
Noname manuscript No.
(will be inserted by the editor)

Information Theory as a consistent framework for1

quantification and classification of landscape patterns2

Jakub Nowosad · Tomasz F. Stepinski3

4

Received: date / Accepted: date5

Abstract Context Quantitative grouping of similar landscape patterns is an6

important part of landscape ecology due to the relationship between a pattern7

and an underlying ecological process. One of the priorities in landscape ecology8

is a development of the theoretically consistent framework for quantifying,9

ordering and classifying landscape patterns.10

Objective To demonstrate that the Information Theory as applied to a bivari-11

ate random variable provides a consistent framework for quantifying, ordering,12

and classifying landscape patterns.13

Methods After presenting Information Theory in the context of landscapes,14

information-theoretical metrics were calculated for an exemplar set of land-15

scapes embodying all feasible configurations of land cover patterns. Sequences16

and 2D parametrization of patterns in this set were performed to demonstrate17

the feasibility of Information Theory for the analysis of landscape patterns.18

Results Universal classification of landscape into pattern configuration types19

was achieved by transforming landscapes into a 2D space of weakly corre-20

lated information-theoretical metrics. An ordering of landscapes by any single21

metric cannot produce a sequence of continuously changing patterns. In real-22

life patterns, diversity induces complexity – increasingly diverse patterns are23

increasingly complex.24
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Conclusions Information theory provides a consistent, theory-based frame-25

work for the analysis of landscape patterns. Information-theoretical parametriza-26

tion of landscapes offers a method for their classification.27

Keywords information theory · landscape classification · pattern complexity ·28

pattern diversity · pattern sequences29
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1 Introduction30

There is a continuing interest in assessing a degree of similarity between land-31

scape patterns, ordering landscapes by a property of interest, and landscape32

classification. This is because of a relationship between an area’s pattern com-33

position and configuration and ecosystem characteristics such as vegetation di-34

versity, animal distributions, and water quality within this area (Hunsaker and35

Levine, 1995; Fahrig and Nuttle, 2005; Klingbeil and Willig, 2009; Holzschuh36

et al., 2010; Fahrig et al., 2011; Carrara et al., 2015; Arroyo-Rodŕıguez et al.,37

2016; Duflot et al., 2017).38

The main focus of research on quantitative assessment of landscape pat-39

terns has been a development and application of landscape indices (see statis-40

tics of topics published in Landscape Ecology collected by Wu (2013)). Land-41

scape indices (LIs) are algorithms that quantify specific spatial characteristics42

of landscape patterns; a large number of LIs have been developed and col-43

lected (McGarigal et al., 2002). In principle, it should be possible to quantify44

the whole landscape using a collection of different LIs, which together charac-45

terize the entire pattern. Multi-indices description of landscape patterns has46

indeed been used (see, for example, Cain et al. (1997) or Long et al. (2010))47

and continue to be used. The problem with such an approach is an uncertainty48

as to which subset of the large number of existing LIs to choose without in-49

troducing an undue bias toward some aspects of the pattern.50

This problem can be partially addressed by performing the principal com-51

ponents analysis (Riitters et al., 1995; Cushman et al., 2008) on LIs calculated52

for all landscapes in the dataset and using vectors consisting of top principal53

components instead of indices themselves. Principal components suppose to54

represent the few latent variables, which, although not directly measurable,55

represent fundamental and independent elements of the pattern’s structure.56

Nowosad and Stepinski (2018) applied principal components analysis to over57

100,000 landscape patterns taken from the European Space Agency (ESA)58

global land cover map (ESA, 2017). They found that the two top components,59

which together explained 70% of the variance in the dataset, were sufficient60

to parametrize all patterns in this dataset. It enables assessment of similarity61

between patterns and, thus, their classification.62

Another way to achieve landscape classification is through clusterings of63

their patterns. Cardille and Lambois (2009) and Partington and Cardille (2013)64

clustered land cover patterns using the Euclidean distance between their prin-65

cipal components calculated from LIs. Niesterowicz and Stepinski (2013, 2016)66

clustered land cover patterns using the Jensen-Shannon Divergence between67

co-occurrence matrices representing the patterns. Both methods yielded rea-68

sonable results. This notwithstanding, there is a number of issues with using69

clustering to find landscape pattern types (LPTs). The number of clusters70

needs to be set a priori and mostly arbitrarily, and a within-cluster pattern71

variation is not well-controlled (Niesterowicz and Stepinski, 2017). LPTs are a72

posteriori interpretations of clusters, but clusters change from one dataset to73
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another. This means that LPTs obtained via clustering are not universal and74

apply only to a dataset from which they were derived.75

Wickham and Norton (1994) were the first to propose a classification76

of landscapes into universal LPTs. Their classification scheme divides pat-77

tern configurations into three classes: matrix, matrix and patch, and mosaic.78

Thresholds on minimum and maximum values of areas constituting matrix and79

patches determine a configuration type assigned to a given pattern. This clas-80

sification was used for classifying land cover patterns across the conterminous81

