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Allele-specific expression (ASE) at single-cell resolution is a critical tool for un-5

derstanding the stochastic and dynamic features of gene expression. However,6

low read coverage and high biological variability present challenges for analyz-7

ing ASE. We propose a new method for ASE analysis from single cell RNA-Seq8

data that accurately classifies allelic expression states and improves estimation9

of allelic proportions by pooling information across cells.10

Single-cell RNA sequencing (scRNA-Seq) can reveal features of cellular gene expression11

that cannot be observed in bulk RNA sequencing1. Allelic imbalance is common across12

many genes2 and can range from a subtle imbalance to complete monoallelic expression as13

in imprinted genes3 or genes under dosage compensation by X chromosome inactivation4,5.14

Allele-specific expression (ASE) in single cells can provide a rich picture of the stochastic15

and dynamic properties of gene expression in individual cells. Analysis of single-cell ASE16

poses unique challenges due to the low depth of sequencing coverage per cell6–13. In addition,17

allelic proportions often form U-shaped or W-shaped distributions due to the occurrence of18

monoallelic transcriptional bursts.19

We propose a novel method for the estimation of single-cell allele proportions, scBASE,20
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in which we (1) disambiguate and count multi-mapping reads (multi-reads); (2) classify each21

gene in each cell into paternal monoallelic, bi-allelic, or maternal monoallelic expression22

states; and (3) address data sparsity by partial pooling of information across cells (Figure23

1 and Methods). The counting step of scBASE applies an estimation-maximization (EM)24

algorithm to count multi-reads by weighted allocation to estimate expected read counts14–16.25

The classification and estimation steps are iterated and together achieve partial pooling of26

information among cells that are in the same allelic expression states. In the classification27

step, we compute the posterior probabilities of paternal, bi-allelic, and maternal expression28

states. In the estimation step we compute the posterior distributions of cell- and gene-29

specific allelic proportions. Read counting and partial pooling can be applied together,30

separately, or not at all. This leads to four different methods of estimating allelic propor-31

tions. In the unique reads methods (i), we estimate allelic proportions directly from the32

counts of uniquely mapping reads. In the weighted allocation method (ii), we apply the33

read counting step of scBASE to obtain estimated expected counts. We can apply the clas-34

sification and estimation steps to either of these counts to obtain allelic proportions from35

unique reads with partial pooling (iii), or weighted allocation with partial pooling (iv). We36

have implemented these methods in extensible open-source software, scBASE, available at37

https://github.com/churchill-lab/scBASE.38

In the following sections, we first examine the effects of weighted allocation on single-39

cell allele expression data. Then we evaluate the effects of partial pooling on estimation of40

allelic proportions. We then apply each of the four methods in scBASE to statistical testing41

of independence of allelic bursting. Finally, we illustrate the interpretive power of allelic42
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expression by analysis of scRNA-Seq data from a development time course7.43

[Figure 1 about here.]44

Results45

We applied scBASE to scRNA-Seq data from 286 pre-implantation mouse embryo cells from46

an F1 hybrid mating between female CAST/EiJ (CAST) and male C57BL/6J (B6) mice7.47

Cells were sampled along a time course from the zygote and early 2-cell stages through the48

late blastocyst stage of development. We created a diploid transcriptome from CAST- and49

B6-specific sequences of each annotated transcript (Ensembl Release 78)17 and aligned reads50

from each cell to obtain allele-specific alignments. In order to ensure that genes had sufficient51

polymorphic sites for ASE analysis, we restrict attention to 13,032 genes that had at least 452

allelic unique reads in at least 10% of cells. Where indicated below, we apply scBASE to only53

122 cells from the blastocyst stages of development, or to only 60 cells in the mid-blastocyst54

stage.55

We first assessed the impact of weighted allocation of multi-reads on the estimation56

of allelic proportions. Any read that maps to one allele of one gene is a unique read. All57

other reads are multi-reads and they can be simple or complex. A read that maps uniquely58

to one gene but to both allelic copies is a simple allelic multi-read. A read that maps to59

multiple genes but only to one allele at each is a simple genomic multi-read. A read that60

maps to multiple genes as well as to both alleles in any of those genes are complex multi-61

reads. There are, in total, 9 patterns of simple and complex multi-read alignments for two62
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genomic loci and two alleles (Supplemental Figure S1). We estimated unique reads and63

weighted allocation counts from each individual cell using all 286 cells to show how the64

number of monoallelic genes changes in each cell (Figure 2a). The sequence reads from these65

cells include 2.5% simple genomic multi-reads, 59.3% simple allelic multi-reads, and 23.3%66

complex multi-reads. In a typical scRNA-Seq workflow for ASE, these reads are discarded67

leaving only the unique 14.9% of the original sequence reads for analysis. This substantial68

loss of information could lead to high variability of allelic proportions and spurious findings69

of monoallelic gene expression. We find that using only uniquely mapping reads generates a70

higher rate of monoallelic expression calls (Figure 2a and Supplemental Figure S1), calling71

on average ∼66 more genes with monoallelic expression in each cell. We also observed,72

on average, ∼1,908 genes where the unique reads method fails to call bi-allelic expression73

compared to weighted allocation, for example, Mtdh (Figures 2b and 2c). These genes are74

consistently bi-allelic in many cells according to weighted allocation, but their pattern of75

allelic expression based on unique reads can be misinterpreted as monoallelic expression76

and, as a result, allelic bursting appears to be more dynamic.77

[Figure 2 about here.]78

Next we evaluated the impact of partial pooling on the estimation of allelic proportions.79

