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Abstract 
The fluent retrieval and production of movement sequences is essential for a variety 

of daily activities such as speech, tool-use, musical and athletic performance, but the neural 
mechanisms underlying sequence planning remain elusive. Here, participants learned 
sequences of finger presses with different timings and different finger orders, and reproduced 
them in a magneto-encephalography (MEG) scanner. We classified the MEG patterns 
immediately preceding each press in the sequence, and examined their dynamics over the 
production of the whole sequence. Our results confirm a role for the ‘competitive queuing’ of 
upcoming action representations in the production of learned motor sequences, extending 
previous computational and non-human primate recording studies to non-invasive measures 
in humans. In addition, we show that competitive queuing does not simply reflect specific 
motor actions, but representations of higher-level sequential order that generalise across 
different motor sequences. Finally, we show that the quality of competitive queuing predicts 
participants’ production accuracy, and originates from parahippocampal and cerebellar 
sources. These results suggest that the brain learns and produces multiple behavioural 
sequences by flexibly combining representations of specific actions with more abstract, 
parallel representations of sequential structure.   
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Main 
The majority of skilled human behaviours such as speech, handwriting, playing a 

musical instrument and athletic performance evolve in temporally structured sequences. A 
breakdown of their fluency e.g. in dyspraxia, stuttering and task-dependent dystonia can lead 
to a profound impairment of the individual’s everyday functioning1–5. Historically two 
opposing theories have been proposed for the neural basis of motor sequence control. The 
associative chaining account originating from the pioneering work of Ebbinghaus6 in 1885 
proposed strong forward connections between successive elements of a sequence, leading to 
the behaviorist idea that each sequence element serves as a conditioning stimulus for the 
subsequent element during the formation of complex behaviours7. In modern neuroscience 
this hypothesis has engendered the formulation of state-space models of spatio-temporal 
motor control, including of skilled movement sequences such as writing and Morse code 
production.8–11 These models are characterized by a spatio-temporal trajectory that is 
determined by the serial evolution of population activity, such that a population state n 
triggers the state n+1, the latter n+2 and so forth. In recurrent neural networks (RNN) 
inspired by the neocortex, the evolution of multiunit activity is primarily determined by the 
connectivity matrix as acquired through learning. In other words, spatio-temporal movements 
are controlled by a serial transition through neural population states (multi-unit trajectory), 
which are mapped onto motor actuators.  

However, since Lashley’s seminal proposal12 there has been an alternative account 
suggesting that all elements of a planned sequence are active simultaneously before execution 
leading to the characteristic finding of transposition errors amongst nearby elements13, e.g. as 
observed in speech or typing. So-called ‘competitive queuing’ models can formally explain 
this behavior by introducing a parallel preparation layer that determines serial order by 
competitive interactions between sequence elements driven by differing levels of excitation 
in accordance with the sequence (Fig. 1a). The most active node wins the competition, 
generates the corresponding action and is then self-inhibited through the planning layer, 
allowing the next most strongly activated node to generate the next action, effectively 
allowing the conversion of a parallel planning code into a temporally structured serial output 
during execution. Crucially, it has been suggested that the respective excitation gradient may 
be determined through the association of each item to an independent timing or position 
signal that is reset prior to sequence production, such as a decaying start signal14, a 
combination of start and end signals15, or dynamic states for each serial position16. This is in 
contrast to RNN network models of control where serial order conjunctively codes for both 
position and content17.  

Direct neurophysiological evidence in support of the competitive queuing model has 
been obtained by Averbeck and colleagues18, who taught non-human primates to copy 
geometrical shapes presented on the computer screen while they recorded multi-unit activity 
from the prefrontal cortex, an area homologous to inferior frontal cortex in the human brain19. 
Specifically, they characterized multi-unit patterns during the production of each segment in 
the shape-drawing sequence, and then classified the likelihood of that segment pattern 
becoming active during movement preparation and production. Their findings revealed that 
the likelihood of segment activation towards the end of the preparation phase is determined 
by its respective position in the sequence (Fig. 1b), as predicted by competitive queuing 
models. However, evidence in support of the competitive queuing model has yet to be 
reported in humans. Moreover, it remains unclear whether this planning process reflects a 
graded preparation of specific motor elements in the sequence, or instead a higher-level 
timing signal, which transfers across motor sequences15,16,20,21.  
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Figure 1. Competitive queuing model and prior data. a. Competitive queuing (CQ) model. The competitive 
choice layer contains nodes representing possible sequence items – such as muscular synergies A, B, C, D and 
E. Planning the temporal organization of actions to produce a sequence is implemented by activating the 
employed sequence items in parallel, with the highest activation allocated to the first and the lowest activation 
to the last sequence item, respectively. Crucially, this weight is determined by associating each item with a 
different state of a postulated neural “temporal context”16. Links from temporal context units to the item-
specific parallel planning units are established using Hebbian learning. The most active node in the competitive 
choice layer wins the competition, generating the corresponding action and is then self-inhibited through the 
planning layer, allowing the next most strongly activated node to generate the next action. This iterative process 
allows the conversion of a parallel planning code into a temporally structured serial output. b. Averbeck et al. 
recorded the activity of individual neurons simultaneously in the prefrontal cortex while monkeys drew 
geometrical shapes, i.e. produced stereotyped sequences of trained movements. Each of the sequence segments 
was associated with distinct patterns of neuronal ensemble activity. The authors showed that 1) these patterns 
were present during sequence preparation and 2) the likelihood of any pattern being present during this time 
predicted the serial position of that movement in the motor sequence. These results are consistent with the 
graded parallel preparation of sequence items predicted by the competitive queuing model. 