United States (Riitters et al., 2000). In this paper, we are going to present82

a method of parameterizing landscape pattern configurations that leads to83

the universal classification of landscapes into landscape pattern configuration84

types (LPCTs).85

A separate but related research track pertains to an ordering of landscapes.86

Ordering is arranging landscapes in a linear sequence according to an increas-87

ing value of a parameter. The expectation is that such sequence shows a con-88

tinuous progression of the pattern’s character. Frequently, this sought after89

character is its complexity. In general, complexity is a concept defying a pre-90

cise definition. For example, the Webster’s dictionary defines a complex object91

to be “an arrangement of parts, so intricate as to be hard to understand or deal92

with.” In the case of landscapes, their complexity is related to the intricacy of93

their patterns.94

Recently, several works (Claramunt, 2012; Altieri et al., 2018; Wang and95

Zhao, 2018) proposed to order landscapes using a concept of spatial entropy.96

Spatial entropy is a modification of the Shannon entropy designed to measure97

spatial intricacy of a pattern. Boltzmann entropy is another concept aiming98

at ordering landscape patterns by their complexity. It is named after a physi-99

cist, Ludwig Boltzmann, who used it (Boltzmann, 1866) to show a relation-100

ship between thermodynamic entropy and the number of ways the atoms or101

molecules of a thermodynamic system can be arranged. In a context of land-102

scape patterns, a macrostate is an overall configuration of a pattern (which103

can be measured using a single index) and a microstate is a specific assign-104

ment of categories to individual cells under the condition of fixed landscape105

composition.106

Cushman (2016, 2018) proposed to measure a macrostate by the total107

edge (TE) of the landscape. Thus, TE corresponds to a “temperature” in108

the original Boltzmann entropy as applied to thermodynamics. It is easy to109

imagine that many different landscape microstates correspond to the same110

value of TE. The Boltzmann entropy of a given pattern, S, is a logarithm111

of the number of microstates having the value of TE as calculated for this112

pattern. Thus, a set of landscapes could be ordered by their S values. Gao113

et al. (2017) proposed a different approach to calculating S in the context of114

gradient instead of the mosaic model of the landscape.115

Whether the proposed orderings of landscapes yield sequences that indeed116

reflect continuously increasing complexity of patterns remains to be deter-117

mined. To make such a determination a representative set of real-life land-118

scapes needs to be ordered and evaluated. Most of the evaluations done so119



Information Theory for classification of landscape patterns 5

far used simulated landscapes which lack the character and diversity of form120

found in real-life landscapes. Demonstrations of orderings on real-life land-121

scapes (Wang and Zhao, 2018; Gao et al., 2017) used two few landscapes to122

make a judgment.123

The above overview of different approaches to quantification, ordering, and124

classification of landscape patterns reveals a lack of consistent methodology.125

Different aspects of pattern analysis were addressed using different approaches,126

and those approaches, with the exception of the Boltzmann entropy, were not127

rooted in any theory. The principal objective of this paper is to demonstrate128

that the Information Theory (IT) (Shannon, 1948), as applied to a bivariate129

random variable representing a landscape, constitutes a consistent, theory-130

based quantitative methodology addressing all aspects of pattern analysis.131

Information-theoretical measures describe composition and configuration of132

landscape patterns, one-dimensional parametrizations of patterns using these133

measures correspond to orderings, and two-dimensional parametrizations cor-134

respond to classifications.135

In the second section, we describe our methodology which is consistent136

with IT as applied to a bivariate random variable. Because our description137

is thorough and customized to the case of the mosaic model of a landscape,138

this section doubles as a guide for the use of IT of a bivariate random vari-139

able for applications in landscape ecology. In the third section, we describe140

our evaluation dataset of landscape patterns which has been carefully chosen141

to represent all major configurational types. In the fourth section, we show142

orderings of the evaluation set with respect to different IT metrics and com-143

pare them to orderings based on the two principal components (Nowosad and144

Stepinski, 2018) and to an ordering based on the Boltzmann entropy (Cush-145

man, 2018). In the fifth section, we show a two-dimensional parametrization of146

landscape patterns and demonstrate that it provides a basis for classification147

of landscapes into universal LPCTs. Discussion and conclusions follow in the148

sixth section.149

2 Methodology: Information Theory150

Consider a mosaic model of landscape represented by a grid of cells with each151

cell assigned a categorical class label from the set {c1, . . . , cK} where K is the152

