Supplementary Table 3). 

Finally, we used a third combined classification strategy, which grouped the patients as 

persistent oligoarticular (n=15), combined polyarticular and extended oligoarticular (n=48) 

and systemic JIA (n=19) (Supplementary Table 4). As alternative grouping systems exist for 

JIA, we fully annotated the dataset, allowing independent analysis by alternative criteria 

(Supplementary Dataset 1 and 2). PCA analysis of JIA patients according to ILAR 

classification showed complete overlapping of most JIA subsets, with increased separation of 

the RF polyarticular group (limited in number) and the systemic JIA group (Figure 2A). 

Likewise, classification based on ANA status (Figure 2B) and the disease-severity 

classification (Figure 2C) also showed almost complete overlap, with only the systemic JIA 

cluster separating. In each case this systemic cluster showed enhanced separation from the 

healthy controls along the JIA disease-axis, consistent with sJIA manifesting as a more 

extreme polarization of the JIA immune signature. As the primary separation was between 

JIA patients and healthy individuals, we reclustered JIA subsets in the absence of healthy 
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individuals (Figure 2D-F). Again, while there was a trend for systemic JIA to separate from 

the other subtypes, the overall immune deviation signature of JIA was independent of JIA 

clinical subtype. Together these results suggest that JIA patients, while clinically distinct, 

share common immunological perturbations. 

 

Juvenile Idiopathic Arthritis patients present with a disturbed adaptive immune system 

 

To unravel the individual drivers of the global immune profile shifts in JIA, we assessed each 

parameter individually. Using a stringent statistical analysis, and taking into account multiple 

testing, significant changes were observed in 22 distinct immunological parameters in JIA 

patients (Figure 3). Compared to healthy controls, the disease-control patients registered 17 

significant changes in individual immunological parameters (Figure 3), notably with 16 of 

these 17 changes overlapping with the JIA-changed parameters. While there was a large 

overlap in the changed immunological parameters between JIA and disease controls, the 

degree of change shifted, with some inflammation-associated changes much stronger in JIA 

than non-JIA patients, and vice versa. Thus we can consider a shared set of immune 

phenotypes which are sensitive to inflammatory disease in children (a universal inflammatory 

signature), while the exact constellation of changes can be disease-specific, driving the 

separation on a PCA plot (Figure 1C). 

 

Among the significant changes observed in the immunophenotype of circulating cells in JIA 

patients, several were suggestive of important biological changes. First, JIA patients displayed 

increased numbers of CD4 T cells (Figure 3B), with particular increases in IL-17 and IL-2 

secreting CD4 T cells (Figure 3E,F). The increase of Th17 cells, in conjunction with prior 

evidence (6-8), indicates that activation of CD4 T cells contributes to the inflammatory 

manifestations. Changes in the CD8 compartment, by contrast, were more consistent with a 

decreased, rather than enhanced, CD8 effector response. CD8 T cells were raised in JIA 

patients (Figure 3G), however there was a significant increase in naïve and recent thymic 

emigrant CD8 T cells (Figure 3H,I). Notably, these increases were unique to JIA, and not 

observed in the disease control cohort. Within antigen-experienced CD8 T cells, there was an 

increase in central memory (Figure 3J) and IL-2-producing CD8 T cells (Figure 3M) at the 

expense of IFNγ-producing (Tc1) or effector memory CD8 T cells (Figure 3K,L). The 
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decrease in IFNγ-producing CD8 T cells is of particular note, with the standard model of 

progression of sJIA into Macrophage Activation Syndrome driven by excessive production of 

IFNγ by effector memory CD8 T cells (23). Thus, while IFNγ has been proposed as a key pro-

inflammatory cytokine in JIA, our data in the peripheral blood is more consistent with 

impeded production of IFNγ. Altered activation of T cells in JIA patients was accompanied 

by activation of B cells, with a decrease in naïve B cells (Figure 3O), coupled with an 

increase in switched B cells (Figure 3P) and memory B cells (Figure 3Q). The degree of B 

cell activation was, however, much lower in JIA than disease controls, where a subset of 

patients exhibited a profound increase (Figure 3P). Beyond these major adaptive cell types, 

JIA patients displayed a relative decrease in γδ T cells, NK cells, plasmacytoid dendritic cells, 

while iNKT cells were increased (Figure 3). Together, these results suggest a 

pathophysiological process in the circulating lymphocytes involving the suppression of IFNγ 

production by CD8 T cells and excessive CD4 T cell differentiation into the Th17 lineage. 