 
Here, we provide direct evidence for competitive queuing in the human brain during 

the preparation of accurately timed finger sequences from memory using non-invasive whole 
head recordings (magneto-encephalography; MEG), replicating previous findings from 
invasive electrophysiology in non-human primates18. Further, we demonstrate that the 
observed competitive queuing pattern in the MEG signal during preparation reflects effector-
independent temporal sequence (serial position) planning and cannot be explained by a 
graded muscular pre-activation. Finally, we show that the fidelity of competitive queuing 
correlates with behavioural performance across participants, suggesting that this neural 
planning strategy is relevant for skilled sequence production and timing. 
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Results 
Sequence performance shows independent temporal transfer 

Participants were trained for two days to associate four abstract visual cues with the 
production of four finger sequences from memory following a ‘Go’ cue (Fig. 2a). Each 
sequence consisted of five-finger presses (finger order) and five target intervals between 
finger presses (timing or temporal interval order), respectively. Sequence construction 
followed a factorial design, with two temporal (T1 and T2) and two finger order sequences 
(F1 and F2) resulting in four unique temporally structured finger sequences (Fig. 2a). While 
in the majority of participants the production of the correct sequences was temporally aligned 
according to T1 and T2 across finger orders F1 and F2, respectively (Fig. 2b), there was also 
substantial variation of timing accuracy between participants. Mean temporal error from 
target interval structure across the whole group ranged from 10-33% deviation from the target 
interval sequence (mean: 19%, SD: 7%; Fig. 2b). The participants were grouped using a 
median split of interval deviation (temporal error) for later analysis with more accurate 
participants showing on average 14% (SD: 3%) and the less accurate 25% (SD: 5%) absolute 
deviation from target interval. On average, participants tended to produce finger press 
intervals 7% shorter than the respective target intervals, resulting in sequences that were 
slightly faster than the target sequence. Subjects who were less accurate (larger absolute 
deviation from target) were also more likely to produce shorter, rather than longer intervals (r 
= -.817, p < .001, two-tailed).  
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Figure 2. Task and production of sequences from memory. a. Trial design in the MEG experiment: Subjects 
were required to prepare and produce one of four finger press sequences as indicated by a unique visual fractal 
cue, followed by a ‘Go’ cue. The four sequences were unique combinations of two finger orders (F1 and F2) 
and two temporal or interval orders (T1 and T2) and were generated randomly for each subject. The 
association between randomly assigned abstract visual cues and each sequence was learned during two days of 
training preceding the MEG session. Each sequence started with the same target finger and target interval 
between ‘Go’ cue and first finger press within subjects. The ‘Go’ cue remained on the screen throughout the 
production period. To prevent drifts in performance and maintain attention to the task, subjects received 
feedback on the finger and temporal accuracy of their five finger presses after each trial with crosses (‘x’) 
signifying correct and dashes (‘-’) incorrect finger press responses across positions. The relative position of 
crosses on the y-axis relative to a dashed midline indicated temporal accuracy (too early being below or too 
late above the midline; outer lines -100 and 100 percent of target interval). b. Individual subjects’ raster plots 
show the timing of single button presses for each trial produced from memory after the ‘Go’ cue (t=0) during 
the MEG session. The colour code corresponds to the press position in Fig. 1a. The trials for each sequence are 
grouped by sequence number and within these groupings sorted by temporal accuracy relative to the target 
interval structure with the most accurate in the top to least accurate trials in the bottom rows. Subjects are 
grouped into more accurate and less accurate based in a median split of average temporal performance error. 
Here only trials with correct finger order were used for analysis. Within these subgroups subjects are arranged 
according to their mean temporal performance with the most accurate at the top left to the least accurate in the 
bottom right, respectively. 
 

To evaluate sequence-specific learning, we conducted a post-training test on the day 
before the MEG session during which participants were ask to synchronize their respective 
presses to a visual finger cue, as in the first stages of training (cf. Methods). Participants 
showed significantly more accurate synchronization to visual sequences when they 
encountered trained sequences, as well as sequences with trained finger order or trained 
temporal interval order to untrained control sequences (Fig. 3a-b). This result confirmed an 
independent representation of the temporal structure of sequences which can be utilized 
across finger sequences, in line with previous studies 22–24. Subject with more pronounced 
sequence-specific learning produced larger inter-press-intervals during the MEG session (r = 
.501, p < .001, two-tailed), suggesting that the tendency to compress the sequence was a 
marker of poor skill learning. 

 

 
Figure 3: Independent transfer of timing to untrained finger sequences. a. A visually cued 

synchronization task, during which subjects had to synchronize finger presses with finger sequences presented 
on the screen, was used to assess sequence-specific advantages due to training. Here absolute RT deviation 
from finger cue (absolute RT) was determined for each condition. Repeating sequences six times in the test 
phase yielded an immediate decrease of absolute RT deviation from target for trained sequences (green) 
relative to untrained sequences (black). Sequences with a trained finger order, but an untrained timing (blue) 
also produced immediate benefits. Sequences with a trained timing, but an untrained finger order (red) also 
showed behavioural advantages, but only after the first three sequence repetitions. This is a replication of 
previously reported findings with evidence for a dedicated encoding of temporal structure independently of 
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specific finger presses, as revealed by faster behavioural acquisition of new sequences compared to a control 
condition 22,23. b. Mean RT deviation across subjects after the first three sequence repetitions showed 
behavioural advantages for the trained sequence, as well as the trained finger order and trained temporal 
transfer conditions, compared to untrained sequences, suggesting that both the finger order and their relative 
timing were represented independently. ** p < 0.01, * p < 0.05, one-sided t-test. 

 
MEG evidence for competitive queuing 
During the MEG scan, finger sequences were visually cued with an abstract shape for 

1.8 - 2.2 seconds before the ‘Go’ cue. This provided participants with a short period to 
retrieve and prepare the corresponding sequence from memory prior to production. We 
leveraged multivariate linear discriminant analysis (LDA) to characterize whole head MEG 
activity patterns associated with the execution of each finger press. Specifically, we trained 
our classifier on the average MEG pattern across all sensors in a 10ms window immediately 
preceding each finger press during sequence production, and then applied the classifier to 
successive 10ms time windows during sequence preparation, in order to establish the 
posterior probability of each press-related pattern appearing during that period (Fig. 4).  

