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Abstract. Optical Maps (OM) provide reads that are very long, and thus can
be used to detect large indels not detectable by the shorter reads provided by
sequence-based technologies such as Illumina and PacBio. Two existing tools for
detecting large indels from OM data are BioNano Solve and OMSV. However,
these two tools may miss indels with weak signals. We propose a local-assembly
based approach, OMIndel, to detect large indels with OM data. The results of
applying OMIndel to empirical data demonstrate that it is able to detect indels
with weak signal. Furthermore, compared with the other two OM-based meth-
ods, OMIndel has a lower false discovery rate. We also investigated the indels
that can only be detected by OM but not Illumina, PacBio or 10X, and we found
that they mostly fall into two categories: complex events or indels on repetitive re-
gions. This implies that adding the OM data to sequence-based technologies can
provide significant progress towards a more complete characterization of struc-
tural variants (SVs). The algorithm has been implemented in Perl and is publicly
available on https://bitbucket.org/xianfan/optmethod.

1 Introduction

Structural variant (SV) detection is essential in understanding human genetic diseases
such as cancer [11, 37, 23]. Detecting SVs is very challenging due to several factors,
including the simple sequence context of the SV breakpoints [1], the multiple SVs
aggregated to form a complex SV [39, 31, 2], and the repetitive nature of the human
genome [13, 34]. Advances in sequencing technology make it possible to detect SVs
through computational tools [25]. Several SV detection methods using Illumina paired-
end reads have been devised [6, 16, 41, 18, 32, 8]. However, due to their small length
(typically, 300bp read length), the focus was mainly on small indel detection and medium-
sized simple SVs such as deletion and translocation [1, 40]. Large SVs whose break-
points fall at repetitive regions were not fully resolved by Illumina reads. PacBio single
molecule reads [7, 30], on the other hand, tackle those SVs in larger repetitive regions,
and detectable SV types naturally generalize to insertion and inversion, due primarily to
PacBio’s larger read length (typically 12kbp for RS II) [4].Nevertheless, the read length
is still not enough for spanning large repeats, leading to missing SVs.
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Optical Maps [33, 21] produce one of the longest read lengths among all. It utilizes
restriction enzymes to make fluorescent labels on the molecule wherever there is a 6 or
7bp sequence motif [17, 3]. The molecule is then linearized and imaged. The subsequent
image processing step measures the distance of the two neighboring fluorescent labels
and outputs an array of integers, indicating the position (in bp) of each fluorescent label
on the read. When the DNA has a structural variant with respect to the reference, the
read has discordant patterns of integers with that of the in silico digested reference se-
quence. Read length is typically >150kbp [24], which is one order of magnitude longer
than PacBio reads and two orders of magnitude longer than Illumina reads. With such
large length, Optical Maps data enables the detection of SVs that are missed by other
technologies, and they have been applied to both normal and cancer patient samples
[24, 15]. Despite the large read length, computational methods are required for it to be
widely used for SV detection by accounting carefully for OM data shortcomings, which
include the small number of fluorescent labels in each read, and the various errors of
additional labels (17%), missing labels (10%), and sizing difference [3].

The use of OM reads data for SV detection started from correcting [28], assessing
[14] and scaffolding de novo whole genome assembly (WGA) from other sequencing
technologies such as PacBio [30], Illumina [38], 10X [27] or a combination of mul-
tiple technologies [36]. Recently, there have been efforts for using OM alone for SV
detection. There are two existing approaches to SV detection using OM data alone:
assembly-based and alignment-based. In assembly-based methods, OM reads are as-
sembled de novo into contigs, which are then compared with the in silico digested refer-
ence sequence [3, 24]. Such de novo WGA strategy takes advantage of the randomness
of errors in a cohort of reads for obtaining accurate and long contigs. However, due
to the repetitive regions in the genome and the low resolution of the label coordinates,
de novo WGA requires typically 70x read coverage in a diploid healthy human genome
[12]. This makes it impossible to tackle those SVs with low coverage of reads. BioNano
Solve [12] is an assembly-based approach and its recall is limited in low-coverage loci.
Alignment-based methods, on the other hand, align the OM reads to the reference, and
cluster the reads on focal regions where discordant patterns occur. OMSV [22] is an
alignment-based method which uses the reads that can span the indels to infer inser-
tions and deletions. It is computationally efficient as compared with BioNano Solve
(at least one order of magnitude less time and much smaller required memory) and is
applicable to loci with lower coverage of reads. However, in inferring indels, it can
only cluster the reads having the same indel boundary. The design of OMSV limits the
detection power only to indels in which a significant number of reads are confidently
well aligned, but cannot deal with the indels when the aligners render different bound-
aries for different reads because of data noise (illustrated in Fig. 1). Mak et al. [24]
combined the assembly-based and alignment-based approaches and used both WGA
and an alignment-based approach for SV detection. However, their SV calling process
involves heavy manual curation based on Illumina reads. Furthermore, no accompany-
ing tool was released with the paper, making it hard to compare to other methods in a
performance study.