 

When JIA subsets were considered, the changes observed at the individual parameter level 

reflected the analysis at the global level: the immunological changes occurring in JIA versus 

healthy children were highly similar among JIA subtypes. In general, immunological changes 

in each JIA subset mirrored the others in trend, if not statistical significance, regardless of 

whether the ILAR criteria (Supplementary Figure 2), ANA-based criteria (Supplementary 

Figure 3) or combined criteria (Supplementary Figure 4) were used. An exception was 

found with sJIA, which showed a more profound increase in CD4+ T cells and in naïve CD8 

T cells than the other JIA subsets (Supplementary Figures 2-4), and the cluster of ANA+ 

polyarticular and oligoarticular JIA patients, which were the only to show increased switched 

B cells. Together, these results indicate that, despite the different clinical manifestations, JIA 

subtypes share a distinct immunophenotype, with only relatively minor immunological 

changes correlating with the particular JIA clinical subtype. 

 

Potential confounding factors in the immunological analysis of JIA patients include disease 

activity and immunological changes secondary to treatment. As JIA subtypes manifested a 

mostly similar immune phenotype, or at least phenotypic changes along the same spectrum, 

we merged JIA subtypes in an attempt to control for disease activity. Separation of JIA 

patients into patients that had either active disease or were quiescent revealed a more extreme 
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immune signature in JIA patients that were sampled at a time point of active disease, although 

even JIA patients sampled during disease inactivity showed separation from the healthy 

controls (Figure 4A). The immunological relationships observed in patients with inactive JIA 

were largely replicated in patients with active JIA (Figure 4B), however active JIA patients 

did show altered interrelatedness for several immune parameters. For example, in inactive JIA 

patients, no relationship was observed between CD8 T cells and memory B cells, however a 

strong positive relationship emerged in active JIA patients (Figure 4B). At the individual 

parameter level, of the 21 immune parameters that showed a significant difference between 

JIA and healthy, 20 showed no change between patients sampled at active or inactive disease 

stages (Supplementary Figure 5). Only one parameter, NK cell percentage, showed a 

significant difference based on disease state, with the drop in NK frequency only observed in 

the patients with inactive disease (Figure 4C). Our findings suggest that disease activity 

correlates with quantitative rather than qualitative changes in the signature immune 

dysregulation, with the underlying JIA immune dysfunction remaining present in patients 

with disease control. 

 

To assess the contribution of medication to the immune phenotype, we grouped JIA patients 

into those who were without medication (or on non-steroidal anti-inflammatory drugs only), 

those who were being treated with methotrexate or leflunomide, and those who were on 

biologic therapies (including TNF blockade, anti-IL1, anti-IL6 and abatacept, with or without 

additional non-biologic therapy). Using a global analysis, the greatest separation was 

observed between healthy controls and patients on either steroidal or biological treatment, 

with untreated patients showing intermediate clustering (Figure 5A). This effect was reflected 

at the individual parameter level, where more pronounced changes were observed in patients 

undergoing steroidal or biologic treatment (Figure 5B). The same result was observed when 

treatment was considered for each JIA subtype, albeit with reduced statistical power 

(Supplementary Figure 6). While this effect paralleled that of disease activity, the effects 

were independent: no segregation of disease active / inactive patients was observed within the 

treatment categories (Figure 5B). The effect could be partially explained, however, by the 

discrete clustering of sJIA patients, which, regardless of disease activity, showed a more 

extreme immune signature, and which were heavily enriched for patients on steroidal or 

biologic treatment. Thus, when only non-sJIA patients were classified by treatment, a lower 

degree of separation between treatment groups was observed (Figure 5C). Together, this data 
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supports the contention that the immune phenotype observed above is primarily associated 

with JIA diagnosis rather than (secondary to) treatment. 