  
Figure 4:  Linear discriminant analysis and classification. A Gaussian-linear classifier was trained to 
discriminate patterns of mean signal amplitude in a 10ms time window preceding each of the five button presses 
across all sensors in a data set consisting of correct trials only. Example mean signal amplitude values across 
the scalp are shown for a representative participant (temporal accuracy z=0.45). The test data set consisted of 
non-overlapping 10ms time windows starting 2000ms before and 4500ms after the Go cue. For each time 
window in each trial, we calculated the probability of each button press (i.e. how closely the observed activity 
pattern resembled that relating to each button press in the training data). For illustration purposes, only the 
pattern with the highest probability is shown (inverted commas) for one example trial in the same participant. 
To test whether the neural competitive queuing of sequence elements during sequence preparation reflected the 
weighting of patterns related to the ordinal structure of the sequence, rather than effector specific activity, we 
also trained and tested the classifier using sequences with the same timing, but a different finger order 
(‘across’, cf. Fig. 2), respectively. In addition, the same analysis was performed on the mean signal amplitude 
from the four concurrently recorded EMG channels (not shown). 
 
This analysis demonstrated that, during sequence preparation, the probability of each finger 
press being decoded across time windows was scaled according to its serial position in the 
sequence (Fig. 5a-c; Supplementary Fig. 1a for individual data), analogous to the findings 
obtained using invasive electrophysiology recordings in macaques18. Specifically, the mean 
pattern probability during the final 1s of the preparation period was modulated by press 
position (F(1.71, 25.60) = 42.23, p < .001, η² = 0.738; one-way repeated measures ANOVA, 
Greenhouse-Geisser corrected, χ2 (9) = 37.56, p < .001). As predicted by the competitive 
queuing hypothesis, pattern probabilities during this period were significantly higher for 1st 
vs. 2nd (t(15) = 4.62, p < .001), 2nd vs. 3rd (t(15)  = 4.57, p < .001), and 3rd vs., 4th (t(15)  = 
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4.51, p < .001) finger presses, whilst the probability of decoding the 4th press was not 
significantly higher than that of the 5th (t(15)  = 1.78, p = .19; one-tailed t-tests according to 
the competitive queuing hypothesis, Bonferroni-corrected for four comparisons).  

We then examined whether competitive queuing during sequence preparation was 
preserved when classifying MEG patterns across sequences with the same target timing, but a 
different finger order. If competitive queuing reflected the upcoming order of specific 
effectors (here: fingers), we would expect the accurate queuing of pattern probabilities to 
collapse since the upcoming finger order is rearranged relative to the training order in the 2nd 
to 5th positions, i.e. the training pattern for a particular press position would reflect a different 
finger from that in the test pattern. In contrast, if competitive queuing during preparation was 
driven by the representation of ordinal position within the sequence regardless of effectors 
(neural patterns related to the state of being in 1st to 5th position in the sequence), then 
competitive queuing during the preparation phase should be upheld across sequences with a 
different finger order.  

 
Figure 5: Neural vs. muscular markers of competitive queuing. a. MEG patterns: Trace plots display the 
probability of each pattern classification related to the 1st-5th finger press 2000ms before and ending 4500ms 
after the ‘Go’ cue. Pattern probabilities ‘within’ refers to training and testing within the same sequence trials. 
Probabilities ‘across’ patterns refers to testing and training across sequences with the same target timing, but 
performed with a different finger sequence (Fig. 3). b. Boxplots show the mean probability for each press 
pattern and c. the mean distance between consecutive press pattern probabilities in the final 1s before the ‘Go’ 
cue. The latter include the average distance between consecutive press patterns of all (left panel) and 2nd-5th 
press patterns (right panel), respectively. Note that for each subject the sequences always started with the same 
finger and target interval. Thus the classification ‘across’ different fingers applies to 2nd to 5th position only, 
providing a dissociation between finger and position- or timing-related pattern probabilities. Together the MEG 
results suggest a competitive queuing of sequential movement patterns which generalizes across finger 
sequences with the same temporal structure. d-f. EMG patterns: Results illustrating the probability of muscular 
patterns are displayed in the same format as panels a-c. In contrast to the MEG classification results, only the 
pattern for the first element in the sequence was elevated in muscular space suggesting that, at the periphery, 
only the first element in the sequence was prepared before the ‘Go’ cue. It also implies that the complete 
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competitive queuing pattern in the MEG results is not driven by a corresponding graded activation of finger 
presses or weighted sensory feedback from the periphery. CQ: competitive queuing; ** p < 0.001, * p < .05 (t-
tests against zero, Bonferroni corrected for four tests for MEG and EMG separately). 

This analysis revealed that competitive queuing during the preparation period was 
qualitatively preserved across sequences with the same temporal interval, but differing finger 
order (Fig. 5a-c; Supplementary Fig. 1b and Supplementary Fig. 2 for individual data). 
Specifically, the pattern probability was still modulated by press position (F(1.68, 25.15) = 
26.97, p < .001, η² = 0.643; one-way repeated measures ANOVA, Greenhouse-Geisser 
corrected, χ2 (9) = 39.87, p < .001). Pattern probabilities at the end of the preparation period 
were significantly higher for 1st vs. 2nd (t(15) = 4.06, p = .002), 2nd vs. 3rd (t(15)  = 3.29, p < 
.001), 3rd vs., 4th (t(15)  = 3.97, p = .002) finger presses, whilst the probability of decoding 
the 4th press was – once again – not significantly higher than that of the 5th (t(15)  = 0.98, p = 
.68; one-tailed t-tests according to the competitive queuing hypothesis, Bonferroni-corrected 
for four comparisons).  

To determine the strength and variability of competitive queuing across participants 
based on the classification within sequences with the same finger order and across sequences 
with a different finger order, respectively, we calculated the average distance between 
consecutive press probabilities for each participant. Consistent with the results described 
above, this distance parameter was significantly above zero across participants regardless of 
whether the training data came from sequences with the same (‘within’) or different 
(‘across’) finger orders (Fig. 5c). Crucially, the average distance between press probabilities 
remained significantly greater than zero, even when the probability for the 1st finger press 
(same across sequences in each participant; Fig. 2a) was excluded (2nd to 5th press, Fig. 5c). 
Moreover, across subjects, the average competitive queuing distance values obtained from 
the classification ‘within’ the same finger sequences were also highly correlated with those 
obtained ‘across’ finger sequences, regardless of whether the pattern for the first press in the 
sequence was taken into account (mean probability distance 1st – 5th press patterns:  r = .991, 
p <.001; mean probability distance 2nd to 5th press patterns: r = .982, p <.001). These results 
confirm the manifestation of a finger-independent, and therefore, transferable positional code 
during the preparation of motor sequences.  