Since it is best to apply partial pooling to each cell type separately, we focus attention on80

the 122 mature blastocyst cells, the largest group in Deng et al.7 data. These cells have the81

coverage of ∼14.8M reads per cell in average, and we down-sampled these data by randomly82

selecting 1% of reads to obtain an average coverage of ∼148k reads per cell. We estimated83
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allelic proportions using each of four methods: (i) unique reads, (ii) weighted allocation,84

(iii) unique reads with partial pooling, and (iv) weighted allocation with partial pooling.85

We compared the estimated allelic proportions from the down-sampled data to estimates86

obtained from the full data using the corresponding unique reads or weighted allocation87

estimates with no pooling. The full data are based on 100-fold more reads per sample and88

provide an approximate truth standard. A similar approach to evaluation of single-cell data89

analysis was employed by Huang et al.18. In order to assess the effects of partial pooling, we90

computed differences in the mean squared error (MSE) of estimated allelic proportions with91

and without partial pooling. Partial pooling applied to the unique read counts improves92

estimation for the majority of genes (4,392 versus 1,367 out of 5,759 genes) with an average93

MSE difference of 0.018 (Figure 3a). Partial pooling applied to the weighted allocation94

counts improves estimation for most genes (5,078 versus 1,673 out of 6,751 genes) with an95

average MSE difference of 0.016 (Figure 3b). In both cases, the greatest gains are seen in96

the low expression range (<10 unique reads per gene). For the most highly expressed genes,97

there is little or no reduction in MSE, which is consistent with our expectation that pooling98

of information across cells is most impactful when coverage is low.99

[Figure 3 about here.]100

The timing of allelic bursting events is a defining feature of stochasticity in gene101

expression19. One fundamental question is whether the occurrence of allelic bursts is coordi-102

nated or if bursts occur independently for each allele. Statistical independence of maternal103

and paternal bursting can be evaluated using a 2×2 table of counts of the numbers of cells for104
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which a given gene is expressed only from the maternal allele, only from the paternal allele,105

from both, or not expressed (as in Figure 2c). If allelic bursts occur independently, the log-106

odds ratio (logOR) computed from this 2×2 table should be close to zero. In order to relate107

this standard approach20 for testing the independence hypothesis to alternative methods7,21108

that have been proposed for scRNA-Seq data, it is helpful to consider a geometric represen-109

tation of the proportions of cells in each allelic expression state (Figure 4a). Proportions110

are numbers greater than or equal to zero that sum to one. They can be represented as111

a point in a 3-dimensional tetrahedron in 4-dimensional space – the 4D simplex22. When112

maternal and paternal bursting events occur independently, the proportions should fall near113

the 2-dimensional surface within the simplex where the logOR is equal to zero (cross-hatched114

region in Figure 4a). The method of testing independence used in Deng et al.7 and Larsson115

et al.21 imposes an additional constraint on the 2×2 table proportions by assuming that the116

frequencies of maternal and paternal bursting events are equal (pM = pP ). This constraint117

corresponds to a 2-dimensional cross-section of the simplex, indicated by the blue triangle in118

Figure 4a. Projection of points in the 4D simplex onto this triangle produces the graphical119

representation used by Deng et al. (e.g., Figure 4b). This illustrates how the Deng et al.120

method is a special case of the logOR test.121

We evaluated bursting independence on the 122 mature blastocyst cells as was done in122

Jiang et al.23. We first simulated data under the assumption of independent allelic bursting123

(Methods) and plotted the results to illustrate how points will be distributed in this diagram124

when the pure independence model is true with and without the constraint of pM = pP125

(Figure 4b). Next we estimated the 2× 2 table proportions of allelic expression states using126
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each of the four methods (i∼iv) implemented in scBASE. The appearance of the data in127

Figures 4c is qualitatively distinct from the simulated data (Figure 4b). Moreover, the128

null hypothesis of independence is rejected by the method used in Jiang et al.23 for the129

majority of genes regardless of the method used to estimate the allelic state proportions130

(Supplemental Figure S2a). SCALE reports 3,381 genes that are non-independent using the131

results of unique-reads method, 4,815 genes using weighted allocation, 6,068 genes by unique132

reads with partial pooling, and 6,761 genes based on weighted allocation with partial pooling133

at the FDR level of 5%. Similarly the logOR are away from 0 for thousands of genes. For134

example, 2,845 and 3,763 out of 8,290 genes had |logOR|>2 using unique reads and weighted135

allocation. More genes have |logOR|>2 after partial pooling with scBASE: 5,622 and 6,209136

respectively. The majority of genes had positive logOR, indicating a tendency for bursting to137

occur more in synchrony than chance would predict (Supplemental Figure S2b). We repeated138

this analysis using three additional data sets21,24,25 and arrive at similar conclusions in each139

case (Supplemental Figures S3, S4, and S5). The evidence for statistical dependence of140

bursting is strong and application of weighted allocation and partial pooling strengthens141