 

Immune-aided machine learning can discriminate between JIA patients and healthy children 

 

A key application of immunophenotyping in JIA would be to drive assay-based personalized 

therapeutic choice of treatment strategy. While such an outcome requires a multi-year 

longitudinal immunophenotyping dataset, we sought to determine in the current dataset 

whether machine learning could identify the primary immunological features of JIA, as a 

basis for future discovery. Three approaches were trialed: random forests, artificial neural 

networks and support vector machines; with the random forest approach showing superior 

performance in separating healthy individuals from JIA patients (Supplementary Table 5). A 

random forest is an ensemble of deep decision trees, where each tree is constructed using a 

random subset of samples. The trees are constructed such that every split only considers a 

random subset of features to avoid the selection of only closely correlated features and allow 

the consideration of alternative features (12, 13). The data was split into 10 random folds, 

with hyperparameter training and selection on 9 folds and testing on the 10th, with rotation of 

the testing fold. After the construction of 10,001 trees, the optimal random forest selection 

strategy was capable of discriminating JIA patients from healthy controls with an area under 

the curve of 89.6% (Figure 6A). The key contributing feature to JIA “diagnosis” was the 

increased number of iNKT cells (Figure 6B). Indeed, the increased frequency of iNKT cells 

alone resulted in an area under the curve of 91.2% (Figure 6A), superior to the random forest 

in accuracy, although reliant on a single parameter. This result demonstrates the utility of 

machine learning in prioritizing identified changes for explanatory power, beyond a priori 

biological rationale, with potential for use in the design of diagnostic assays.  
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Discussion 

 

Improved understanding of the immunological architecture of JIA is required for 

pathophysiology-based diagnosis and treatment. Through extensive immune phenotyping of 

the adaptive immune system, we found an immunological signature of JIA in a large cohort of 

Belgian children. This signature comprised two components: first, a shared “universal 

signature” of inflammation, common between children with JIA, SLE or diverse 

inflammatory diseases. Such a universal signature is unlikely to derive from shared 

pathophysiology, and may instead reflect a signature response of children’s immune systems 

to inflammatory disease. Second, a set of JIA-specific immune changes drove a deviance 

from the universal signature, providing an axis of discrimination between JIA and the non-JIA 

inflammatory diseases tested here. While the distinct clinical presentation of these diseases 

does not necessitate biologically-derived discrimination, such changes may identify the 

disease-specific pathophysiological processes. 

Within the JIA cases here assessed, the immunological signature was largely shared across 

disease subtypes. The JIA signature was enhanced in two populations: JIA patients sampled at 

a time-point of active disease, and JIA patients of the systemic subtype. sJIA has long been 

considered an entity distinct from other, more common, JIA subtypes, mediated by 

abnormalities in the innate immune system with features of an autoinflammatory disease. 

Indeed, high-depth immunophenotyping of the innate immune system recently identified a 

sJIA signature response to stimuli (10). This simple innate versus adaptive division between 

sJIA and other JIA subtypes is, however, challenged by the genetics, with association of the 

HLA-DRB*11 class II allele to sJIA susceptibility indicating a strong role for the adaptive 

immune system (24). How then to reconcile these datasets? A biphasic clinical course of sJIA 

was recently proposed where innate immune mechanisms dominate at disease onset, eliciting 

systemic inflammation through increased levels of IL-6, IL-18, S100A8/A9, S100A12 and IL-

1β, followed by a second phase where the adaptive immune system mediates chronic arthritis 

(25). Integrating our data with prior studies, the innate-drivers at disease onset sJIA-specific 

(10), while the ongoing adaptive disturbances may reflect process in line with, but 

exaggerated from, non-systemic JIA patients.   

The pathophysiological process of JIA disease susceptibility identified through our analysis is 

one of complex immune network failure, rather than the generation of a single pathology-

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 1, 2018. ; https://doi.org/10.1101/382499doi: bioRxiv preprint 

https://doi.org/10.1101/382499


driving event. A key interaction may be the balance between Th1/Tc1 and Th17 cells. Th17 

cells are pathogenic in mouse models, with IL-17- and IL-23-deficiency invoking resistance 

to arthritis induction (26-29). Evidence from human studies over the past 20 years provides 

ample data to support Th17 cells as drivers of autoimmunity in JIA and RA. Synovial fluid of 

both JIA and RA patients was shown enriched for Th17 cells (30-33) and elevated plasma 

levels of IL-17 in oligo- and poly-JIA were shown to correlate with disease activity (34). 