In addition to the preparation phase, we also examined the dynamics of finger press 
probabilities during the production phase, in order to quantify subsequent modulations 
between ‘within’ and ‘across’ finger sequence classifications. Although the phasic execution-
related peaks were markedly attenuated in the ‘across’, compared to ‘within’ sequence 
classification in the positions where the finger order diverged (2nd-5th press; t(15) = 12.51, p < 
.001, paired one-tailed t-test), the respective press probabilities still increased above chance 
(20%) in the ‘across’ finger classification at the time of the respective finger presses (t(15)  = 
8.50, p < .001, paired one-tailed t-test). This suggests that the finger-independent, positional 
code established during the preparation period was utilized during sequence production. 

However, while competitive queuing during preparation was qualitatively preserved 
between the ‘within’ and ‘across’ finger sequence analyses, the average distance between 
adjacent probabilities nevertheless decreased significantly in the latter (t(15) = 5.68, p < .001, 
paired one-tailed t-test). This advocates the loss of a conjunctive representation of ordinal 
structure with the respective finger during both the preparation and production phases. In 
sum, the above results indicate that competitive queuing during sequence preparation 
includes the planning of an action-independent temporal template for action sequences, in 
addition to the queuing of specific effectors19. 

Competitive queuing is not driven by muscle activity 
Whilst the above neural signature of competitive queuing suggests a top-down signal 

for the temporal planning of finger sequences, it is still possible that this pattern is partly 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 2, 2018. ; https://doi.org/10.1101/383364doi: bioRxiv preprint 

https://doi.org/10.1101/383364
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

driven by a weighted activation of muscles at the periphery, such that the muscle synergy 
activations related to each finger movement are weighted before production according to 
their occurrence. Hence, using the same LDA procedure as for the MEG data training and 
classification (Fig. 3), we examined data obtained from muscles of the right hand (flexor 
carpi radialis, abductor polices brevis, abductor digiti minimi, first dorsal interossei) 
concurrently to the MEG recording. This analysis revealed that, during preparation, only the 
pattern probability for the first finger sequence press in the sequence – performed by the 
same finger across all four sequences – was elevated above those for the other sequence 
elements.  

Specifically, the EMG pattern probability at the end of the preparation period was 
modulated by press position for both ‘within’ (F(4, 60) = 7.44, p < .001, η² = 0.332; one-way 
repeated measures ANOVA) and ‘across’ finger sequence classification (F(2.74,41.17) = 
5.27, p = .005, η² = 0.260; one-way repeated measures ANOVA). However, in contrast to the 
MEG data, this effect was driven purely by the elevation of the probability of the first press 
in the sequence (1st vs. 2nd ‘within’: t = 3.882, p = .003 and 1st vs. 2nd ‘across’: t = 3.583, p = 
.005), with all other differences between adjacent press probabilities being not significant (p 
> .775, one-tailed t-tests according to the competitive queuing hypothesis, Bonferroni-
corrected for four comparisons; Fig. 5e). Furthermore, the EMG distance between 
consecutive press probabilities during preparation was significantly above zero when the 
probability for the 1st finger press was included in the distance calculation, but not when the 
only 2nd to 5th presses were taken into account (Fig. 5f).  

Finally, the distance between consecutive press probabilities in the MEG data did not 
correlate with the distance in the EMG data, neither in the within (r = .275, p = .303), nor in 
the across sequence analysis (r = .286, p = .283). Whilst the data provides a strong indication 
for the muscular preparation of the first press before the ‘Go’ cue, we could find no evidence 
for weighted muscular synergies driving the competitive queuing pattern in the central 
nervous system during sequence preparation. 

Competitive queuing predicts behavioural accuracy  
Finally, we asked whether the degree of neural competitive queuing during sequence 

preparation was relevant for the subsequent production of the sequences from memory. 
Specifically, we examined whether the average distance between pattern probabilities at the 
end of the preparation period (1s window immediately preceding the ‘Go’ cue) predicted the 
sum of points  (reflecting finger order and timing accuracy) gained across trials in the MEG 
session (cf. Methods) and, more specifically, the temporal accuracy during the production 
period.  

Our findings suggest that participants with a larger mean distance between adjacent 
press probabilities according to their sequence positions, tended to gain more points during 
the MEG session (r = .517, p = .020) and produce smaller temporal errors relative to the 
target timing structure of sequences (r  = -.571, p = .010; Fig. 6a and b). In particular, the 
probability dynamics shown in Fig. 6c illustrate the striking differences in the fidelity of 
competitive queuing during sequence preparation between participants with more and less 
accurate behavioural performance, as well as the relative preservation of phasic response 
curves during the serial execution period. Crucially, this correlation with behavioural 
accuracy was also unique to MEG patterns. Despite the elevation of the first EMG press 
pattern probability prior to the ‘Go’ cue, which could have played a role in subsequent 
sequence production, the fidelity of competitive queuing in EMG patterns did not show any 
relationship with overall points gained or the size of temporal errors (Fig. 6e-g). 

In contrast to the correlation between temporal accuracy and mean pattern probability 
distance across participants, we did not find evidence for the pattern probability distance 
during preparation to predict temporal accuracy during the subsequent production on a trial-
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by-trial basis. Within participants, the trial-by-trial correlation coefficients ranged from r = -
.251 to r = .140 (SD = .093) with a predicted negative correlation being significant at p < 
0.05 in only 5 out of 16 participants (Fig. 6d, grouped by timing accuracy). Accordingly, 
participants with a more pronounced neural competitive queuing pattern during sequence 
preparation had better overall performance in the sequence production phase. However, this 
neural signal did not guarantee high execution accuracy at the trial-by-trial level, which may 
be influenced by other downstream processes for motor implementation. 