this conclusion.142

[Figure 4 about here.]143

The scBASE classification step provides a novel way to characterize allelic imbalance144

across a population of cells by estimating the expected proportions of cells in different tran-145

scriptional states. Using scBASE, we can compute the posterior probability of allelic ex-146

pression states of genes in each cell. This probabilistic classification allows for uncertainty147
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associated with statistical sampling from the pool of transcripts that are present in the cell148

including the occurrence of zero read counts. Based on the posterior probabilities, we can149

derive the expected proportions of cells in states P, B, and M, which can be represented as150

point in a triangular simplex diagram. (Note that this representation is a projection of points151

in the 4D simplex onto the bottom triangular region, Figure 4a.) The classification step of152

scBASE assumes that all genes are expressed at some level, which may be very low for some153

genes. This allows us to classify the allelic expression of cells that may have zero read counts154

due to statistical sampling. To interpret the distribution of allelic expression across cells,155

we designate seven patterns of allelic expression (Figure 5a). Genes that are predominantly156

expressed as P, B, or M will appear near the corresponding vertex of the triangle (P, B or157

M region). Genes with mixed allelic states will appear along the edges (PB, BM, or MP158

region) or near the center of the triangle (all three states, PBM region). For example, the159

gene Pacs2, which is expressed from either the maternal or the paternal allele but rarely160

both, is classified as an MP gene. The bi-allelic region (B) includes genes that are consis-161

tently expressed from both alleles e.g., Mtdh. The PB and BM regions include genes that162

show a mixture of bi-allelic and monoallelic expression with a strong allelic imbalance, e.g.,163

Timm23 and Tulp3. The majority of genes (56.9%) in the blastocyst stages of development164

are in the PBM region (Supplemental Figure S6). These genes display a mix of mono- and165

bi-allelic expression states (e.g., Akr1b3 ) that is consistent with dynamic allele-specific gene166

expression with a low bursting rate relative to mRNA half life.167

[Figure 5 about here.]168
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We applied scBASE (with weighted allocation and partial pooling) to track changes in169

the ASE patterns of cells sampled over a developmental time course (Figure 5b, Supplemental170

Figure S6 and S7). Our aim is to classify allelic state distributions within subpopulations of171

cells defined by developmental stages. To achieve this, we first ran scBASE MCMC algorithm172

on all 286 cells to estimate the prior parameters, αs
g and βs

g (Figure 1 and Supplemental173

Methods). These parameters describe the distribution of allelic proportions in each allelic174

state. According to our diagnostic criteria, scBASE MCMC algorithm produced reliable175

parameter estimation for 10,017 out of 13,032 genes. We then ran scBASE EM algorithm176

(with the prior parameters fixed) on each subpopulation of cells to estimate developmental177

stage-specific parameters (Details are provided in Methods.). In the zygote and early 2-cell178

stages, essentially all genes show monoallelic maternal expression. At this stage, the hybrid179

embryo genome is not being transcribed and the mRNA present is derived from the mother180

(inbred CAST genome). At the mid 2-cell stage the hybrid embryo is being transcribed and181

we start to see expression of the paternal allele for some genes. Many genes exhibit the M182

and BM patterns through the 8- or 16-cell stages perhaps due to the persistence of long-lived183

mRNA species that were present at the 2-cell stage. The bi-allelic class B dominates the late184

2-cell and 4-cell stages indicating high levels of expression at rates that exceed the half-life185

of most mRNA species. In the later stages of development, 8-cell through late blastocyst,186

most genes transition into the PBM pattern.187

There are ∼400 genes that make dramatic transitions across allelic expression states.188

For example, Akr1b3 (Figure 5c) starts in the zygote and early 2-cell stage with only ma-189

ternal alleles present. It transitions to bi-allelic expression by the mid 2-cell stage indicating190
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the onset of transcription of the paternal allele. It then transitions through the paternal191

monoallelic state. Our interpretation is that the early maternally derived transcripts were192

present prior to fertilization and these transcripts are still present when the paternal allele193

in the hybrid embryo gene starts to express. The early maternal transcripts are largely de-194

graded by the 4- to 8-cell stages where we see only expression from the paternal allele. In195

the early blastocyst stages, we start to see embryonic expression of maternal alleles resulting196

in a bi-allelic expression pattern by the late blastocyst stage.197

Discussion198

Allelic expression in single cells has provided new insights into the dynamic regulation of gene199

expression24. However, estimates of allelic proportions can display high statistical variation200

due to low depth of sequencing coverage per cell. The common practice of discarding multi-201

mapping reads exacerbates this problem. The scBASE algorithm reduces statistical variability202

by retaining and disambiguating multi-read data. It further improves estimation of allelic203

proportions by partial pooling of information across cells in the same ASE states. As a204

result we can obtain a more precise and accurate picture of gene expression dynamics in205

which biological stochasticity is revealed by reducing statistical variation.206

Weighted allocation has been demonstrated to improve gene expression estimation in207

whole-tissue RNA-Seq14–16. When estimating total gene expression with weighted allocation,208

only genomic multi-reads need to be resolved and these typically represent a small proportion209

of all reads. When estimating allele-specific expression, however, depending on the levels210
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of nucleotide heterozygosity, the majority of reads may lack distinguishing polymorphisms211

and will be allelic multi-reads. Complex multi-reads with ambiguity in both genomic and212

allelic alignment can carry useful information about allele-specific expression, as illustrated213

in Supplemental Figure S1.214

scBASE uses partial pooling in the context of a mixture model with three allelic expres-215

sion states (paternal monoallelic, bi-allelic, and maternal monoallelic) to preserve cell-to-cell216

heterogeneity by pooling information across cells that are in the same state. Combining217

information across cells, therefore, does not weaken the signals of strong allelic imbalance.218