In this paper, we propose OMIndel, an alignment-based method combined with lo-
cal assembly-like approach for indel detection. It is sensitive on calls with weak signals,

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 2, 2018. ; https://doi.org/10.1101/382986doi: bioRxiv preprint 

https://doi.org/10.1101/382986
http://creativecommons.org/licenses/by/4.0/


Detecting Large Indels Using Optical Map Data 3

Fig. 1: OMView [19] illustrations of a deletion (left), as validated by parents’ signal, and insertion
(right), as validated by both parents’ signal and orthogonal sequence-based methods (i.e., the
methods that are applied to sequencing technologies other than OM), both of which are missed by
OMSV and BionanoSolve on NA12878. Shown is the alignment of the OM reads to the reference.
Reference is the top bar in red. OM reads are the bars below. On the reference and OM reads, the
vertical lines indicate the presence of a restriction enzyme fluorescent label. On a read, we call the
part in between two neighboring restriction enzymes a fragment. Fragment length is the distance
between these two restriction enzymes. A read is composed of N fragments if it has N + 1
restriction enzymes. Whenever such distance is consistent with that of the reference, the color of
that fragment is set to yellow. When the distance on the read is smaller than that on the reference,
the fra gment is in green. When the distance on the read is larger than that on the reference,
the fragment is in red. The intensity of green and red represents the intensity of contraction and
stretch, respectively. It is possible that the two neighboring fragments are taken as one block
in the alignment, in which case their colors are the same. Left: The fragments in green in the
middle of the reads (highlighted by the black box) indicate a deletion (19:40101872-40147822).
But due to their not having the same boundary (some green fragments in green protrude to the
right and some to the left due to two or more fragments that are aligned as one block) and the
same intensity (green colors vary), the signal is weak, leading to the missing of the call by the
two existing methods. Right: The fragments in orange in the middle of the reads (highlighted by
the black box) indicate an insertion (1:236385430-236394679).

an improvement over both BioNano Solve and OMSV. A test on NA12878, a healthy
diploid genome, and the whole CEU trio demonstrate that OMIndel is able to detect
those indels not detectable by either of the two existing methods, while simultaneously
maintaining a lower or comparable false discovery rate. Furthermore, we looked into
the indels that are only detectable by OM but not by sequencing-based technologies
such as Illumina or PacBio, and categorized them into complex events or indels falling
on repetitive regions. The method is implemented in Perl and is publicly available for
download.

lignment, in which case their colors are the same. Left: The fragments in green in
the middle of the reads (highlighted by the black box) indicate a deletion (19:40101872-
40147822). But due to their not having the same boundary (some green sticks protrude
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to the right and some to the left due to the merging of two or more fragments) and the
same intensity (green colors vary), the signal is weak, leading to the missing of the call
by the two existing methods. Right: The fragments in orange in the middle of the reads
(highlighted by the black box) indicate an insertion (1:236385430-236394679).