For the EMG patterns, in line with the group analysis, we did not find any consistent 
significant trial-by-trial correlations between the EMG pattern probability distance and 
temporal accuracy. Within participants the trial-by-trial correlation coefficients ranged from r 
= -.208 to r = .294 (SD = .137) with a predicted negative correlation being significant at p < 
0.05 in only 3 out of 16 participants (Fig. 6h, grouped by timing accuracy). Therefore, in the 
case of EMG data, there is no evidence of the elevated probability for the pattern related to 
the first press to be associated with performance, neither across nor within participants (trial-
by-trial).  
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Figure 6: Correlation with behavior. a. Overall points acquired during the MEG session correlated positively 
(left panel) and the temporal error from target intervals (right panel) correlated negatively with the average 
distance between consecutive MEG probability patterns extracted from the end of the preparation period in the 
‘within’ sequence classification (1st – 5th) as a proxy of the strength of competitive queuing. b. The median split 
based on points (finger order and timing accuracy) and temporal error revealed a significantly stronger 
competitive queuing for subjects with more points and lower temporal error (higher temporal accuracy). Again 
this effect could not be observed for the EMG patterns, despite the fact that the elevation of the probability for 
the first element in the sequence was enhanced compared to the other patterns and might have contributed to 
performance. c. Trace plots as in Fig. 4a grouped according to the median split by temporal error. Subjects 
with a more precise temporal sequencing showed a higher spread of press related pattern probabilities, 
suggesting that more pronounced competitive queuing is associated with superior performance. d. The 
correlation of temporal error and distance between press patterns in the preparation period was driven by 
differences between subjects, rather than by trial-to-trial fluctuations. Trial-by-trial pattern distance 
probabilities and temporal performance were correlated in four out 16 subjects. This finding suggests that the 
strength of neural competitive queuing during sequence planning predicted overall, but not trial-to-trial 
performance in the subsequent execution period. e-h. Association between pattern probability spread and 
behavior did not hold up for the EMG patterns. ** p < .01, * p < .05, one-sided t-test and linear correlations in 
line with the directional hypothesis for behavior and competitive queuing patterns. Two-sided t-tests and 
correlations were also significant at p < .05. 
 

Competitive queuing originates from parahippocampal and cerebellar 
sources 

Next, we sought to identify the neural origins of competitive queuing during 
preparation in MEG sensor and source space. To this end, we made use of searchlight 
analysis to determine where the competitive queuing signal observed during the preparation 
period was most pronounced. Specifically, we quantified the average distance between 
consecutive press probabilities at a single time point 0.5s before the ‘Go’ cue in each trial, 
after training and testing our classifiers on data from the same finger press sequences 
(‘within’ sequence analysis). In addition, these average distance values were z-transformed 
across all sensor and voxel searchlights within each participant prior to group level statistical 
analysis. The most pronounced effect of competitive queuing during preparation appeared in 
the right temporal sensors (t(15) = 3.58, p < 0.01, uncorrected, Fig. 7a). In line with this 
finding, the same analysis conducted in source space showed a significant competitive 
queuing distance effect to originate from a single cluster (pcluster < 0.001) comprising the right 
temporal cortex, specifically the parahippocampus, extending ventrally into the fusiform area 
(MNI coordinates of peak voxel: 30, -30, -24, t(15) = 6.94, p = .005, p-value FWE-corrected 
at voxel level); and the right (ipsilateral) cerebellum, specifically lobules VIII (MNI 
coordinates of peak voxel: 34, -30, -50, t(15) = 6.51, p = .009) and V (MNI coordinates of 
peak voxel: 64, -46 , -30, t(15) = 5.72, p = .046, Fig. 7c).  

In addition, to localize the sources of the press-related training patterns - that is of 
conjunctive representations of position and effector observed during sequence production – 
we trained and tested our classifier on MEG data obtained immediately prior to each finger 
press within each motor sequence using a five-fold cross-validation procedure. As before, 
decoding accuracy values were z-transformed across sensors and voxel searchlights within 
each participant prior to group level statistical analysis. Consistent with prior findings25,26, the 
accuracy of finger press decoding was most pronounced in the sensors located above the left 
sensory and motor areas contralateral to the moving hand and the right temporal sensors 
(t(15) = 3.11, p<0.01, uncorrected, Fig. 7b), the latter partly containing the same significant 
sensors as in the competitive queuing analysis from the preparation period. At the source 
level, we found a large significant cluster (pcluster < 0.001) comprising contralateral primary 
sensory and motor regions with peaks in the primary sensory cortex  (MNI coordinates of 
peak voxels:  -22, -38, 52, t(15)=11.19, p<0.001 and -54, -30, 40, t(15)=8.87, p=0.001), 
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extending medially into the cingulate cortex (MNI coordinates of peak voxel: -14, -28, 44, 
t(15)=8.96, p=0.001; Fig. 7d).  

Figure 7: Significant sensors and sources with most pronounced competitive queuing (CQ) strength during 
preparation. a. CQ distance during preparation (sensor level): A sensor level searchlight analysis demonstrated 
that competitive queuing during preparation (0.5s before the ‘Go’ cue) was most pronounced in the right 
temporal sensors (p<0.01, uncorrected). Line graphs show corresponding pattern probabilities during 
preparation from significant sensors of interest marked in orange in panels a and b and associated with right 
temporal (yellow) and left sensorimotor sites (magenta). Sensorimotor sites showed no evidence of competitive 
queuing during sequence preparation. b. Decoding accuracy of finger presses during production (sensor level): 
Searchlight analysis revealed that sensors driving the differences between the press patterns during production 
were located above the left (contralateral) sensorimotor sensors, in addition to right temporal sensors. Boxplots 
show individual decoding accuracies in sensors of interest and suggest that temporal sensors remained relevant 
during sequence production. c. CQ distance during preparation (source level): The combined CQ distance 
searchlight analysis at the source level (corresponding to sensor level data in panel a) revealed the right 
parahippocampal area and right (ipsilateral) cerebellar lobules V and VIII as likely sources of competitive 
queuing during preparation. Data is plotted as a t-statistic at a threshold of t(15) > 5.24, p < .05 (FWE 
corrected at the voxel level) centered at the peak voxel (MNI coordinates: 30, -30, -24). Line graphs show 
corresponding pattern probabilities during preparation from peak voxels in significant clusters identified in the 
respective analyses presented in panels c and d, specifically right parahippocampal (yellow), right cerebellar 
lobule VIII (yellow dashed) and left sensorimotor neocortex (magenta). As in panel a, sensorimotor sites 
showed no evidence of competitive queuing during sequence preparation. d. Decoding accuracy of finger 
presses during production (source level): Searchlight analysis revealed that the differences between the press 
patterns during production were driven by the left (contralateral) sensorimotor neocortex. Data is plotted as a 
t-statistic at a threshold of t(15) > 5.93, p < .05 (FWE corrected at the voxel level) centered at the peak voxel 
(MNI coordinates: -22, -36, 52). Boxplots show individual decoding accuracies in peak voxels of interest as in 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 2, 2018. ; https://doi.org/10.1101/383364doi: bioRxiv preprint 