We applied scBASE to X chromosome genes in female cells of three different data sets7,24,25.219

In the Reinius et al. fibroblast data, partial pooling corrected the allelic proportions of Xist220

gene expression towards either maternal or paternal monoallelic expression for both unique221

reads and weighted allocation counts (Supplemental Figure S9a). Looking at expression of222

all X chromosome genes in these same cells, we observe that partial pooling strengthens the223

expected pattern of expression due to X chromosome inactivation (XCI) consistent with Xist224

allele expression (Supplemental Figure S9b). We observe that XCI is often incomplete and225

not uniform across cells. In the Chen et al. and Deng et al. data sets, Xist is clearly in226

the bi-allelic expression state in many of mouse embryo cells, epistem cells, or motor neu-227

ron cells and this is preserved after partial pooling. We also observe that XCI is not fully228

established for these cells (Supplemental Figure S10, and S11). In addition, for genes that229

are reported to be imprinted26–28 we examined their allelic expression. Irrespective of the230

estimation method applied, many of these genes do not appear to be fully imprinted in these231

three data sets (Supplementary Figure S12 and S13). However, for those genes that do show232
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evidence of imprinting, i.e., appear in M- or P-class, partial pooling improves the evidence233

for monoallelic expression for both unique reads and weighted allocation counts.234

The scBASE analysis incorporates statistical uncertainty in both the classification of235

allelic expression state and the estimated allelic proportions of a gene. To evaluate the pre-236

cision of the estimated parameters, we have computed the posterior standard deviation of237

allele proportions across a range of total read counts and with varying numbers of cells (286238

cells versus 60 cells). The trends are as expected, deeper read coverage or more cells im-239

proves the precision of estimation (Supplemental Figure S8). Our probabilistic classification240

accounts for uncertainty and can estimate the allelic expression state of a gene even when241

few or no reads are sampled from a given cell based on the behavior of other cells. The242

scBASE model is still reliable with degenerate inputs, for example, in the most extreme case243

of a single cell and a gene with zero total reads, the algorithm provides a sensible answer:244

class probabilities are (1
3 ,

1
3 ,

1
3) and a nearly uniform distribution for allelic proportion (mean245

at 0.5 with standard deviation of 0.2), indicating that the data does not contain any infor-246

mation. As the number of cells or the read depth increases, the class probabilities become247

more concentrated and the posterior distribution for the allelic proportion gets narrower.248

Partial pooling has the biggest impact when read coverage is low and the number of cells is249

large (Figure 3 and Supplemental Figure S8).250

scBASE software can be implemented as part of a scRNA-Seq analysis pipeline. For251

example, we applied SCALE software using counts based on four methods: (i) unique reads,252

(ii) weighted allocation, (iii) unique reads with partial pooling, and (iv) weighted allocation253
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with partial pooling implemented in scBASE. We found that more genes appeared to be254

non-independent when weighted allocation-based counts are used in SCALE. Even more255

genes were identified as non-independent using counts based on partial pooling (Results and256

Supplemental Figure S2a). Although it is not mentioned in Jiang et al.23, a substantial257

number (3,485 at FDR=5%) of genes were identified as non-independent using the allelic258

counts (unique reads) reported by Deng et al. Our findings suggest that running SCALE with259

scBASE estimated read counts as input will result in more accurate estimates of bursting260

kinetics and reduced levels of monoallelic gene expression when compared to results obtained261

using unique read counts.262

The statistical properties of allelic bursting shed light on the nature of gene expres-263

sion regulation. If expression bursts are statistically independent, this would imply that264

the regulation of allelic expression is local and acting autonomously at each allele. Under265

the perfect independence model, there would be no shared regulation of expression across266

alleles and the counts of cells in each allelic state will satisfy statistical criteria for inde-267

pendence. Under an alternative model, perfect dependence, bursting would be precisely268

coordinated across alleles and bursts would occur synchronously. All cells would be in ei-269

ther the bi-allelic or not expressed states. Our analysis of published scRNA-Seq data from270

four different experiments7,21,24,25 indicates that neither of these extremes is true (Figure 4271

and Supplemental Figure S2, S3, S4, and S5). We observed that the pattern of bursting is272

statistically dependent and positively correlated (logOR > 0) for the majority of genes. It273

is neither statistically independent nor perfectly synchronous. This suggests that regulation274

of allelic expression has both shared and locally autonomous components. While our statis-275