2 Methods

2.1 General overview of OMIndel

For aligning the reads to the reference genome, OMIndel uses the same strategy as
OMSV, which integrates the results from two aligners RefAligner [24] and OMBlast
[20]. From the alignment, we extract all reads that do not have high concordance with
the reference (i.e., at least one of the fragment correspondences between read and refer-
ence has sizing difference larger than 2,000bp). We detect indels> 2,000 bp as this size
range is the strength of OM [22], and smaller indels can be covered by other sequence
technologies. The information of the discordance is recorded, including the coordinates
on the reference, sizing difference, etc. The subsequent read clustering involves two
steps, coarse and fine, for achieving both fast and accurate clustering. First, the coarse
clustering builds a graph for the discordant records and a graph-based union-find al-
gorithm [35] is used to find all connected components of this graph. Fine clustering is
then performed on each connected component. As the coarse clustering step may have
multiple indels clustered together due to false edges, for reads in one connected compo-
nent, we further apply a hierarchical clustering algorithm for breaking reads into groups
that are truly corresponding to the same indel. The scoring system in the hierarchical
clustering is a distance ranging from 0 to 1 between each pair of the reads (0 means
the two reads are exactly the same on the focal indel region, and 1 means the two are
completely different). Such distance is calculated by aligning the focal region of one
read to another (a dynamic programming algorithm for alignment is described below).
The alignment score is normalized and subsequently taken to calculate the distance. We
then classify the putative indel calls from each group into homozygous reference, ho-
mozygous variant and heterozygous variant with a variant score, followed by filtering.
An outline with the cartoons is shown in Fig.2. We now turn to describing the various
steps of OMIndel in detail.

2.2 Union-find for coarse clustering

Before the first round of clustering, we align the OM reads to the reference (GRCh38
is used in the Results section below) in the same fashion as that of OMSV [22]. That
is, the method uses integrated results from two aligners, RefAligner [24] and OMBlast
[20]. We then extract the variant reads that have at least one abnormal sizing difference
for all fragments in the read compared with the reference. As the two end labels on the
reads have a higher error rate, sizing differences on these labels are skipped. Also, in
local alignment, in case more than 5 consecutive fragments have to be aligned as one
block and cannot be aligned separately, they are omitted as they probably contain large
errors.
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Fig. 2: Illustration of the OMIndel method. (a) Deletion of a segment (in purple brackets) with
respect to the reference genome (in black horizontal line) is shown. The three labels with black
outer circles are deleted in individual’s DNA. Each label is shown in a different color for visual-
ization. Correspondence between labels on the reference and the individual’s DNA is shown in
dashed lines. Five OM reads aligned to this locus are shown: the ones in black lines (X1 and X5)
come from the reference allele, and the ones in dark blue lines (X2, X3, and X4) come from a
variant allele. Note that due to a sizing difference error on X5, it is selected as a variant read along
with X2, X3 and X4 in coarse clustering (step 1), yet to be filtered in fine clustering (step 2). (b)
Step 1, a coarse clustering is performed. X2, X3, X4, and X5 are all selected as variant reads.
They represent nodes in a graph. Since they overlap with each other, they are all connected. A
union-find algorithm is applied to the graph to cluster connected components, and the four reads
are grouped in one cluster. (c) Step 2, a fine/hierarchical clustering is performed on individual
connected components. The alignment score of each pair of two reads is calculated by a dynamic
programming algorithm (described in (d)). The clustering starts from the two reads that have the
smallest distance score, and stops when the distance score between two groups of reads is above
a threshold. X5, due to its large distance with X2, X3, and X4, does not successfully make it
into the cluster, as expected. (d) The process of dynamic programming algorithm to calculate the
alignment score. A and B are two OM reads (notice that B does not have the orange label as
that in A due to a missing label error). The topmost row and leftmost column of matrix M was
initialized with zeros. The entries are filled from top left to bottom right and the la rgest value is
selected as the alignment score. The traceback path (shown in red arrows) retrieves the optimal
alignment. In this example, A1 and A2 are joined as a group to be compared with B1, with a gap
penalty applied.
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We then build an undirected graph, in which each read represents a node, and an
edge links two nodes if their corresponding reads have their indicated indel coordinates
overlapping with each other on the reference. A union-find algorithm [35] is applied to
find all connected components in the graph, producing the clusters of reads. Following
this step, each connected component is refined via fine clustering as we describe in the
next section.