https://doi.org/10.1101/383364
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

panel c, suggesting that despite not being significant at the whole brain level, temporal sensors remained 
relevant during sequence production, with above chance (20%) decoding accuracies. V: lobule V; VIII: lobule 
VIII; CB: cerebellum; CQ: competitive queuing; LF: left frontal; LH: left hemisphere; LP: left parietal; LT: left 
temporal; M1: primary motor cortex; PHC: parahippocampal area; RC: right central; RH: right hemisphere; 
RT: right temporal; S1: primary sensory cortex. 

 
Finally, to gain a more detailed picture of the complementary contributions of these 

regions during sequence preparation and production (Fig. 7a-d, line and box plots), we 
examined competitive queuing during the preparation phase and finger press decoding 
accuracy from the production phase in each group of significant sensors and peak voxels of 
significant clusters reported above. Interestingly, finger press decoding accuracy in the right 
temporal sensors, as well as the right parahippocampal and cerebellar sources identified by 
the competitive queuing analysis during the production phase, showed above chance finger 
press decoding accuracy in all sixteen subjects (p<0.001, one-sided t-tests against chance 
level). This suggests that activity patterns from these sources also contained information 
about the finger press being executed during sequence production, although the size of the 
effect was eclipsed by the concurrent representation of finger press identity in contralateral 
S1/M1 regions. In contrast, the probabilities in central sensors, as well as contralateral S1/M1 
during preparation did not show any evidence for a competitive queuing gradient (sensor 
level: one-way repeated measures ANOVA, F(2.32, 17.77) = 0.37, p = .72 , η² = 0.024; 
Greenhouse-Geisser corrected, χ2 (9) = 21.58, p = .01; source level: F(3, 32.18) = 1.82, p = 
.16 , η² = 0.108; Greenhouse-Geisser corrected, χ2 (9) = 18.71, p = .03), suggesting that 
contralateral neocortical sensorimotor areas did not contribute to establishing the temporal 
order of finger presses before execution. In sum, our results indicate the special role of the 
parahippocampal and effector-related cerebellar sources in establishing a competitive 
queuing gradient during sequence preparation and its utilization during sequence execution, 
whilst contralateral primary sensorimotor sources appear to contribute to the task during 
sequence execution only. 
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Discussion 
Using non-invasive neurophysiological recordings (MEG) in combination with 

multivariate pattern classification (LDA), we provide direct evidence for parallel competitive 
queuing of planned sequential actions in humans, in line with prior invasive 
electrophysiology data from non-human primates18 and computational models13,15,17,21,27. Our 
study extends these findings by showing that competitive queuing provides an abstract 
template for serial order which is transferable across movement sequences. Crucially, we 
demonstrate that the overall strength of competitive queuing during planning predicts the 
participant’s skill level during production, implying that this neural mechanism may be 
beneficial for sequence control. These findings are likely to have significance for the training 
of skilled sequences across diverse domains including handwriting, typing, speech, musical 
and athletic performance, as well as for non-invasive brain-computer interfaces for skilled 
motor control. 

Neural competitive queuing in humans 
Despite differences in methods and species, our results bear remarkable resemblance 

to prior electrophysiology data obtained from macaques18. Specifically, our data suggests that 
the elements which constitute a movement sequence are prepared in parallel, with the 
corresponding pattern probabilities being weighted by their respective position in the 
subsequent sequence. After the ‘Go’ cue, these pattern probabilities transitioned into phasic 
increases reflecting the serial execution of the finger presses. Importantly, there was no 
evidence to suggest that the parallel queuing of sequential elements in the MEG may be 
explained by a graded activation of muscle synergies related to each finger press, as the EMG 
pattern showed the preparation of the first finger press in the sequence only. 

Our data is at odds with an alternative model of motor sequence control which has 
dominated the field in the last decade, implying that skilled sequences such as handwriting or 
tapping sequences (e.g. Morse code production) are controlled by serial state-space 
trajectories in recurrent neural networks (RNN)10,11. Tasks exhibiting markers of competitive 
queuing or a dedicated encoding of sequence timing independently of the specific 
movements, such as the production of piano-like finger movement sequences, the drawing of 
geometrical shapes and other forms of skilled sequence production in humans (typing, 
speech) and animal models (birdsong) 22–24,28,29, cannot be easily reconciled with the idea of a 
serially evolving spatio-temporal neural trajectory in such networks. An exception is the 
superpositional coding of sequence elements at the onset of sequence recall produced using a 
RNN model by Botvinick and Plaut17. Their model was able to produce population activity 
patterns relating to each position in the sequence and exhibit a summation of these patterns at 
the onset of the sequence without an explicit competitive queuing architecture, rendering the 
RNN encoding effectively “parallel” and thus fully compatible with both the probability 
gradient for sequence elements during preparation shown by Averbeck et al.18 and our 
findings (Fig. 5a). Notably, the serial position was inextricably linked to the item (here: 
finger), which diverges from the current findings suggesting an abstract positional coding in 
addition to a conjunctive representation of position and finger.  

It is possible that both a serial chaining and parallel queuing of sequence 
representations co-exist in the nervous system. Accordingly, their utilization may be 
determined by the kinematic features of the movement sequence itself. Specifically, in 
contrast to the current discrete movement sequence (involving temporal gaps in between 
movements), continuous and overlapping movement sequences are prone to be encoded as 
integrated synergies, with movement timing emerging from state-dependent control, e.g. 
position or velocity-dependent information 30–33. Notably, most skilled actions in everyday 
life such as speech, handwriting and tool-use involve a wide range of discrete and continuous 
movements necessitating the combination of these two control modes. Here future studies 
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need to establish how different sequence types employed in these everyday domains are 
segmented and prepared at the neural level.  