number of landscape classes. Our basic units of analysis are not single cells153

but pairs of ordered adjacent cells. A pair is regarded as a bivariate random154

variable (x, y) taking values (ci, cj), i = {1, . . . ,K}, j = {1, . . . ,K}, where155

x is a class of the focus cell and y is a class of an adjacent cell. Using ad-156

jacent cells is the simplest way to take into account spatial relations when157

analyzing a pattern. We start our analysis by calculating the co-occurrence158

matrix (Haralick et al., 1973) which tabulates frequencies of adjacencies be-159

tween cells of different classes. The co-occurrence matrix can be thought of160

as a 2D histogram of cell pairs in a pattern; each bin of the histogram in-161

dicates the number of (ci, cj) pairs. The adjacency is defined by the rook’s162
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rule (4-connectivity) and we distinguish between frequencies of (ci, cj) pairs163

and frequencies of (cj , ci) pairs. Using other definitions of adjacency and/or164

unordered pairs is also possible (Riitters et al., 1996).165

Probabilities of (x, y) are given by a joint probability p(x = ci, y = cj) – a166

probability of the focus cell having a class ci and an adjacent cell having a class167

cj . We calculate the values of p(x = ci, y = cj) by dividing the co-occurrence168

matrix by the total number of pairs in the pattern. The informational content169

of bivariate random variable (x, y) is given by the IT concept of joint entropy170

which is computable directly from p(x, y),171

H(x, y) = −
K∑
i=1

K∑
j=1

p(x = ci, y = cj) log2 p(x = ci, y = cj). (1)

The value of H(x, y) is the number of bits needed on average to specify the172

value of a pair (x, y). It is also referred to as “an uncertainty.” We can inter-173

pret the uncertainty as the expected number of yes/no responses needed to174

determine a class of the focus cell and the class of the adjacent cell.175

H(x, y) measures the diversity of heights of bins in a co-occurrence his-176

togram. Recall that bins represent adjacencies, the larger the bin the more177

adjacencies of a corresponding type. If H(x, y) is small the histogram has few178

large bins – a landscape contains only a few types of adjacencies and thus its179

pattern is simple, If H(x, y) is large the histogram has many bins of similar180

height – a landscape contains many types of adjacencies and thus its pattern181

is complex. Thus, H(x, y) is a metric of an overall complexity of a pattern (see182

the H(x, y) ordering of the evaluation set of landscapes in Fig. 1).183

Next, we consider subsets of cell pairs such that a class of the focus cell184

is fixed. In such subset, the class of the adjacent cell is an univariate random185

variable y|x = ci taking values y = {c1, . . . , cK}. We can construct a 1D186

histogram, where bins correspond to frequencies of classes of adjacent cells187

in such subset. The variable y|x = ci has a probability distribution p(y|x =188

ci). The entropy of this distribution is H(y|x = ci) = −
∑

j p(y = cj |x =189

ci) log2 p(y = cj |x = ci). The value of H(y|x = ci) is the amount of bits190

needed on average to specify a class of an adjacent cell if the class of the191

focus cell is ci. It is also a diversity of adjacencies with class ci. If the value192

of H(y|x = ci) is small, cells of class ci are adjacent predominantly to only193

one class of cells, but if the value of H(y|x = ci) is large, cells of class ci are194

adjacent to many cells of many different classes. To obtain the full account of195

distribution of adjacencies we use the IT concept of conditional entropy,196

H(y|x) = −
K∑
i=1

K∑
j=1

p(x = ci, y = cj) log2 p(y = ci|x = cj). (2)

The conditional entropy, H(y|x) is an abundance-weighted average of values197

of H(y|x = ci) calculated for subsets of cells with different classes of the focus198

cell. H(y|x) is a metric of a configurational complexity of a pattern (see the199

H(y|x) ordering of the evaluation set of landscapes in Fig. 1). Note that the200
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landscape with the highest configurational complexity is not the same as the201

landscape with the highest overall complexity because, even so it has a more202

intricate geometry it has fewer categories.203

Finally, we consider a univariate variable y – a class of the adjacent cell204

in a pair of cells. Probability distribution of p(y) is obtained by marginalizing205

p(x, y), p(yj) =
∑

i p(xi, yj). Informational content of y is computed using a206

standard Shannon entropy,207

H(y) = −
K∑
j=1

p(y = cj) log2 p(y = cj). (3)