2.3 Local assembly-like approach for fine clustering

To overcome random errors in OM reads and achieve high accuracy in indel calling, one
more round of clustering is performed for each connected component obtained by the
previous step. Within a connected component, for a pair of reads A and B, a distance
DAB is calculated, which is used in the subsequent hierarchical clustering step. The
merging of clusters (in the hierarchical clustering) stops when the two clusters have their
distance larger than a threshold. The distance between two groups of reads is calculated
as the average distance of all pairs of reads between two groups. For a pair of reads
A and B, DAB is symmetric, composed of the scores from a dynamic programming
algorithm for pairwise read alignment. Specifically,

DAB = 1− SAB + SBA

2(max(SAA, SBB))
, (1)

where SAB is the score of aligning read A to read B using a dynamic programming
algorithm described next. When A and B are exactly the same, DAB equals zero. The
maximum value of D is 1.

We now describe a dynamic programming algorithm for OM reads. In sequence-
based pairwise alignment, dynamic programming algorithms such as Smith-Waterman
[9] look for best matches between subsequences of the two sequences. A scoring system
is used as a way to penalize gaps and mismatches but reward matches. In OM, the
dynamic programming is designed in a similar fashion except that instead of penalizing
mismatches of the nucleotide bases, we penalize the sizing difference between the two
fragments. Also penalizing the indel is turned into penalizing the additional and missing
labels. To allow errors that occur near each other, we take the matching of two merged
sets of fragments into consideration, with a penalty to the number of fragments that
are being merged. More formally, suppose OM read A has fragments A1, . . . , Ax and
OM read B has fragments B1, . . . , By . For example, if OM read A consists of four
coordinates (5, 10, 12, 18), then the fragme nts are A1 = 5 (= 10 − 5), A2 = 2 (=
12 − 10), and A3 = 6 (= 18 − 12); i.e., Ai is the number of positions that separate
the i-th and (i+ 1)-th coordinates in read A. The following is a dynamic programming
algorithm for calculating the score of optimally aligning A1...i to B1...j (1 ≤ i ≤ x,
1 ≤ j ≤ y), which is stored as entry M(i, j).

– Initialization: M(0, j) = 0 for 1 ≤ j ≤ y, and M(i, 0) = 0 for 1 ≤ i ≤ x.
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– Recursion:

M(i, j) = θ + max

(
0,

maxa=1,...,ω;b=1,...,ω

(
M(i− a, j − b)−

∣∣∣∣∣
a−1∑
u=0

Ai−u −
b−1∑
v=0

Bj−v

∣∣∣∣∣−G(a, b)
))

,

where G(a, b) = σ · (a + b − 2) is the gap penalty (σ is a normalizing factor
that makes sizing difference penalty and gap penalty comparable), θ is a reward
for extending the alignment to make the matrix entries positive when there is a
good alignment, and ω (≤ min(x, y)) is a user-specific threshold on the maximum
number of the fragments to be counted as one block for alignment. In the equation,
the summations are taken over u’s and v’s that satisfy i− u ≥ 1 and j − v ≥ 1.

– Termination: i = x and j = y.

If two reads are on two different genomic loci, they are unlikely to have overlapping
coordinates (with respect to the reference genome) on their respective OM reads and,
consequently, are unlikely to belong to the same connected component as identified
by the step given in Section 2.2 above. This is why the formula for M(i, j) does not
account for the actual coordinates, but only for the “spacings” between coordinates
(fragments). Finally,

SAB = max1≤i≤x,1≤j≤yM(i, j). (2)

2.4 Genotyping

We classify each call into homozygous reference, homozygous variant and heterozy-
gous variant by a maximum likelihood approach. The likelihood of each genotype takes
both supporting read number and concordance of their indicated indel size into account.
Specifically, we model the supporting read number as a Gaussian distribution (the num-
ber of reads aligned to a focal region varies and the farther that number from the mean,
the smaller its frequency, hence the choice of the Gaussian distribution). We model the
sizing difference of each read in a cluster as a Cauchy distribution (the sizing differ-
ences from noise have a Gaussian distribution with long tails, hence the choice of the
Cauchy distribution, which is also discussed in [22]; see Fig. 3 below). The likelihoods
can be expressed as follows:

L(D|g = 0) = fgaus(N ;µ, σ)
N∏
i=1

fcauchy(di;x0, γ),

L(D|g = 1) =
N−1∑
k=1

(
fgaus(k;