Addition of IL-17 to human ex vivo models enhanced IL-6 production and collagen 

destruction, while inhibiting collagen synthesis by RA synovium explants (35). In contrast to 

IL-17, the functional role of IFNγ is decidedly ambivalent. While Th1 and Tc1 cells are 

considered inflammatory, IFNγ also suppresses the differentiation of Th17 cells, which can 

drive a net suppressive impact on autoimmunity. Indeed, in mouse models, treatment with 

IFNγ suppresses arthritis development due to impeded Th17 differentiation (36). Conversely, 

deficiency in IFNγ promotes a sJIA-like disease upon Freund’s complete adjuvant in mice (9), 

and IL-12 knockout mice, deficient in Th1 cells, are likewise susceptible to arthritis induction 

(26, 27, 37), both phenotypes attributed to increased production of Th17 cells. A primary 

defect in IFNγ-production could thus drive a pro-Th17 state that is permissive for JIA 

development. Alternatively, the causality could be reversed; IL-17 production reduces Th1 

differentiation in RA (38), and thus elevated Th17 numbers may be the primary effect. The 

identification of strong changes in the NKT cell compartment was the most surprising change 

observed. As these cells can have pro- or anti-arthritic properties in mice, depending on the 

model (39), either a potential mechanistic involvement or a compensatory biomarker function 

could be envisioned in JIA.  

 

Beyond the mechanistic insights offered into disease pathogenesis, the utility of machine 

learning to extract JIA diagnosis from the immunological signature serves as a proof-of-

principle of immune-directed machine learning in precise diagnosis and personalized 

therapeutic choice. The dataset used here lies at the threshold of manual and automated 

analysis, while future studies of larger populations and more extensive immune profiling will 

require automated analysis for full value extraction. Here a machine-learning approach was 

able to build a diagnostic algorithm for JIA diagnosis, and, critically, we were able to extract 

the informative parameters from the diagnostic algorithm. In principle, these limited 

parameters could be used to design a simplified immunophenotyping assay for JIA diagnosis. 

In practice, such an assay would be of relatively limited use: JIA diagnosis in secondary and 
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tertiary reference centers is efficient (although diagnosis during primary care may be delayed 

due to overlapping early symptoms and the lack of specific biomarkers (40)), and the 

machine-learning algorithm was derived from comparison to healthy individuals rather than 

patients with a relevant confounding disease (such as infectious arthritis). None the less, the 

ability of machine learning to extract the relevant signature validates this approach for larger 

longitudinal cohorts, with deeper immunophenotyping, with a focus on personalized response 

to treatment. The features of unbiased analysis and identification of features with 

combinatorial diagnostic power would allowed an immune-led machine learning process to 

identify those immune signatures predictive of efficient response to particular treatments. 

Such an immune-driven personalized medicine approach to JIA would greatly improve the 

appropriate treatment selection for patients.  
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Table 1. Characteristics of JIA patients classified by ILAR criteria. OA, oligoarticular; PA, polyarticular; Can, Canakinumab; Toc, 
Tocilizumab; ETN, Etanercept; Ada, Adalimumab; Aba, Abatacept. 
 

 

Healthy 
controls 

Oligoarticular 
persistent 

Oligoarticular 
 extended 

RF- 
polyarticular 

RF+ 
polyarticular 

Enthesitis-
related 

Systemic  
JIA 

Total N 43 15 13 33 2 3 19 

Male, n (%) 16 (37.2) 2 (13.3) 1 (7.7) 8 (24.2) 1 (50) 1 (33.3) 7 (36.8) 

Age at time of  sampling (years)        

Median (Interquartile range) 9 (4.75-12) 9 (4.5-10.5) 8 (6-11) 8 (6-10) 13 (11.5-14.5) 14 (13-14.5) 12 (6.5-20.5) 

Range 2-17 2-16 2-13 2-18 10-16 12-15 0.75-34 

Years of disease duration         

Median (Interquartile range) - 3.45 (1.7-6.9) 3.4 (2.3-7) 2.2 (0.9-5.15) 3.4 (2.1-4.7) 4.4 (2.85-5.95) 6.4 (2-12.05) 

Range - 0.2-13.2 0.1-10.7 0.3-8.3 0.8-6.0 1.3-7.5 0-21.1 

Disease properties        

Patients with ANA, n (%) - 10 (66.7) 12 (92.3) 20 (60.6) 1 (50) 0 5 (26.3) 

sJIA patients with MAS, n (%) - - - - - - 5 (26.3) 