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2019. ; https://doi.org/10.1101/383224doi: bioRxiv preprint 

https://doi.org/10.1101/383224
http://creativecommons.org/licenses/by-nc-nd/4.0/


tical analysis cannot identify the mechanisms of regulation, it seems plausible that diffusible276

transcription factors could be responsible for the coordinated component of regulation. Lo-277

cal control is likely to be cis-acting and may involve stochastic variation in the activation278

of the transcriptional machinery. Additional experimental work would be required to test279

these hypotheses and to identify the cis-acting molecular events that trigger bursting of gene280

expression. However, the available data are sufficient to reject both hypotheses of perfect281

independence and of perfect dependence of allelic bursting.282

When estimating parameters associated with many genomic features in each of many283

individual cells, one can improve the estimated parameters by pooling information across284

cells. The motivation behind partial pooling is that the individual estimates are unbiased but285

lack precision whereas the average provides a precise but biased estimate for individual cells286

and also masks cell to cell heterogeneity entirely. Weighted allocation of multi-mapping reads287

is not just to avoid information loss but is effective to prevent possible bias due to the genomic288

multi-reads that contain allele information. For these reasons, we generally recommend the289

strategy (iv) weighted allocation with partial pooling. But we provide all four options in290

scBASE so more evaluation could be performed in other contexts. These general principles291

–– retention of multi-mapping sequence reads and partial pooling of information across cells292

–– apply broadly to analysis of genomic sequencing data but they are especially critical in293

single cell applications where the observed numbers of reads for each gene in each cell may294

be very small.295
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Methods296

Data. Deng et al.7 sampled 286 pre-implantation embryo cells from an F1 hybrid of CAST×B6297

along the stages of prenatal development. Embryos were manually dissociated into single cells298

using Invitrogen TrypLE and single-end RNA-Seq sequencing was performed using Illumina299

HiSeq 2000 (Platform GPL12112). We downloaded the data, Series GSE45719 from Gene Ex-300

pression Omnibus (GEO) at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45719.301

There were fastq-format read files for 4 single-cell samples from zygote stage, 8 from early302

2-cell, 12 from mid 2-cell, 10 from late 2-cell, 14 from 4-cell, 47 from 8-cell, 30 from 16-cell,303

43 from early blastocyst, 60 from mid blastocyst, and 58 from late blastocyst stage. The304

Reinius et al. data24 consist of primary mouse fibroblast cells from the F1 reciprocal crosses305

of CAST×B6 (125 cells, sex-typed) and B6×CAST (113 cells, sex-typed), available from306

GEO at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75659. The Chen et al.307

data25 are from mouse embryonic stem cells (mESCs) from an F1 hybrid of B6×CAST: 111308

mESCs cultured in 2i and LIF, 120 mESCs cultured in serum and LIF, 183 mouse Epistem309

cells (mEpiSCs), and 74 post-mitotic neuron cells. The samples are sex-typed. We down-310

loaded SRA format files available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74155.311

Larsson et al.21 generated 224 individual primary mouse fibroblast cells from the F1 hybrid of312

CAST×B6. As the data are from non-standard SMART-Seq2 platform, we downloaded the313

allele-specific UMI counts from https://github.com/sandberg-lab/txburst/tree/master/data314

(as of April 19th, 2019), and we were unable to apply weighted allocation to these data.315

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2019. ; https://doi.org/10.1101/383224doi: bioRxiv preprint 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45719
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75659
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74155
https://github.com/sandberg-lab/txburst/tree/master/data
https://doi.org/10.1101/383224
http://creativecommons.org/licenses/by-nc-nd/4.0/


scRNA-Seq read alignment. For the F1 hybrid mouse we aligned reads to a phase-known316

diploid transcriptome – this is a best-case scenario for phasing. When dealing with more317

complex genomes, phasing should be performed beforehand if haplotype-specific transcrip-318

tomes are not available and scphaser29 is one possible approach. We reconstructed the319

CAST genome by incorporating known SNPs and short indels (Sanger REL-1505) into the320

reference mouse genome sequence (Genome Reference ConsortiumMouse Reference 38) using321

g2gtools (http://churchill-lab.github.io/g2gtools/). We lifted the reference gene annotation322

(Ensembl Release 78) over to the CAST genome coordinates, and derived a CAST-specific323

transcriptome. The B6 transcriptome is based on the mouse reference genome. We con-324

structed a bowtie (v1.0.0) index to represent the diploid transcriptome with two alleles of325

each transcript. We aligned reads using bowtie with parameters ‘–all’, ‘–best’, and ‘–strata’,326

allowing for 3 mismatches (‘-v 3’). These settings enable us to find all of the best alignments327

for each read. For example, if there is a zero-mismatch alignment for a read, all alignments328

with zero mismatch will be accepted.329

Overview of the scBASE model. The scBASE algorithm is composed of three steps:330

read counting, classification, and estimation (Figure 1). The read counting step is applied331

first to resolve read mapping ambiguity due to multi-reads and to estimate expected read332

counts. The read counting step is not a requirement since the following steps are applicable333

to any allele-specific count estimates. The classification and estimation steps are executed334

iteratively to classify the allelic expression state and to estimate the allelic proportions for335

each gene in each cell using a hierarchical mixture model. We have implemented scBASE as a336