µ

2
,
σ

2
)

k∏
i=1

fcauchy(di; (x0 + ds), γ)fgaus(N − k;
µ

2
,
σ

2
)

N∏
i=k+1

fcauchy(di;x0, γ)

)
,

L(D|g = 2) = fgaus(N ;µ, σ)

N∏
i=1

fcauchy(di; (x0 + ds), γ).
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In these expressions:

– D is the OM data (all reads aligned to the local region of interest, given in terms of
their fragment length and alignment);

– g is the number of variant allele in the site (g = 0 for homozygous reference, g = 1
for heterozygous and g = 2 for homozygous variant);

– N is the total number of reads on the site;
– µ and σ are the parameters learned from the whole genome, representing the mean

and standard deviation of the number of reads covering a site;
– di is the inferred indel size from the ith OM read;
– x0 and γ are the location and scale parameters of the Cauchy distribution learned

from the whole genome where the assumption is there is no indel; and,
– ds is the estimated indel size given from the previous local assembly-like step,

which is the mean of the inferred indels from the reads that cluster.

For homozygous reference, there is no indel, and the location parameter of the siz-
ing difference between read and reference is simply x0, the one learnt from the whole
genome. For homozygous variant, the sizing difference of every read on the site corre-
sponds to the same Cauchy distribution learnt from the whole genome, except that the
distribution shifts to the left by ds. For heterozygous variant, suppose k reads support
the variant and the rest of N − k reads support the reference. The variant and reference
supporting read number should both be corresponding to a modified Gaussian distribu-
tion (i.e., the mean and variant are half of the µ and σ), with their sizing difference to
the reference and variant Cauchy distribution, respectively.

To improve computation time, we approximate the heterozygous variant’s likeli-
hood as follows:

L(D|g = 1) = fgaus(k;
µ

2
,
σ

2
)

k∏
i=1

fcauchy(di; (x0 + ds), γ)

fgaus(N − k;
µ

2
,
σ

2
)

N∏
i=k+1

fcauchy(di;x0, γ),

where k represents the number of variant-supporting reads that are clustered in the
previous step, and N − k is the number of remaining reads aligned to the site. As the
previous step assembles all the reads supporting the same allele, this approximation is
valid as the other terms in the summation (the first equation for L(D|g = 1) above) are
close to zero and thus can be omitted. When a read supporting the variant is wrongly
clustered as a reference read, as long as its sizing difference is > 1,000bp (some weak
signal exists), such omission makes a difference of only less than 6.12e-05 (through the
calculation of Cauchy distribution by setting γ = 200). Finally, a maximum likelihood
estimate of the genotype is given by

g∗ = argmaxgL(D|g). (3)

The variant score can be calculated as

Sv = −10log
L(D|g = 0)Pv(g = 0)∑2
l=0 L(D|g = l)Pv(g = l)

, (4)
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where Pv(g) are the prior probabilities for the three genotypes, and

Pv(g = l) =
1

3
(5)

for l = 0, 1 and 2.

3 Results

3.1 Simulated data

Our simulation process involves two steps: simulating variant alleles and simulating
OM reads. In simulating variant alleles, on the in silico digested human reference chro-
mosome 20, we simulate 50 deletions and 50 insertions. For each indel, we uniformly
sample its starting label. The indel size is sampled from a Cauchy distribution (local-
ity = 0, scale = 300) and is at least 2,000bp. We use a Cauchy distribution to simulate
the real situation where medium-sized indels outnumber large indels. Labels that are
covered in the deleted area are also deleted. For insertions, we simulate the inserted
labels such that the distance between the current and the next inserted label is drawn
from a Poisson distribution, where the mean is the average distance between two labels
in the real case (10kbp). This process of simulating the inserted label is repeated until
no more labels can be sampled from the simulated insertion size. To avoid sampling
overlapping indels, we constrain the distance between each pair of neighboring indels
to be >100kbp.