Patients with active disease, n (%) - 8 (53.3) 10 (76.9) 13 (39.4) 2 (100) 1 (33.3) 8 (42.1) 

JIA medication        

No medication or nonsteroidal anti-inflammatory drugs, n (%) - 7 (46.7) 3 (23.1) 9 (27.3) 0 2 (66.7) 1 (5.3) 

Methotrexate or leflunomide without biologics, n (%) - 6 (40) 8 (61.5) 22 (66.7) 1 (50) 0 5 (26.3) 

Biologics (Can, Toc, ETN, Ada, Aba ± methotrexate or 
leflunomide), n (%) 

- 2 (13.3) 2 (15.4) 2 (6.1) 1 (50) 1 (33.3) 13 (68.4) 

ETN and/or Ada, n (%) - 2 (13.3) 1 (7.7) 2 (6.1) 1 (50) 1 (33.3) 2 (10.5) 

Can, n (%) - 0 0 0 0 0 3 (15.8) 

Toc, n (%) - 0 0 0 0 0 8 (42.1) 

Aba, n (%) - 0 1 (7.7) 0 0 0 0 

Dose of steroids (Medrol) (mg/kg)        

Median (Interquartile range) - 0 (0-0) 0 (0-0) 0 (0-0.03) 0 0 0.05 (0-0.3) 

Range  - 0-0.25 0-0.3 0-0.3 0 0 0-1.4 
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Figures 
 
Figure 1. Juvenile Idiopathic Arthritis is marked by global immunological shifts and 
alteration in the relationship between leukocyte subsets. Healthy controls, JIA patients, 
SLE patients and systemic inflammatory disease (SID) patients were assessed for immune 
phenotype (n=43,86,16). (A) Upper right, above the diagonal: coregulation between pairs of 
cell types in healthy controls (n = 43) (red: positive correlation coefficient, blue: negative 
correlation coefficient, light gray: no data available). Unbiased clustering of coefficients was 
performed to group coregulated cell types. Lower left, below the diagonal: dark gray indicates 
coregulation between pairs of cell types in JIA patients (n=85) that are preserved from healthy 
controls. Coregulation between pairs of cell types that are significantly altered by disease (p < 
0.05, and boxed if p < 0.01) is colored (red: positive correlation coefficient, blue: negative 
correlation coefficient). (B) All individuals were plotted with multidimensional scaling 
showing Bray-Curtis dissimilarity indices over 42 immunologic variables. Variation 
explained by each axis is indicated in the parentheses. (C) All individuals were plotted with 
multidimensional scaling showing Bray-Curtis dissimilarity indices over 22 immunologic 
variables, selected for significant variance between groups. Variation explained by each axis 
is indicated in the parentheses. 
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Figure 2. Juvenile Idiopathic Arthritis subsets share a common immunological 
disturbance. Healthy controls (n=43) and JIA patients (n=85) were assessed for immune 
phenotype. All individuals were plotted with multidimensional scaling over 42 immunologic 
variables. (A) Healthy individuals clustered with JIA patients, classified upon ILAR criteria. 
(B) Healthy individuals clustered with JIA patients, classified based on ANA status. (C) 
Healthy individuals clustered with JIA patients, classified based on combined classification. 
(D) JIA patients, classified upon ILAR criteria, clustered alone. (E) JIA patients, classified 
upon ANA status, clustered alone. (F) JIA patients, classified upon combined classification, 
clustered alone. Individuals were plotted with multidimensional scaling showing Bray-Curtis 
dissimilarity indices over 42 immunologic variables. Variation explained by each axis is 
indicated in the parentheses.  
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Figure 3. Shared and distinct immunological profiles of JIA and systemic inflammation. 
Healthy controls (n=43), JIA patients (n=85) and disease controls (n=16) were assessed for 
immune phenotype. JIA active disease status is indicated by the black dots, quiescent disease 
is shown by empty dots. Within JIA patients, no disease status was available for one 
individual indicated by green. Within disease controls, SLE patients are indicated by dark 
purple and systemic inflammatory disease is indicated by light purple. Box plots for each 
significant immune parameter are shown, non-significant parameters are not shown. (A) T 
cells, (B) CD4+, (C) Th1, (D) Th2, (E) Th17, (F) CD4+IL2+, (G) CD8+, (H) CD8+naïve, (I) 
CD8+RTE, (J) CD8+CM, (K) CD8+EM, (L) Tc1, (M) CD8+IL2+, (N) γδ T cells, (O) 
Bnaive, (P) Bswitch, (Q) Bmem, (R) NKT, (S) iNKT, (T) NK, (U) DCs and (V) pDCs. 
Boxes and center lines represent interquartile range (IQR) and median, respectively; whiskers, 
1.5× IQR. Statistical comparison was based on Kruskal-Wallis one-way ANOVA followed by 
Dunn post-hoc test, adjusted with the False Discovery Rate method. P values above patient 
groups indicate significant difference as compared to healthy controls, P values between 
patient groups indicate significant differences between the JIA and disease controls.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 1, 2018. ; https://doi.org/10.1101/382499doi: bioRxiv preprint 