The value of H(y) is the number of bits needed on average to specify a class208

of cell. H(y) is a metric of a compositional complexity of a pattern, which is209

also frequently referred to as pattern diversity (see the H(y) ordering of the210

evaluation set of landscapes in Fig. 1).211

We could also focus on variable x (a class of the focus cell) and calculate212

H(x). Because of the way the variables are defined, H(x) u H(y), a small213

difference is due to a non-perfect symmetry of the co-occurrence matrix due214

to finite size of the landscape; for landscapes with a large number of cells the215

difference between H(x) and H(y) is negligible.216

The IT chain rule formula (see, for example, Cover and Thomas (2012))217

connects H(x, y), H(y|x), and H(x),218

H(x, y) = H(x) +H(y|x). (4)

This formula shows that the informal statement – landscape patterns are char-219

acterized by both their composition and their configuration, which collectively220

define landscape structure – which is often found in landscape ecology papers,221

is not only a verbal description but has a quantitative justification.222

One of the most useful concepts of IT is the mutual information, I(y, x),223

which quantifies the information that variable y provides about variable x224

(mutual information is symmetric so I(x, y) = I(y, x)). I(y, x) is given by the225

formula,226

I(y, x) = H(y)−H(y|x) (5)

I(y, x) is a difference between uncertainty about the class of randomly227

drawn cell and a composition-weighted average uncertainty as to the class of228

the adjacent cell if drawn from subsets of pairs defined by a fixed value of the229

focus cell. It is also a difference between a diversity of cells’ categories and230

an average diversity of adjacencies (see the I(y, x) ordering of the evaluation231

set of landscapes in Fig. 1). The Jensen’s inequality (Jensen, 1906) assures232

that I(y, x) ≥ 0, so a diversity of adjacencies cannot exceed a diversity of233

categories.234

Note that for real-life landscapes the value of I(x, y) tends to grow with235

a diversity of the landscape due to the spatial autocorrelation. The relative236

mutual information, U = I(y, x)/H(y), often referred to as an uncertainty237
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coefficient, adjusts this tendency and has range between 0 and 1. It measures238

a difference between diversity of categories and diversity of adjacencies in terms239

of diversity of categories (see the U ordering of the evaluation set of landscapes240

in Fig. 1).241

3 Evaluation dataset242

In the introduction, we stressed the importance of using a complete dataset of243

real-life landscapes for an evaluation purpose. Such dataset needs to contain244

all feasible types of landscape pattern configurations. Global land cover maps245

offer a large dataset which contains rich variety of land cover patterns. We246

use a dataset (Nowosad et al., 2019) containing over a 1,600,000 (9km × 9km)247

landscapes extracted worldwide from the 300m resolution ESA 2015 global248

land cover map (ESA, 2017). To make the landscape more lucid, we reclassified249

the ESA map from the original 22 classes to 9 classes as listed in the legend250

to Fig. 1.251

For these landscapes, we computed a set of 17 configurational landscape252

metrics (see Table 1 in Nowosad and Stepinski (2018) for details). Next, we253

calculated values of the top two principal components, RC1 and RC2 using254

the model of Nowosad and Stepinski (2018). Using these principal components255

we grouped landscapes into 35 types of pattern configurations (irrespective of256

their thematic content). For our evaluation dataset, we chose one exemplar257

from each of the 35 types of pattern configurations. We select exemplars only258

from landscapes with forest as a dominant theme so they are easier to compare259

visually, however, our results are theme-independent. The evaluation dataset260

is configurationally complete, at least for land cover landscapes at mesoscale.261

For each of the 35 landscapes we calculated values ofH(y),H(y|x),H(x, y),262

I(y, x), and U . We also calculated the value of Boltzmann entropy, S using263

the formula given in Table 6 of Cushman (2018) paper, and the values of the264

two top principal components, RC1 and RC2.265

4 Orderings of landscape patterns266

Fig. 1 depicts orderings of evaluation patterns with respect to different metrics267

as indicated. All orderings are in the increasing value of a metric. They start268

from the upper-left corner of the grid of patterns and progress row-wise. The269

rankings for the H(y) ordering double as pattern labels; they are used in270

remaining orderings for quicker identification.271

Because each metric (with the exception of RC1 and RC2) has an interpre-272

tation, it is interesting to see whether these interpretations agree with visual273

inspection of orderings. H(y) is interpreted as a diversity of cell categories.274

Although a visual inspection of landscapes sequenced by H(y) seems to con-275

firm the overall tendency of increased compositional diversity, it also makes it276

very clear that very different patterns may have very similar levels of diversity277
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 H(y) (marginal entropy) H(x,y) (joint entropy)H(y|x) (conditional entropy)

U (relative mutual information) S (Boltzmann entropy)

RC1 (first principal component) RC2 (second principal component)

AgricultureForest

Grass

Wetland Settlement

Shrub

Sparse Bare

Water

I(y,x) (mutual information)