In simulating OM reads, we learned the statistics, including read length, error rates
and sizing difference from the real data (CEU trio) and approximated with distributions
described below. We simulated three total coverages: 80x, 100x, and 120x and four
variant allele fractions (VAFs): 0.2, 0.3, 0.4 and 0.5, resulting in 12 genomes, each
having one variant allele and one reference allele. In simulating a read from a given
allele (reference or variant), we uniformly sample the starting point. From the real data,
we estimated the median of read’s length to be about 200kbp. Since the minimum read
length starting to contribute to SV detection is 150kbp [3], we set the length of the
read to be l0+ lr, where l0 is 150kbp and lr is sampled from a Poisson distribution with
mean at 50kbp. Next, we learned the error profiles from the high-confidence alignments
(alignments whose reads have≥ 12 labels and clipped end is≤ 4 labels). The following
items are the statistics learned for the three error types.

– Missing label error rate’s median is 0.05 (similar to that reported in [22]);
– Additional label error rate is one per 200kbp;
– Sizing difference’s distribution is Cauchy-like as it has long tails (Fig. 3). The

Cauchy distribution’s parameters are approximated to be locality = 0 and scale =
200 (this is similar to [22]).

We iterate this process until we simulate enough reads for the desired depth at this allele
for a specific VAF and total coverage.

We applied OMSV, BioNano Solve and OMIndel to the simulated data, and mea-
sured the recall and precision of the three methods. To reduce the effect of randomness,
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Fig. 3: Sizing difference distribution of NA12878 as approximated by a Cauchy distribution (red
curve).

for each total coverage and VAF, we simulated five data sets of OM reads, in order
to obtain a set of accurate measurements. Fig. 4 and Fig. 5 show the recall and preci-
sion, respectively, of all three methods. For all coverages, OMIndel has higher recall
than OMSV at all VAFs while maintaining comparable precision. Similarly, OMIndel
is advantageous over BioNano Solve on almost all VAFs for both deletion and inser-
tion on both recall and precision. BioNano Solve has a slight advantage over OMIndel
for insertion when VAF is at 0.5 for 100x, or when VAF is at 0.2 or 0.3 for 80x, at
the cost of much lower precision. We observe that at low VAFs, with the increasing of
the coverage, BioNano Solve’s recall decreases. This shows the instability of BioNano
Solve when reference reads greatly outnumber variant reads. Overall, our algorithm has
the advantages on recall at small VAFs, with comparable precision with the other two
methods for higher VAFs.

It is important to note here that BioNano Solve does not report the indel sizes along
with the predictions, which is the reason why we cannot report the recall and precision
of the methods broken down by indel sizes (as the indel size could often be a factor in
a method’s performance).

We investigated whether the low recall of OMSV is due to false alignments. We
generated a ”ground truth” alignment file given our knowledge of the indel and read
errors for one of the twelve cases (VAF=0.5, total coverage=120x). We then applied
OMSV to the true alignments and found that while maintaining a high precision (1 for
both deletion and insertion), the recall for deletion and insertion are respectively 1 and
0.98, compared with 0.64 and 0.44 from the alignment that has errors. This shows that
OMSV’s recall was greatly affected by erroneous alignments.
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Fig. 4: Comparison of recall on simulation data on VAF = 0.2, 0.3, 0.4, 0.5 among OMIndel,
OMSV and BioNano Solve, for deletion with coverage at (a) 80x (b) 100x (c) 120x and insertion
with coverage at (d) 80x (e) 100x and (f) 120x. Height of the bars represents the mean; the error
bars represent the range within one standard deviation whenever it is within [0, 1].

Lastly, we evaluated the computational cost for the three methods (Table 1) for one
of the simulation data sets (coverage=100x). OMSV is the fastest while requiring the
lowest amount of memory. OMIndel is the second (around 30 times faster than BioNano
Solve while requiring relatively small amount of memory). BioNano Solve requires a
large amount of CPU hours as well as memory. Here the CPU hours are the total ones
if parallelization is applied for a fair comparison, and the same to memory.

Table 1: Comparison of computational cost on simulation data.

OMIndel OMSV BioNano Solve
CPU hours 5 hours 0.5 hours 140 hours
Memory 4G 1G 20G
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Fig. 5: Comparison of precision on simulation data on VAF = 0.2, 0.3, 0.4, 0.5 among OMIndel,
OMSV and BioNano Solve, for deletion with coverage at (a) 80x (b) 100x (c) 120x and insertion
with coverage at (d) 80x (e) 100x and (f) 120x. Height of the bars represents the mean; the error
bars represent the range within one standard deviation whenever it is within [0, 1].