https://doi.org/10.1101/382499


 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 1, 2018. ; https://doi.org/10.1101/382499doi: bioRxiv preprint 

https://doi.org/10.1101/382499


Figure 4. Immunological architecture of JIA is maintained into disease remission. 
Healthy controls and JIA patients were assessed for immune phenotype. (A) Healthy controls 
(C; n=43), JIA patients with quiescent disease at sampling (inactive; n=43) and JIA patients 
with active disease (JIA active; n=42 plotted with multidimensional scaling over 42 
immunologic variables. All individuals were plotted with multidimensional scaling showing 
Bray-Curtis dissimilarity indices over 42 immunologic variables. Variation explained by each 
axis is indicated in the parentheses. (B) Upper right, above the diagonal: coregulation between 
pairs of cell types in JIA patients with inactive disease (n=42) (red: positive correlation 
coefficient, blue: negative correlation coefficient, light gray: no data available). Unbiased 
clustering of coefficients was performed to group coregulated cell types. Lower left, below 
the diagonal: dark gray indicates coregulation between pairs of cell types in JIA patients with 
active disease (n=42 that is preserved from inactive JIA patients). Coregulation between pairs 
of cell types that are significantly altered by disease activity (p < 0.05, and boxed if p < 0.01) 
are colored (red: positive correlation coefficient, blue: negative correlation coefficient). (C) 
Box plots NK cells shown. Boxes and center lines represent interquartile range (IQR) and 
median, respectively; whiskers, 1.5× IQR. Statistical comparison was based on Kruskal-
Wallis one-way ANOVA followed by Dunn post-hoc test, adjusted with the False Discovery 
Rate method. 
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Figure 5. Immunological architecture of JIA is not primarily driven by medication. 
Healthy controls and JIA patients were assessed for immune phenotype. (A) Healthy controls 
(C; n=43), untreated JIA patients (Med0, no medication or nonsteroidal anti-inflammatory 
drugs; n=22), steroid-treated JIA patients (Med1, methotrexate or leflunomide; n=42), or 
biologic-treated JIA patients (Med2, Canakinumab, Tocilizumab, Etanercept, Adalimumab, 
Abatacept, with or without additional methotrexate or leflunomide treatment; n=21) were 
plotted with multidimensional scaling over 42 immunologic variables. All individuals were 
plotted with multidimensional scaling showing Bray-Curtis dissimilarity indices over 42 
immunologic variables. Variation explained by each axis is indicated in the parentheses. (B) 
Immune phenotypes in which a significant change was observed in one or more JIA subtype 
were assessed for correlates with treatment status. Active disease status is indicated by the 
black dots. Boxes and center lines represent interquartile range (IQR) and median, 
respectively; whiskers, 1.5× IQR. P values show significant difference as compared to the 
controls. Statistical comparison was based on Kruskal-Wallis one-way ANOVA followed by 
Dunn post-hoc test implemented in R and P values were adjusted with the False Discovery 
Rate method. 
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Figure 6. Machine learning identifies iNKT cells as primary predictive immunological 
change in JIA. Random forests were trained on immunological data from healthy controls 
(n=43) and JIA patients (n=72), selecting for capacity to discriminate between the two groups. 
(A) ROC curves computed from the out-of-bag predictions of a random forests trained on the 
entire dataset (red curve) and the top three features identified by the trained random forests 
(other curves). (B) The top ten features in the random forest trained on the entire data set, and 
contribution to the optimal random forest approach. 
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