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

2 1 15 6 20 23 11

19 10 5 12 4 22 3

21 14 29 8 28 25 30

26 7 32 24 13 9 17

33 16 18 31 27 34 35

1 3 7 4 9 5 2

13 16 8 18 17 6 14

10 12 11 15 21 19 27

24 22 20 25 26 23 28

34 31 33 32 30 35 29

18 16 13 9 14 27 8

24 26 11 17 31 5 32

7 35 22 34 21 29 12

25 3 4 33 10 30 19

28 1 6 2 20 15 23

6 15 2 1 20 28 19

10 4 23 3 25 33 21

30 12 7 29 22 11 8

34 35 17 32 9 31 16

26 14 24 27 5 13 18

18 16 13 9 14 27 8

24 26 11 17 31 5 32

7 35 22 34 21 29 12

25 3 4 33 10 30 19

28 1 6 2 20 15 23

2 20 15 23 6 1 29

19 22 28 30 11 32 10

12 25 21 33 26 31 34

24 14 35 27 5 4 8

17 18 31 3 16 9 7

1 3 2 4 5 7 9

8 13 6 16 17 10 18

12 11 14 15 21 19 22

20 24 27 23 25 26 28

31 34 30 33 32 29 35

Fig. 1 Linear orderings of evaluation landscape patterns by increasing value of indicated
metrics. In each case, an ordering starts at the upper-left corner of a grid and proceeds
row-wise. Numbers are the labels of patterns which are also ranks in H(y) ordering.

(see, for example, landscapes #15 and #16). H(y|x) is interpreted as a diver-278

sity of cell adjacencies. Based on this interpretation, a sequence of landscapes279

ordered by H(y|x) should display increasingly heterogeneous (fine scale) pat-280

terns. Visual inspection shows that overall the heterogeneity of patterns in the281

sequence increases, but it also brings to our attention that landscapes with282

very similar values of H(y|x) are perceived as having very different hetero-283

geneities (for example, see landscapes #5 and #2). Similar discrepancies can284

be observed in remaining orderings shown in Fig. 1.285
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Table 1 Spearman’s rank correlation coefficients between different orderings

ordering H(y) H(y|x) H(x, y) I(y, x) U RC1 RC2 S

H(y) 1 0.93 0.97 0.59 -0.13 0.25 0.55 -0.06
H(y|x) 0.93 1 0.99 0.30 -0.42 0.02 0.75 0.17
H(x, y) 0.97 0.99 1 0.41 -0.30 0.12 0.68 0.07
I(y, x) 0.59 0.30 0.41 1 0.67 0.71 -0.22 -0.67

U -0.13 -0.42 -0.30 0.67 1 0.68 -0.72 -0.77
RC1 0.25 0.02 0.12 0.71 0.68 1 -0.49 -0.93
RC2 0.55 0.75 0.68 -0.22 -0.72 -0.49 1 0.70

S -0.06 0.17 0.07 -0.67 -0.77 -0.93 0.70 1
H(y) - marginal entropy, H(y|x) - conditional entropy, I(y, x) - mutual in-
formation, U - relative mutual information, RC1 - first principal component,
RC2 - second principal component, S - Boltzmann entropy

These observations are explained by the fact that entropy is not an injec-286

tive function of a histogram – different histograms may yield the same value of287

entropy. Thus, no linear ordering, based on entropy measure (note that RC1288

and RC2 are indirectly also based, to some degree, on entropy-based indices)289

cannot be expected to produce a sequence with continuously changing charac-290

ter of pattern configuration, even if they show an overall trend in accordance291

with their interpretations. This brings into question practical values of com-292

plexity metrics such as the spatial entropy or the Boltzmann entropy. It is not293

that there is something wrong with these metrics, rather that they measure294

the same values for (sometimes) strikingly different patterns.295

Table 1 lists rank correlations for orderings shown in Fig. 1. Values in296

this table confirm what is observed in Fig. 1, orderings of H(y), H(y|x), and297

H(x, y) are strongly correlated. Thus, in real-life landscapes diversity induces298

complexity. Because landscapes chosen for evaluation represent all feasible299

land cover pattern configurations, we expect that this observation extends300

to all land cover patterns. Thus, if a land cover pattern is diverse it is also301

complex. In fact, linear dependence between landscape complexity and its302

diversity has been observed in patterns present in Landsat images representing303