3.2 Empirical data

We applied OMIndel to NA12878 (VAF of 0.5 for heterozygous events, and ∼90x cov-
erage), and called 479 deletions and 700 insertions. Comparing the calls with those
of OMSV and BioNano Solve, OMIndel uniquely called 62 (13%) deletions and 87
(12%) insertions (Venn diagram in Fig. 6a and b), in which 37 (60%) deletions and 77
(89%) insertions are also called by either parents (NA12891 and NA12892) or overlap
with orthogonal sequencing-based calls. We construct the orthogonal sequence-based
calls such that it is a deduplicated union set of indels from Delly [32], PacBio calls
generated in [30], 10X calls (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878)
and hybrid methods including HySA [10], svclassify [29] and metaSV [26]. We found
here that only 25 (5.2%) deletions and 10 (1.4%) insertions can be validated neither by
the parents’ calls nor by orthogonal sequence-based calls. The estimated precision of
OMIndel is therefore 94.8% for deletion and 98.6% for insertion, compared with 93.4%
and 99.7% for OMSV and 93.0% and 95.4% for BioNano Solve. It was observed that
among those numbers, only OMSV’s insertion detection has around 1% advantage of
precision over OMIndel. However, it is at the cost of missing 127 (22.8%) validated
insertions shared by both OMIndel and BioNanoSolve. In addition, Fig. 6e and f show
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Fig. 6: Venn diagram comparing the indels of OMIndel, OMSV and BioNano Solve. (a) and (b)
show the numbers of deletion and insertion in the Venn diagram. (c) and (d) show the number of
calls that can be validated by the parents’ OM calls for deletion and insertion, respectively. (e)
and (f) show the number of calls that can be validated by the orthogonal sequenced-based method
for deletion and insertion, respectively. The corresponding percentages over the total call are in
parenthesis.

that OMIndel can potenti ally complement or even outperform OMSV and BioNano
Solve in terms of detecting novel calls validated by sequence-based method (13 for
deletion and 26 for insertion, compared with 13 and 11 for OMSV, and 53 and 62 for
BioNano Solve).

We further looked into OMIndel unique and validated calls (named set A), and
compared with the number of supporting reads between those are shared (set B). We
found set A has a much smaller number of variant supporting read number (Table 2)
than that of set B. Along with the recalls from simulation, OMIndel has been proven to
be advantageous in calling indels with weak signals.

The CEU trio data provided us the opportunity to evaluate our genotype accuracy
compared with the other two methods. Table 3 listed the accuracy of proband’s geno-
type given parents’ calls and corresponding genotypes according to the mendelian in-
heritance rule. Except on deletion, when OMIndel’s genotype accuracy ties with that of
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Table 2: Comparison of mean variant supporting read number between unique validated calls and
shared calls. In the parenthesis are the total call number within the category.

Mean variant read # (Total calls)
OMIndel Unique OMIndel Shared

DEL 16.48 (37) 26.72 (417)
INS 18.79 (77) 28.73 (613)

BioNano Solve, OMIndel outperforms the two methods on both insertion and deletion.
Particularly, we observed that OMSV’s genotype accuracy is pretty low, as compared
with its high precision in making a call. This particularly demonstrates OMSV’s disad-
vantages in extracting supporting variant and reference reads corresponding to a variant
call when mis-alignments are involved.

Table 3: Comparison of genotype accuracy.

GT Accuracy
DEL INS

OMIndel 0.75 0.83
OMSV 0.63 0.73
BioNano Solve 0.75 0.77

3.3 Investigating novel calls missed by sequence-based methods

We further compared OMIndel calls with the sequence-based calls described above
for both deletions and insertions (Fig. 7). We investigated the novel calls missed by
all sequence-based methods but can be found in parents’ calls. Of the 479 deletions,

320 120 
(86 in parents) 

OM Sequence-based 
DEL > 2kbp 

359 

(a) 

329 
(296 in parents) 

OM Sequence-based 
INS > 2kbp 

371 

(b) 

548 

Fig. 7: Venn diagram comparing sequence-based indels and OMIndel calls on OM. The numbers
in parenthesis are those that are also called by parents.

