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Abstract 14 

Due to advancements in sensor-based, non-destructive phenotyping platforms, researchers are 15 

increasingly collecting data with higher temporal resolution. These phenotypes collected over 16 

several time points are cataloged as longitudinal traits and used for genome-wide association 17 

studies (GWAS). Longitudinal GWAS typically yield a large number of output files, posing a 18 

significant challenge for data interpretation and visualization. Efficient, dynamic, and integrative 19 

data visualization tools are essential for the interpretation of longitudinal GWAS results for 20 

biologists but are not widely available to the community. We have developed a flexible and user-21 

friendly Shiny-based online application, ShinyAIM, to dynamically view and interpret temporal 22 

GWAS results. The main features of the application include (i) an interactive Manhattan plots for 23 

single time points, (ii) a grid plot to view Manhattan plots for all time points simultaneously, (iii) 24 

dynamic scatter plots for p-value-filtered selected markers to investigate co-localized genomic 25 

regions across time points, (iv) and interactive phenotypic data visualization to capture variation 26 

and trends in phenotypes. The application is written entirely in the R language and can be used 27 

with limited programming experience. ShinyAIM is deployed online as a Shiny web server 28 

application at https://chikudaisei.shinyapps.io/shinyaim/, enabling easy access for users without 29 

installation. The application can also be launched on the local machine in RStudio. 30 
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Introduction 33 

Due to the increased availability of high-throughput phenotyping platforms, there is growing 34 

interest in the quantitative genetics of longitudinally measured traits, i.e., traits that are measured 35 

over multiple time points by advanced imaging systems (Araus and Kefauver 2018; Araus et al. 36 

2018). For example, the application of GWAS to abiotic stress responses, such as drought, 37 

salinity, and temperature stress, measured at temporal resolution may provide insights into the 38 

mechanisms underlying plant physiological processes measured throughout the duration of stress 39 

or development (Busemeyer et al., 2013; Moore et al., 2013; Topp et al., 2013; Slovak et al., 40 

2014; Wu�rschum et al., 2014; Yang et al., 2014; Bac-Molenaar et al., 2015; Campbell et al 41 

2015; Campbell, Walia, and Morota 2018). 42 

Data visualization is a fundamental aspect of big data analysis in genetics. Manhattan plots are 43 

standard tools used to visualize GWAS results and to identify the genomic regions associated 44 

with a given phenotype. However, the static nature of these plots limits the information that can 45 

be displayed and extracted. Further, the number of Manhattan plots that can be viewed at one 46 

time is limited, making comparisons across phenotypes tedious. The situation becomes more 47 

challenging in the case of longitudinal GWAS, which are performed across multiple time points, 48 

with each time point producing a Manhattan plot. Furthermore, it is difficult to share GWAS 49 

outputs in an easy and convenient way, requiring novel applications for dynamic data 50 

visualization and sharing. Many browsers have been built to visualize GWAS outputs (e.g., 51 

Khramtsova and Stranger 2017; Cuellar-Partida, Renteria, and MacGregor 2015; Juliusdottir et 52 

al. 2018; Ziegler, Hartsock, and Baxter 2015). However, none of these are specifically tailored 53 

for longitudinal traits. Further, existing applications do not offer features for the dynamic 54 

visualization of Manhattan plots online and for comparisons across timepoints simultaneously. 55 

To address these limitations, we have developed a Shiny-based application, ShinyAIM, for 56 

visualizing and interpreting longitudinal GWAS outputs in an interactive way. The application is 57 

distinct from previously developed GWAS visualization browsers because it is specifically 58 

designed for longitudinal traits, allowing the simultaneous visualization of all time points or 59 

phenotypes and comparisons of top associated markers across time points. The interactive and 60 

integrative GWAS and phenotypic data visualization features embedded in the application offer a 61 

new resource for users to readily extract extensive information from temporal GWAS results.  62 
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Overview of ShinyAIM 63 

Methods 64 

ShinyAIM is entirely written in the R language (R Core Team 2018) with the underlying R code 65 

encapsulated by the shiny R package (Chang et al. 2018), which is a web application framework 66 

for R, offering an interactive graphical user interface. Shiny has been making inroads into plant 67 

breeding and quantitative genetics for research and teaching purposes, such as Be-Breeder 68 

(Fritsche-Neto and Matias, 2016) and ShinyGPAS (Morota 2017). ShinyAIM leverages the 69 

cumulative utility of the R packages manhattanly (Sahir 2016), plotly (Sievert et al. 2017) and 70 

ggplot2 (Wickham 2016) to create a cohesive web browser-based application. The ShinyAIM 71 

application does not require any working knowledge of R and is intuitively operated through 72 

graphical user interface. ShinyAIM is hosted by a Shiny web server 73 

(https://chikudaisei.shinyapps.io/shinyaim/) for online use or can be run locally within RStudio 74 

by running the code shiny::runGitHub("ShinyAIM", "whussain2"). Alternatively, the ShinyAIM 75 

source code and sample files can be directly downloaded from the GitHub repository 76 

(https://github.com/whussain2/ShinyAIM). From the downloaded directory, the source file 77 

named app.R in RStudio can be run by clicking the Run App button. The ShinyAIM application 78 

is open source and is distributed under Artistic License 2.0. 79 

Usage 80 

The starting page of the ShinyAIM application includes the Information tab with detailed 81 

information on how to format and upload the data. The video demonstration illustrating the 82 

application usage is also available (https://youtu.be/5-JLMpSiwv4). The ShinyAIM is aimed for 83 

visualization of GWAS outputs and does not perform GWAS analysis. There are five required 84 

columns in the user data file labeled as ‘timepoint’ (time point), ‘marker’ (marker name), 85 