major Canadian ecoregions (Proulx and Fahrig, 2010).304

The two mutual information metrics, I(y, x) and, especially, U , are poorly305

correlated with metrics H(y), H(y|x), and H(x, y), suggesting that mutual306

information provides a mostly independent, additional channel of information307

about a pattern. The first principal component, RC1 is moderately correlated308

with the mutual information and the second principal component, RC2, is309

moderately correlated with H(y), H(y|x), and H(x, y). Boltzmann entropy310

is moderately inversely correlated with the mutual information, strongly in-311

versely correlated with RC1, and moderately correlated with RC2.312

5 Landscape pattern configuration types313

Rank correlations in Table 1 suggest using H(y) and U as the two parameters314

to utilize in a 2D parametrization of landscape patterns because they are315
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Fig. 2 (A) Organization of evaluation landscape patterns by H(y) and U . (B) Organiza-
tion of evaluation landscape patterns by the top two principal components RC2 and RC1.
Landscapes are marked using labels introduced in Fig. 1. (C) Hierarchical clustering of land-
scapes into four LPCTs (red-colored contours) and eight LPCTs (black-colored contours).
(D) Depiction of landscapes assigned to different LPCTs.

the least correlated of all information-theoretical metrics. Fig. 2A is a graph316

showing such parametrization, hereafter we refer to it as the HY U diagram317

for short. Diagrams (not shown here) which use H(y|x) or H(x, y) instead318

of H(y) differ in details from the HY U diagram but have a similar overall319

character.320
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By analyzing the HY U diagram (possibly referring to Fig. 2D for an un-321

obscured view of landscape patterns if necessary) it can be verified that it322

organizes landscape patterns in such a way that patterns placed in nearby323

locations on the diagram have similar configurations, and patterns placed in324

distant locations of the diagram have different configurations. Thus, there is325

a continuous relation between location of points on the H(y) − U plane and326

configurations of landscapes represented by these points. Because our evalua-327

tion landscapes have been chosen to represent all feasible land cover pattern328

configuration types this desirable feature of the HY U diagram extends to all329

land cover patterns.330

The reason why a 2D parametrization succeeds in grouping similar patterns331

while 1D parametrization doesn’t is the presence of additional information that332

brakes a degeneracy (many-to-one mapping) of entropy-based measures. For333

example, very different patterns #15 and #16 are mapped to very similar334

values of H(y), but additional information – U – makes a distinction between335

them possible.336

LPCTs can be extracted from the HY U diagram by clustering landscapes337

using the Euclidean distance between points on the HY U diagram as a mea-338

sure of dissimilarity between patterns. Fig. 2C shows the result of hierarchical339

clustering (with Ward’s linkage) on 35 exemplar landscapes. Red-colored con-340

tours indicate clustering into four LPCTs and black-colored counters indicate341

clustering into eight LPCTs. Fig. 2D depicts landscapes belonging to individ-342

ual clusters. It is clear from examining Fig. 2D that clusters group landscapes343

with similar configurations and thus can serve as LPCTs. Thematic content of344

landscapes within a single LPCT may differ as the HY U does not take it into345

consideration. To obtain a classification based on configuration and thematic346

content, LPCTs need to be further classified with respect to their themes.347

Fig. 2B shows the RC2−RC1 diagram, which is an empirical counterpart of348

theHY U diagram. In the majority of cases, patterns placed in nearby locations349

on the RC2−RC1 diagram have similar patterns, but the relationship between350

pattern similarity and landscapes closeness in the 2D plane is not as good as in351

the HY U diagram. Also, the logic of the organization of pattern placements on352

the RC2−RC1 diagram is different from the logic of pattern placements on the353

HY U diagram. Most importantly, the RC2 − RC1 diagram is not universal.354

Landscapes patterns coming from a dataset other than the nine-classes ESA355

2015 map cannot be placed on this diagram, because the principal components356

model used to construct this diagram does not apply to them. For this reason,357

the IT-based HY U diagram is a better classification tool than the empirically-358

based RC2−RC1 diagram.359

6 Discussion and conclusions360

This paper makes several contributions to the theory of quantification of land-361

scape patterns. The major contributions are as follows. (a) Demonstrating362

that fundamental properties of landscape patterns can be quantified within363
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the framework of the Information Theory as applied to a bivariate random364

variable. (b) Showing that ordering landscapes by values of a single metric365

cannot yield a sequence of continuously changing patterns. (c) Observing that366

in real-life land cover landscapes diversity induces complexity; pattern’s con-367

figurational complexity is proportional to the pattern’s diversity. (d) Finding368

a 2D parametrization of landscape configurations based on two weakly cor-369

related IT metrics that groups similar patterns into distinct regions of the370

parameters space thus providing the basis for classification of landscapes into371