120 (25%) are missed by sequence-based methods, of which 86 (72%) are validated by
parents’ calls. Of the 700 insertions, 329 (47%) are missed by sequence-based methods,
of which 296 (90%) are validated by parents’ calls. We randomly selected 20 deletions
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and 20 insertions that are novel to sequence-based calls but called in parents. We found
these novel indels are missed by sequencing-based methods mainly because they fall
into repetitive regions (Fig. 8) or they are complex events (Fig. 9). In all, these events
are missed by Illumina or PacBio based methods mainly because the variant signals are
very weak.

4 Discussion

With the long reads provided by OM data, it is of most interest to know what OM can
deliver as compared with other technologies. While this study is focused on answering
this question, we found the existing tools on OM are limited in handling the indels with
weak signals. Our proposed OM-based targeted assembly approach, OMIndel, falls in
the same paradigm of that in TIGRA [5] and HySA [10].

In simulations, we found that BioNano Solve is only advantageous over OMIndel
on high VAFs and insertions when measuring recall. This is consistent with our prior
assumption that a de novo assembly-based approach is better at detecting large inser-
tions than alignment-based or local assembly-based approach when there are enough
reads representing the variant. The recall corresponding to different insertion sizes is
yet to be summarized for alignment-based or assembly-based approaches.

We summarized some major categories where OM has its unique advantage of de-
tecting indels over sequencing-based technologies. However, further investigation is
needed so that such list of categories can be comprehensive as a reference for sequenc-
ing. We also observed that there are quite a few sequence-based calls (47.1% for dele-
tions and 59.6% for insertions) missed by our OM-based method. Further investigation
will facilitate exploring why OM missed the indels called by sequence-based methods.
This may further help to increase the recall of OM-based algorithms. It is also valuable
to identify OM’s limitations, i.e., which indels are beyond OM’s detection ability. This
could be done by looking into the calls unique to sequence-based methods.

We acknowledge that the error profiles unique to OM data have not been fully inves-
tigated in this study. As discussed by [22], missing and additional labels are indicative of
small indels, whereas sizing differences are indicative of large indels. In this study, we
focused only on large indels (indels > 2000bp) by modeling sizing difference distribu-
tion in our genotyping algorithm. Detecting smaller indels requires further investigation
where the missing and additional label errors need to be modeled.

Finally, this paper’s scope is limited only to indel detection. OM’s long reads have
advantages in detecting inversions, translocations, or complex events such as chromoth-
ripsis and chromoplexy. With all of these explored, a comprehensive characterization
of the human genome could potentially be achieved.

5 Conclusions

We proposed OMIndel, a method that utilizes OM reads to detect large indels. It dif-
fers from the previous two methods in that it is alignment-based but follows a local
assembly-like fashion, so that it can simultaneously detect indels with weak signal as
well as maintain a low FDR. We applied OMIndel to both simulated and real data,
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(a) A deletion on 16:33505401-33605938 in GRCh37

(b) An insertion on 6:64978745-65023447 in GRCh37.

Fig. 8: IGV of complex indels that are also called by parents but missed by sequence-based meth-
ods. In all IGVs, the upper and bottom panels show the alignment of Illumina and PacBio reads,
respectively.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 2, 2018. ; https://doi.org/10.1101/382986doi: bioRxiv preprint 

https://doi.org/10.1101/382986
http://creativecommons.org/licenses/by/4.0/


Detecting Large Indels Using Optical Map Data 17

(a) A deletion on 11:134791298-134822210 in GRCh37

(b) An insertion on X:46934610-46967845 in GRCh37.

Fig. 9: IGV of indels overlapping with repetitive regions. These indels are also called by parents
but missed by sequence-based methods.
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and found that it is advantageous over the other two OM-based methods, OMSV and
BioNano Solve, by detecting those indels that have weak signals while maintaining a
higher or comparable precision. We also manually inspected the indels unique to OM
but missed by sequence-based methods. We found that they fall into either a category
of complex events or at repetitive regions. OMIndel is freely downloadable online, and
we expect that with the increasing availability of samples having OM data and the de-
creasing cost of OM technology, this tool can be widely used for SV detection.
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