Competitive queuing reflects finger-independent temporal planning of 
sequences 

We assessed whether the competitive queuing pattern during preparation was driven 
by a) the preparation of specific movements in the sequence, or b) by an action-independent 
temporal template for the upcoming sequence, as predicted by models of serial recall within 
the framework of competitive queuing15,16,21,34. To this end, the classifier was trained and 
tested on sequences with the same target timing, but a finger order which diverged from the 
2nd press onwards, (Fig. 4). Our data indicate that the competitive queuing signal during 
preparation is largely preserved under these circumstances, whilst the phasic increases in 
finger press probability observed during sequence production are distorted after the effector 
patterns diverged. This indicates that the training patterns, corresponding to mean activity in 
a 10ms period before each registered finger press, contained information on the temporal 
position in the sequence in addition to the effector information, and that this information on 
the timing of sequence elements was retrieved from memory in the sequence planning stage.  

The retrieval of an abstract temporal template during movement planning is in line 
with models suggesting that the temporal evolution of the sequence is established through the 
association of a dedicated timing control signal to a parallel planning layer15,16,21,35. 
Furthermore, independent behavioural transfer of trained sequence timing to new finger 
orders in current and previous studies23,24,36,37 supports the notion that temporal sequence 
features were encoded separately from the specific movements (Fig. 3). RNN models have 
been shown to acquire superpositional coding of the list elements activated at the onset of 
recall, however, they have not been able to account for coding independently of the item17. 
RNN models are, in principle, well-suited to serve as neural clocks38, and therefore as a 
dynamic or timing control signal one step removed from the item-specific parallel planning 
layer. The reported competitive queuing of sequence element probabilities before movement 
production could reflect a gradient of superimposed patterns encoding each ordinal position 
or a temporal structure in the sequence. Effectively, this mechanism implies the reinstatement 
of a temporal template during sequence preparation which can be utilized across different 
movement sequences.  

We found that the most pronounced pattern of competitive queuing during preparation 
originated in the right parahippocampal area. Neuroimaging studies have shown the 
recruitment of hippocampal and parahippocampal regions during motor sequence learning 
tasks, specifically those involving sequences of discretely timed movements including those 
learned implicitly39–41. Moreover, parahippocampal activity has been reported to correlate 
specifically with the accuracy of temporal tapping patterns involving a sequence of short and 
long intervals40. Our data suggests that this parahippocampal involvement is related to the 
neural gradient reflecting the ordinal position of elements in a sequence with the latter 
facilitating accurate sequence timing. Crucially, we were able to uncover the evolution of this 
mechanism across preparation and production phases, demonstrating the reinstatement of the 
full sequential plan before sequence execution. Our results substantiate the broader 
involvement of hippocampal and parahippocampal areas in the timing of sequences42,43, and 
more specifically in the temporal succession or ordinal structure of sequences44,45.  

Further, the source reconstruction indicated the involvement of ipsilateral cerebellar 
lobules V and VIII which have been shown to hold sensory and motor representations of 
fingers of the ipsilateral hand in humans 26. This suggests that the cerebellum works in 
concert with parahippocampal areas to achieve the queuing of actions during sequence 
preparation. Specifically, we speculate that while the parahippocampal areas may retrieve a 
more abstract temporal template for the sequence44, the representation of the actions 
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themselves may be set by the effector-specific cerebellar circuits in the form of a fine-grained 
spatio-temporal forward model of the finger sequence before the onset of the production 
phase46,47. Notably, activity attributed to the parahippocampal area and the cerebellum 
showed above chance accuracy in decoding the sequence presses during the production 
period, whereas the reverse – neocortical sensorimotor regions showing competitive queuing 
of finger press patterns during preparation – did not hold true. This dissociation demonstrates 
that the structure of the upcoming sequence is pre-specified outside the neocortical regions 
that generate the movements and continues to be utilized during production (corresponding to 
temporal context and parallel planning layers in Fig. 1a), whilst the regions representing the 
movement synergies is involved during production only (items in the competitive choice 
layer in Fig. 1a).  

Taken together, our data suggests that the brain learns the task structure and factorises 
behavior into specific actions and their general temporal struture (here sequential order). 
Associating actions with a sequential position and passing that position through a competitive 
filter may be sufficient to generate skilled sequence production. This factorisation makes 
learning more efficient than having to generate a unique representation of the temporal 
structure for each new sequence and allows for transfer of a learned structure to new motor 
sequences.  

Our findings provide a strong case for a preparation of effector-unspecific temporal 
template of a sequence, however, the current study does not allow us to distinguish between 
the preparation of sequence position (rank-order) versus of a more fine-grained temporal 
planning. Future studies should manipulate the temporal structure of the sequences 
consistently across participants to probe how it affects the distances between the press pattern 
probabilities during sequence planning. 

Strength of competitive queuing during preparation predicts 
performance  

Participants who achieved a higher skill level in the sequence production from 
memory showed a larger separation between adjacent press-related pattern probabilities 
during sequence preparation such that the competitive queuing pattern were more prominent 
in participants with a better overall performance (Fig. 5a-c). This is in line with the 
architecture of competitive queuing models, in which a more pronounced weight difference 
in the parallel planning layer (Fig. 1) is beneficial for sequence accuracy due to a more 
pronounced excitation of the proximal and inhibition of the distal elements in the sequence. 
Notably, despite the consistent elevation of the probabilities for the 1st press during sequence 
planning, this effect was not paralleled by the muscular pattern data (Fig. 5d-f). Thus, it is 
unlikely that the MEG patterns during sequence preparation were driven by a graded 
muscular preparation of the sequence presses.  

Remarkably, the significant correlation between overall performance and mean 
competitive queuing strength contrasted sharply with the absence of a trial-by-trial 
correlation within participants. This dissociation is a possible indication that the strength of 
competitive queuing during sequence preparation is a neural strategy adopted by - on average 
- more skilled performers. While this neural strategy may be beneficial, it does not guarantee 
accurate performance on each trial, possibly due to the modulation of the motor output by 
downstream mechanisms occurring between sequence planning and motor implementation. 
Although this dissociation between within and across participant correlations was striking, 
we cannot exclude that the absence of a trial-by-trial correlation with performance may be 
due to a low signal-to-noise level or that the linear classification approach (LDA) taken may 
not optimally capture the decision boundary between the press patterns to ensure accurate 
probability estimations at the level of individual trials.  
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The current non-invasive measure of competitive queuing during sequence planning 
in humans, as well as the link between overall competitive queuing strength and performance 
provides a promising step towards the identification of markers for skilled sequence 
preparation. Determining the amount of separation between sequence elements before 
movement production may become valuable in the context of neuro-feedback training with 
the aim to improve performance in patients with higher order motor impairments affecting 
sequence initiation and fluency, e.g. stuttering, dyspraxia and task-specific dystonia 
(musician’s dystonia and writer’s cramp).  