LPCTs.372

The first contribution is of conceptual nature. We demonstrated that land-373

scape patterns can be quantified by calculating the distribution of information374

in a bivariate variable which describes a pattern. This is conceptually different375

from using ad hoc landscape indices. Note that IT of bivariate random variable376

provides information about composition (diversity) and configuration (adja-377

cencies), thus providing all fundamental information about landscape config-378

uration that is needed (Riitters, 2018). From equation 5 and the Jensen’s379

inequality, it follows that H(y) ≥ H(y|x) or that composition is a dominant380

property of the pattern. Also, we found that, at least for landscapes in our381

evaluation set, configuration follows composition. Together, these results are382

almost identical to conclusions recently reached by Riitters (2018) on the basis383

of long experience in working with landscape patterns.384

Could we come up with our parametrization by just using landscape in-385

dices? Yes, but only in the retrospect. Presented parametrization emerges nat-386

urally from the IT-based analysis. Once emerged it can be expressed in terms of387

landscape indices. H(y) is equivalent to the Shannon’s diversity index (SHDI)388

and H(x, y) is inversely proportional to the contagion index, contagion =389

1−H(x, y)/max
[
H(x, y)

]
, (O?Neill et al., 1988; Li and Reynolds, 1993). From390

those correspondences and using equations 4 and 5, it follows that I(y, x) can391

be expressed as a linear function of the contagion and the SHDI.392

Using IT for quantification of ecologically relevant patterns was proposed393

before (Proulx and Parrott, 2008; Parrott, 2010) but only in the context of394

measuring the complexity of ecological systems, that is, in terms of our nomen-395

clature, in the context of linear ordering. Another distinctive feature of the396

present paper is a thorough explanation of IT concepts in the context of land-397

scape ecology, which can serve as a guide for future applications.398

The second contribution is important because it brings into question whether399

orderings of landscape patterns (for example, by values of their complexity)400

are useful. For such ordering to be useful ordered landscapes should display401

a continuously changing pattern. Our results (see Fig. 1) shows that this is402

not the case for H(x, y) and H(y|x), the two IT-based measures of complexity403

and also not the case for the Boltzmann entropy. We suggested a simple ex-404

planation of why this must be so. This shortcoming of orderings has not been405

noticed before because proposed orderings were tested on either synthetic pat-406

terns or on small and incomplete samples of real-life patterns (Wang and Zhao,407

2018; Cushman, 2018). In contrast, we used an evaluation set of landscapes408

that includes all types land cover configurations.409
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Because H(x, y) is inversely proportional to the contagion index, the or-410

dering of landscape patterns by values of H(x, y) (see Fig. 1) demonstrates411

that the contagion index, which is considered to be a measure of clumpiness,412

is not really a good indicator of this property. Although a deficiency of conta-413

gion index as a measure of landscape clumpiness has been previously pointed414

out by (Li and Reynolds, 1993; Riitters et al., 1996; He et al., 2000), here we415

demonstrate it clearly on real-life landscapes.416

The third finding – landscape diversity induces landscape compositional417

complexity – agrees with intuition. A diversity of categories is a prerequisite418

of pattern intricacy. Moreover, we demonstrated that, in real-life landscapes,419

there is a high correlation between pattern’s diversity and its complexity. Di-420

verse but geometrically simple landscapes are just not found in nature. The421

high correlation between H(y) and H(y|x) in real-life landscapes points to422

an additional interpretation of relative mutual information U and the HY U423

diagram. An equation H(y|x) = αH(y)+δ states that the complexity of a pat-424

tern is equal to its prediction from the linear model, αH(y), which reflects an425

observed correlation, plus a “residual” δ. Note that α ≤ 1 due to the Jensen’s426

inequality and that there is no intercept in the linear model because for the427

homogeneous landscape H(y) = H(y|x) = 0. Thus eq. 5 can be rewritten as428

I(y, x) = H(y)−
[
αH(y) + δ

]
= (1− α)H(y)− δ (6)

and the relative mutual information U can be expressed as429

U = I(y, x)/H(y) = (1− α)− δ

H(y)
(7)

The term (1 − α) is an “expected” value of U , consistent with the observed430

correlation between composition and configuration. For our evaluation set of431

landscapes, this term is equal to 0.25. The second term is a part of U unac-432

counted for by the linear model. If a pattern is simpler than the linear model433

predicts δ is negative; such patterns are located above the U = 0.25 horizontal434

line on the HY U diagram. If a pattern is more complex than the linear model435

predicts δ is positive; such patterns are located below the U = 0.25 horizon-436

tal line on the HY U diagram. Note that as the diversity of the composition437

increases the predictions of the linear model become more accurate.438

Finally, our forth contribution has direct relevance to landscape classifica-439

tion into LPCTs. We have demonstrated that by using two weakly correlated440

IT metrics we can organize landscapes in such a way that landscapes with441

similar LPCTs are located in nearby locations on the 2D diagram. Thus, our442

HY U diagram is a de facto universal classifier of landscape pattern configu-443

ration types. It is an improvement over the classic method of Wickham and444

Norton (1994) inasmuch as it provides a more detailed classification of pat-445

terns’ configurations. However, our method does not consider thematic con-446

tent of landscapes. For landscape classification based on configuration and447

thematic content, a post-processing step that further divides LPCTs on basis448

of themes is needed. This is a straightforward task, which, however, is beyond449
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the scope of this paper. To facilitate classification of landscapes configurations450

via the HY U diagram we implemented H(x, y), H(x), H(y|x), and I(y;x) as451

the lsm l joinent, lsm l ent, lsm l condent, and lsm l mutinf functions in the452