Monte Carlo Markov chain (MCMC) algorithm30, which randomly samples parameter values337
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from their conditional posterior distributions. We have also implemented the classification338

and estimation steps as an Expectation-Maximization (EM) algorithm31 that converges to339

the maximum a posteriori parameter estimates (Supplemental Methods). MCMC is flexible,340

and the sampling distributions and priors are easy to change in the MCMC code. MCMC341

provides the full posterior distribution of allelic proportions and thus provides useful in-342

formation about the uncertainty of estimated parameters. We also found that MCMC is343

more stable when fitting allelic proportion of monoallelic classes. The EM algorithm is much344

faster, but it provides only point estimation. We provide a brief description of the algorithm345

here and provide additional details in Supplemental Methods.346

Read counting: In order to count all of the available sequence reads for each gene and347

allele, we have to resolve read mapping ambiguity that occur when aligning reads to a diploid348

genome. Genomic multi-reads align with equal quality to more than one gene. Allelic multi-349

reads align with equal quality to both alleles of a gene. In scBASE, multi-reads are resolved350

by computing a weighted allocation based on the estimated probability of each alignment.351

We use an EM algorithm implemented in EMASE software for this step16. Alternatively, read352

counting could be performed using similar methods implemented in RSEM14 or kallisto15
353

software. The estimated maternal read count (xgk) for each gene (g) in each cell (k) is the354

weighted sum of all reads that align to the maternal allele, where the weights are proportional355

to the probability of the read alignment. Similarly, the estimated paternal read count (ygk)356

is the weighted sum of all reads that align to the paternal allele. The total read count is357

the sum of the allele-specific counts (ngk = xgk + ygk). A parameter of interest is the allelic358

proportion pgk. The read counting step provides an initial estimate p̂gk = xgk/ngk, which we359
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refer to as the weighted allocation estimated counts (ii).360

Classification: In the classification step, we estimate the allelic expression state361

(zgk) for each gene in each cell. The allelic expression state is a latent variable with three362

possible values zgk ∈ {P,B,M} representing paternal monoallelic, bi-allelic, and maternal363

monoallelic expression, respectively. Uncertainty about the allelic expression state derives364

from sampling variation that can produce zero counts for one or both alleles even when365

the allele-specific transcripts may be present in the cell. We account for this uncertainty by366

computing a probabilistic classification based on a mixture model in which the maternal read367

counts xgk are drawn from one of three beta-binomial distributions (given ngk) according to368

the allelic expression state zgk. For a gene in the bi-allelic expression state the maternal369

allelic proportion is denoted pB
gk and, as suggested by the notation, it may vary from cell to370

cell following a beta distribution. For a gene in the paternal monoallelic expression state,371

the allelic proportion pP
g follows a beta distribution with a high concentration of mass near372

zero. Similarly, for a gene in the maternal monoallelic expression state, we model pM
g using a373

beta distribution with the concentration of mass near one. The beta distribution parameters374

for the maternal and paternal states are gene-specific but are constant across cells.375

Estimation: The classification step assumes that the mixture model parameters are376

known. This model describes gene-specific allelic proportions for each cell and thus it has377

a very large number of parameters. In the scRNA-Seq setting where thousands of genes378

are measured but low read counts and sampling zeros are prevalent, we may have limited379

data to support their reliable estimation. Bayesian analysis of the hierarchical model treats380
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parameters as random variables and is well suited for this type of estimation. In this con-381

text, the hierarchical model improves the precision of estimation by borrowing information382

across cells for each gene, giving more weight to cells that are in the same allelic expression383

state. This estimation technique is referred to as partial pooling. Specifically, we sample the384

mixture weights
(
πP

g• , π
B
g• , π

M
g•

)
and the class-specific allele proportions

(
pP

g , p
B
gk, p

M
g

)
; gener-385

ate classification probabilities
(
πP

gk, π
B
gk, π

M
gk

)
; and then estimate the allelic proportions as a386

weighted average387

pgk = πP
gk p

P
g + πB

gk p
B
gk + πM

gk p
M
g (1)

The average value across many iterations is p̃gk, the partial pooling estimator.388

Estimating allelic proportions in subpopulations of cells or genes. The scBASE389

algorithm is designed to model heterogeneous ASE states in any population of cells. In some390

cases, as in the developmental series of Deng et al., it is of interest to focus on different391

subpopulations. When subpopulations of cells or groups of genes, e.g., X chromosome genes,392

are expected to have different distributions of allelic states, we recommend two options. The393

first option is to run the MCMC implementation of scBASE separately for each group. The394

strength of this approach is that it provides the posterior distribution of group-specific allelic395

proportions. However the level of uncertainty could increase for estimated parameters when396

the number of cells in any group is limited. The second option is to first run MCMC with397

all the available cells and estimate the prior parameters, αs
g and βs

g . These prior parameters398

describe how allelic proportions are distributed in the monoallelic and bi-allelic states, and399
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therefore, are common across all groups. Then using estimated values for these parameters,400

re-estimate the remaining parameters, πs
g•, πs

gk, and pgk, within each cell type using the EM401

algorithm. In the restricted version of EM, we iteratively update πs
gk (E-step) and πs

g• (M-402

step) for cells within each subpopulation. Once πs
g• and πs

gk converge, we can compute p̃gk403

using Equation (1). We applied this second approach to Deng et al. time series data along404

mouse embryo development (n=286 cells). Genes on the X chromosome present another405

example where it makes sense to run scBASE separately, in this case on two subpopulations406

of genes. Our analyses of female X chromosome genes used this strategy (Supplemental407

Figures S9, S10, and S11).408

Assigning allelic expression states from estimated counts. Unique read counts are409

obtained directly from counting reads after discarding all genomic and allelic multi-reads.410