‘chrom’ (chromosome number), ‘pos’ (marker position), and ‘P’ (marker p-value) for Manhattan 86 

plot visualizations. For phenotypic data visualization, the data file must have two columns 87 

including ‘timepoint’ (time point), and ‘Value’ (phenotypic value). Further detailed instructions 88 

regarding the data formatting and column naming can be found in the main Information tab. In 89 

addition, the sample data files can be directly downloaded by clicking the ‘Download Sample 90 

File’ button given on the top of sidebar panel in the main tab.  91 
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The ShinyAIM application hosted on the server can handle 200-300k markers for the 92 

visualization of interactive Manhattan plots. However, we suggest to launch the application 93 

locally by running the code shiny::runGitHub("ShinyAIM", "whussain2") in RStudio for the 94 

datasets with millions of markers. Alternatively, filtering can be done based on p-values by 95 

removing markers with large p-values prior to uploading the input file for visualization. 96 

Main features and functionality 97 

The application has four main features to explore GWAS results: (i) interactive Manhattan plots 98 

for single time points, (ii) Manhattan grid plot to compare results across all time points 99 

simultaneously, (iii) dynamic views of p-value filtered top associated markers in a scatter plot to 100 

identify co-localized markers over time, and (iv) visualization of phenotypic data used for 101 

GWAS (Figure 1). These features are supported by user-defined data filtering criteria in 102 

ShinyAIM to smoothly navigate the application. Each feature is briefly described in the 103 

following sections. 104 

Interactive Manhattan Plots 105 

In the Interactive Manhattan Plots panel, users can interactively view the Manhattan plot for each 106 

time point (Figure 1A). After the correct file format is selected and the file is uploaded, the 107 

available time points will be automatically updated in the ‘Choose Time Point or Phenotypes’ 108 

menu. An interactive Manhattan plot is automatically generated on the right-hand panel after 109 

selecting a target time point. Users can move the mouse over the points in the plot to display 110 

detailed information, including the marker name, position, chromosome location, and -log10 p-111 

value. Furthermore, it is possible to zoom in on potential candidate regions to obtain additional 112 

detail. ShinyAIM offers the flexibility to choose the significance level by moving the slider input 113 

bar. In addition, users have a choice to display a list of markers arranged in decreasing order of 114 

p-values in the table below the Manhattan plot panel. The display also includes marker 115 

information in the input data file. The slider input bar controls the number of markers shown in 116 

the table. 117 

Manhattan Grid Plot 118 

Manhattan Grid Plot tab allows users to visualize the Manhattan plots combined for all time 119 

points and can be used to explore how GWAS peaks change over time to facilitate data 120 
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interpretation (Figure 1B). The significance threshold for markers can be modified by moving 121 

the slider input bar. Moreover, ShinyAIM enables users to choose the number of columns and 122 

rows in the grid plot by moving the slider input bar ‘Select the Number of Columns in Grid Plot.’ 123 

Comparison of Associated Markers 124 

Users are able to dynamically view only the top associated markers in a scatter plot (Figure 1C). 125 

This feature is implemented in ShinyAIM to enable users to focus only on the topmost associated 126 

markers and compare these markers across time points to identify co-localized regions. Users can 127 

select the number of markers displayed in a scatter plot by filtering the markers based on p-128 

values. This is achieved by directly typing or selecting the option ‘Select Top Markers Based on 129 

p-value.' The scatter plot is interactive, and users can move the mouse over a point to display 130 

information, including the time point, chromosome name, position of the marker, name of the 131 

marker, and -log10 p-value (Figure 1C).  132 

Phenotypic Data Visualization 133 

Phenotypic data visualization helps users view phenotypes used for GWAS in the form of 134 

dynamic histograms and density plots (Figure 1D). The trends and variability in phenotypic 135 

values at each time point can be visualized using box plots. All plot types are interactive, and 136 

users can move the mouse over a particular point to obtain detailed information. 137 

Conclusion 138 

We have developed a user-friendly integrative Shiny-based application to dynamically visualize 139 

and interpret longitudinal GWAS results, providing an easy-to-use online tool to the community.  140 

Availability 141 

The source code for the ShinyAIM application is freely available at the GitHub repository 142 

https://github.com/whussain2/ShinyAIM or at the Zenodo repository 143 

https://zenodo.org/record/1422835. The source code is licensed under Artistic License 2.0. 144 

ShinyAIM can be launched on any system that has RStudio installed or available online at the 145 

Shiny web server https://chikudaisei.shinyapps.io/shinyaim/ 146 

 147 
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Figures 149 

150 

Figure 1: Main interface of the ShinyAIM application. Screenshots of panels for the main tabs 151 

are shown. (A) The ‘Interactive Manhattan Plots’ tab allows users to display interactive 152 

Manhattan plots for a selected time point. Users have the flexibility to choose the significance 153 

level and can display the top associated markers in tabular format. (B) The ‘Manhattan Grid Plot’154 

tab allows users to visualize Manhattan plots for all time points simultaneously. Users have the 155 

flexibility to choose the significance level and the number of columns in the grid plot. (C) The 156 

‘Comparison of Associated Markers’ tab allows users to filter markers based on p-values, display157 

a scatter plot for comparisons across all time points, and search for co-localized markers. (D) 158 

The ‘Phenotypic Data Visualization’ tab generates histogram and density plots and summarizes 159 

trends in temporal phenotypic data in the form of box plots.   160 
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