R package landscapemetrics (Hesselbarth et al., 2019). The function accepts453

raster data as an input. Parameters include cells adjacency type (4-connected454

or 8-connected), and the type of pairs considered (ordered and unordered).455

Once these metrics are calculated for a set of landscapes, the HY U diagram456

can be constructed. Classification follows from a division of the HY U diagram457

by either manual or computational (clustering) means.458

Since landscape patterns change with scale, future work will test the notion459

of the HY U diagram as the universal classifier on landscapes at different scales460

than in our present evaluation set. In particular, we plan on using land cover461

dataset having finer resolution than the ESA dataset, such as the National462

Land Cover dataset (NLCD, to test the HY U diagram on landscapes as small463

as 1km×1km. Because the HY U diagram is constructed on solid theoretical464

grounds, we expect that it would classify well landscapes at any scale.465
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Carrara E, Arroyo-Rodŕıguez V, Vega-Rivera JH, Schondube JE, de Freitas483

SM, Fahrig L (2015) Impact of landscape composition and configuration on484

forest specialist and generalist bird species in the fragmented Lacandona485

rainforest, Mexico. Biological Conservation 184:117–126486

Claramunt C (2012) Towards a spatio-temporal form of entropy. In Interna-487

tional Conference on Conceptual Modeling. In: In International Conference488

on Conceptual Modeling, Springer, Berlin, Heidelberg., pp 221–230489



16 Jakub Nowosad, Tomasz F. Stepinski

Cover TM, Thomas JA (2012) Elements of information theory. John Wiley &490

Sons.491

Cushman S (2018) Calculation of Configurational Entropy in Com-492

plex Landscapes. Entropy 20(4):298, DOI 10.3390/e20040298, URL493

http://www.mdpi.com/1099-4300/20/4/298494

Cushman SA (2016) Calculating the configurational entropy of a landscape495

mosaic. Landscape Ecology 31(3):481–489, DOI 10.1007/s10980-015-0305-2496

Cushman SA, McGarigal K, Neel MC (2008) Parsimony in landscape metrics:497

Strength, universality, and consistency. Ecological Indicators 8(5):691–703498

Duflot R, Ernoult A, Aviron S, Fahrig L, Burel F (2017) Relative effects of499

landscape composition and configuration on multi-habitat gamma diver-500

sity in agricultural landscapes. Agriculture, Ecosystems and Environment501

241:62–69502

ESA (2017) European Space Agency Land Cover CCI Product User Guide503

Version 2.0. Tech. rep.504

Fahrig L, Nuttle WK (2005) Population ecology in spatially heterogeneous505

environments. In: Lovett GM, Jones CG, Turner MG, Weathers KC (eds)506

Ecosystem function in heterogeneous landscapes, Springer, New York, NY.,507

pp 95–118508

Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C,509

Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and510

animal biodiversity in agricultural landscapes. Ecology Letters 14(2):101–511

112512

Gao P, Zhang H, Li Z (2017) A hierarchy-based solution to calculate the con-513

figurational entropy of landscape gradients. Landscape Ecology 32(6):1133–514

1146515

Haralick RM, Shanmugam K, Dinstein I (1973) Textural Features for Image516

Classification. IEEE Transactions on systems, man, and cybernatics SMC-3517

(6):610–621518

He HS, DeZonia BE, Mladenoff DJ (2000) An aggregation index (AI) to quan-519

tify spatial patterns of landscapes. Landscape Ecology 15(7):591–601520

Hesselbarth MH, Sciaini M, Nowosad J, Hanss S (2019) landscapemet-521

rics: Landscape Metrics for Categorical Map Patterns. URL https://r-522

spatialecology.github.io/landscapemetrics/, r package version 0.4523

Holzschuh A, Steffan-Dewenter I, Tscharntke T (2010) How do landscape com-524

position and configuration, organic farming and fallow strips affect the di-525

versity of bees, wasps and their parasitoids? Journal of Animal Ecology526

79(2):491–500527

Hunsaker CT, Levine DA (1995) Hierarchical approaches to the study of water528

quality in rivers. BioScience 45(3):193–203529

Jensen JL (1906) Sur les fonctions convexes et les inégalités entre les valeurs530
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