Weighted allocation counts are derived from the EM algorithm as described above. To411

estimate counts after partial pooling, we multiply p̃gk by the total gene expression counts.412

We note that estimated counts are not integers and may be non-zero but less than one.413

Classification of allelic expression states for each gene in each cell directly from observed or414

estimated counts requires setting a threshold for monoallelic expression. For each allele, we415

regarded it as expressed if its estimated abundance is greater than one reads (or one UMI416

as in Larsson et al21).417

Classification of a gene according to its ASE profile across many cells. We classify418

a gene according to the proportion of cells in P-, B-, and M-states,
(
πP

g• , π
B
g• , π

M
g•

)
, that are419

estimated by the partial pooling model. If a majority of cells (πs
g• > 0.7) are in a particular420
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ASE state, s ∈ {P,B,M}, then we will assign the gene to the class P (monoallelic paternal;421

blue), B (bi-allelic; yellow), or M (monoallelic maternal; red) respectively. When a majority422

of cells are a mixture of two of those classes (πs1
g• + πs2

g• > 0.9 where s1, s2 ∈ {P,B,M}),423

we classify it into either of PB (mixture of monoallelic paternal and bi-allelic; green), BM424

(mixture of monoallelic maternal and bi-allelic; orange), or MP (a mixture of monoallelic425

maternal and paternal; purple). Otherwise, genes that present all three ASE states are426

classified as PBM (mixture of all; gray). We specified these seven classes in a ternary simplex427

diagram (Figure 5a)32. The class boundaries are arbitrary but the aim of this classification is428

to provide a simple descriptive summary of the gene expression states present in a population429

of cells.430

Sampling reads. We randomly sampled 1% of reads in each of 122 cells at the early, mid,431

and late blastocyst stages to obtain an average read count of ∼148k reads per cell. We chose432

the blastocyst cell types because, unlike cells in earlier developmental stages, they show433

the widest range of different states of allelic expression. The original analysis of SCALE23
434

also used the same 122 cells. We applied the unique-reads method and weighted allocation435

algorithm to the full set of ∼14.8M reads and also applied each of four estimation methods436

(unique reads, weighted allocation counts, unique reads with partial pooling, and weighted437

allocation with partial pooling) to the down-sampled data. We compared estimates obtained438

from the down-sampled data to the full data estimates and computed the mean squared error439

of estimation across cells for each gene.440
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Simulation of counts under perfect independence model. We randomly sampled the441

marginal probabilities of maternal and paternal allelic expression, pM and pP from uniform442

distribution between 0 and 1. Then we generated 2×2 tables by sampling counts from443

multinomial distribution with probability
{
pMpP , pM(1−pP ), (1−pM)pP , (1−pM)(1−pP )

}
444

for bi-allelic, maternal monoallelic, paternal monoallelic, and silent cells respectively.445
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Figure Captions523

Figure 1: Overview of the scBASE algorithm. We summarize the three steps of524

the scBASE algorithm. The Counting step estimates the expected read counts using an525

EM algorithm to compute a weighted allocation of multi-reads. Each read is represented526

as an incidence matrix that summarizes all best-quality alignments to genes and alleles 1©.527

Weighted allocation of multi-reads uses a current estimate of allele-specific gene expression528

to compute weights equal to the probability of each possible alignment 2©. The weights are529

summed across reads to obtain the expected read counts for each gene and allele 3©. Steps530

2© and 3© are repeated until the read counts converge. The weighted allocation estimates531

of maternal allelic proportion (p̂gk) are obtained at this step. The Classification step532

computes the posterior probability of paternal monoallelic (P), bi-allelic (B), or maternal533

monoallelic (M) expression (πs
gk) using current estimates of the model parameters (Equation 3534

in Supplemental Methods). The classification model is a beta-binomial mixture model with535

three components. The model parameters are initialized to non-informative values and are536

obtained from the estimation step in subsequent iterations. The Estimation step uses to the537

classification results to re-estimate the weights of mixture components (πs
g•) and parameters538

of the Beta densities (αs
g, β

s
g) that define the distribution of the within-class the maternal539

allelic proportions (ps
g). The partial pooling estimate of the maternal allelic proportions (p̃gk)540

is obtained as an average of the class-specific proportions weighted by the class membership541

probabilities (Equation 1 in Methods).542

Figure 2: Weighted allocation of multi-reads reduces monoallelic expression calls.543

(a) For each of 13,032 genes, we obtained the allele-specific read counts by unique reads and544

by weighted allocation. We counted the numbers of genes in each cell that showed either545

maternal or paternal monoallelic expression and display the results as points (one per cell)546

overlaid on boxplots. Each data point in this figure represents a cell and we are showing all547

286 cells including zygote and 2-cells (highlighted in red). The zygote and 2-cell stage cells548

have large numbers of genes with maternal monoallelic expression. On average there are ∼66549

fewer monoallelic calls per cell with the weighted allocation counts. The outlier cell with550

high levels of paternal monoallelic expression was noted in Deng et al.7. (b) We selected one551

gene (Mtdh) to illustrate the distribution of maternal (X-axis) and paternal (Y-axis) counts552

across 286 cells. The weighted allocation counts (green) are connected to their corresponding553

unique counts by a line in the scatter plot. (c) Cross-tabulation (2×2 table) of maternal and554

paternal allelic expression for Mtdh gene with unique reads and weighted allocation counts.555

The unique counts resulted in 88 cells with monoallelic expression while only 7 monoallelic556

calls were seen with weighted allocation.557

Figure 3: Partial pooling improves the accuracy of estimated allelic proportions.558

We randomly sampled 1% of reads from the full data of 122 mature blastocyst cells to559

obtain a sub-sample of 147,538 reads per cell, on average. We estimated gene- and cell-560

specific allelic proportions from the sub-sampled data, and computed mean squared error561

(MSE) between the estimated allelic proportions from the full data versus the sub-sampled562

data. We compared the MSE based on partial pooling versus the MSE from no pooling563

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2019. ; https://doi.org/10.1101/383224doi: bioRxiv preprint 

https://doi.org/10.1101/383224
http://creativecommons.org/licenses/by-nc-nd/4.0/


estimates, and display the difference on the y-axis along the expression level in unique-read564

counts on the x-axis. We made this comparison for (a) unique reads and for (b) weighted565

allocation. Points representing individual genes are shown as a density heatmap.566

Figure 4: Independence of allelic bursting. (a) The geometry of the 2x2 table pro-567

portions can be represented as a simplex, a 3D tetrahedral region of 4D space in which568

proportions are all non-negative and sum to one. The vertices of the simplex correspond569

to genes where all cells are in the same allelic expression state as indicated by labels. The570

distance from a vertex is inversely related (1-x) to the proportion of cells in that state. The571

shaded surface inside the simplex represents proportions corresponding to the perfect inde-572

pendence model, i.e., the logOR equals zero. The blue triangle indicates proportions with573

equal maternal and paternal expression pM = pP . (b) We simulated data under the perfect574

independence model without assuming pM = pP and plotted the proportions of bi-allelic and575

silent cells as in Deng et al.7. (c) Four panels illustrate the proportions of bi-allelic and576

silent cells as estimated from (i) unique reads, (ii) weighted allocation, (iii) unique reads577

with partial pooling, and (iv) weighted allocation with partial pooling. Points representing578

individual genes are shown as a density heat map.579

Figure 5: Classification of allele-specific expression patterns across cells. (a) For580

each gene in each cell, the classification step of scBASE estimates allelic state probabilities581

πs
gk, where s indicates paternal monoallelic (P), bi-allelic (B), or maternal monoallelic (M)582

expression. The average proportions of cells in each allelic state (πs
g·) can be represented as583

a point in a triangular diagram which is a 3D simplex corresponding to the projection of584

points onto the bottom triangular region of the 4D simplex in Figure 4a. A gene that is585

predominantly paternal, bi-allelic, or maternal across the cell population will be plotted near586

the corresponding vertex. Points representing genes with mixed classification states across587

the cell population will appear along the edges or in the center of the triangle. We delineate588

seven patterns of allelic expression for a gene as indicated by the different colored regions in589

the diagram: P (blue), B (yellow), M (red), PB (green), BM (orange), MP (purple), and590

PBM (gray). Examples of genes from each pattern are shown as scatter plots of maternal591

and paternal read counts (log10 scale). Each point in the scatter plot corresponds to one cell592

(n=286 embryo cells). For example, the gene Pacs2 is expressed from either the maternal or593

the paternal allele but rarely both and is classified as an MP gene. The bi-allelic region (B)594

includes genes that may show allelic imbalance (pgk 6= 1
2) across many cells but consistently595

express both alleles (e.g., Mtdh). The PB and BM regions will include genes that show596

a mixture of bi-allelic expression and monoallelic expression. Many of the genes in these597

regions have strong allelic imbalance and cells with monoallelic expression could be due598

to statistical sampling zeros in the lower expressed allele (e.g., Tmim23 and Tulp3 ). The599

expression pattern in blastocyst cells for the majority of genes (57%) fall in the PBM region600

and display a pattern that is a mix of mono- and bi-allelic expression states across cells (e.g.,601

Akr1b3 ). (b) Cells were divided into nine developmental stages as indicated on the X-axis.602

The cell types and numbers of expressed genes at each stage are indicated in parentheses on603

the X-axis. For each stage, we counted the proportion of expressed genes that fall into each of604

the seven allelic expression patterns (Y-axis), indicated by lines using the same color coding605
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used in Figure 5a. In the zygote and early 2-cell stage, most genes show purely maternal606

expression (M). The proportion of maternally expressed genes decreases through subsequent607

stages of development. The numbers of genes showing purely paternal expression (P) is low608

across all developmental stages. The M and P classes become equally represented in the609

later stages of development. The 2- and 4-cell stages show high levels of bi-allelic expression610

(B) and the mixed class (PBM) proportion becomes highest by the 8-cell stage. (c) The611

expected proportions of cells in each allelic state (πs
g·) for one gene Akr1b3 at each stage of612

the developmental time course is shown as a trajectory in the 3D simplex. Yellow to blue613

color line segments indicates the transitions between developmental stages. This gene starts614

in the maternal monoallelic state (M), it transitions through PBM to a paternal expression615

state (P), and then transitions to bi-allelic expression (B) in the blastocyst stages.616
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