Finally, our approach has the potential to advance the development of brain-machine 
interfaces for paralyzed patients by allowing non-invasive read-out of upcoming sequences. 
Previous studies have looked at predicting single-targeted movements48, or sequences up to 
two movements at a time, e.g. from invasive recordings in the premotor cortex during 
sequence planning49. The current analysis may assist the identification of a five-element 
sequence during the sequence planning period using EEG/MEG signals with the aim of 
achieving a more fluent control of external devices for skilled sequence production, such as a 
virtual keyboard for communication or tool use via an intelligent prosthesis. 

Conclusions 
Using a finger movement task in combination with non-invasive whole-brain MEG in 

humans, we replicated the seminal neurophysiological findings on the parallel competitive 
queuing of sequence elements before sequence production in non-human primates18. Our data 
extends previous work by demonstrating that the competitive queuing of sequence presses 
during preparation reflects top-down planning of ordinal position or finger-independent 
timing and cannot be explained by a graded weighting of concurrently recorded muscular 
activity. More generally our data suggests that the brain learns the general structure of a 
motor sequence by associating actions with a transferable temporal position in the sequence, 
effectively factorizing the neural representation of behavioural sequences. Importantly, our 
findings suggest that the overall strength of competitive queuing during preparation 
determines the accuracy of sequence production, opening up new avenues for the 
rehabilitation of patients with impaired initiation and fluency of sequence production. 

 
Methods 

Participants 
Sixteen right-handed healthy adults (9 females; mean age 24.4 years, SD: 4.9) with 

normal or corrected-to-normal vision participated in this experiment which included two days 
of training and one MEG session. Five additional participants participated in the study but 
had to be excluded as follows: two participants due to poor performance at the end of the 
training session or during the MEG session (error rate > 40%), one participant due to the 
absence of sequence-specific learning at the end of training, one participant due to technical 
issues with the MEG system and one due to discomfort during the MEG session leading to 
the termination of the experiment. All participants gave written informed consent to 
participate. The study was approved by the University College London Research Ethics 
Committee for Human-Based Research (UCL Ethics ID: 1338/006, Data Protection: 
Z6364106/2011/10/25). All participants were financially compensated for their participation. 

Experimental design 
Stimuli were presented via a digital LCD projector (brightness = 1500 lumens, 

resolution = 1024 × 768 pixels, refresh rate = 60 Hz) onto a screen (height = 32 cm, width = 
42 cm, distance from participant = 70 cm) that was parallel to the participant's face inside a 
magnetically shielded room using the Cogent (www.vislab.ucl.ac.uk/cogent.php) toolbox 
running in MATLAB (The MathWorks, Inc., Natick, MA). Participants had a similar setup 
during behavioural training involving the same response device (5 buttons, Current Designs), 
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with the visual stimuli shown on the computer screen directly and the participants being 
seated at an office desk. Stimuli were symmetrical abstract visual fractals. For each 
participant the four sequence cues were randomly selected and assigned to the sequences 
from a pool of sixteen fractals. Participants were presented with a feedback screen after each 
trial showing the number of cumulative points across the whole experiment, as well as 
feedback on whether they pressed the correct finger at the correct time. Figure 2 provides 
further details on the trial design. Participants received two points per trial for a correct finger 
sequence with a temporal deviation from target timing of less than 30%, one point for a 
correct finger sequence with a temporal deviation of less than 60% and zero points in any 
other case. During the first two training days participants were presented with an auditory 
sound concurrently with the feedback screen, which indicated 0-2 points. No auditory 
feedback was presented during the MEG session on day 3. 

Training on day 1 consisted of 7 instructed blocks containing only trials in which the 
sequence was cued by a circle appearing on the target finger at the target timing after the 
‘Go’ cue to which the participants had to synchronize (168 trials), 7 mixed blocks (56 
instructed and 112 from memory trials following each other in a blocked 1:2 pattern, 
respectively) and 7 blocks with sequences produced from memory (168 trials). Training on 
day 2 consisted of 7 mixed blocks as previously and 12 blocks (288 trials) produced entirely 
from memory. Additional testing that included trained and untrained sequences (consisting of 
untrained finger and interval orders) presented as instructed trials was also conducted before 
and after training blocks on day 1 and 2, respectively. These included trained and untrained 
sequences presented as instructed trials. The MEG session consisted of 2 mixed blocks (16 
instructed and 32 from memory trials) for participants to refresh their memory of the 
sequences and become accustomed to the MEG environment. This was followed by 10 
blocks with concurrent MEG and EMG recordings containing trials with sequences produced 
entirely from memory (giving a total of 240 trials split evenly between the four trained 
sequences). 

Behavioural data analysis 
To determine temporal accuracy in trials produced entirely from memory, we 

calculated a mean absolute deviation from target interval structure for each trial expressed as 
percentage of the target intervals. For the pre and post-test which consisted of instructed trials 
only, we calculated the absolute reaction time deviation from the finger cues to which the 
participant had to synchronize.  

MEG recordings 
MEG was recorded continuously at 1200 samples/second using a whole-head 275-

channel axial gradiometer system (CTF Omega, VSM MedTech) while participants sat 
upright in a magnetically shielded room. Head position coils were attached to nasion, left, 
and right auricular sites to provide anatomical co-registration. 

EMG recordings 
Participants were also fitted with four EMG electrodes to measure finger movement-

related muscular activity. The electrodes were placed above the flexor carpi radialis (FCR), 
abductor polices brevis (APB), abductor digiti minimi (ADM), first dorsal interossei (FDI).  
FCR was recorded with a belly-belly montage, APB, ADM and FDI with a tendon-belly 
montage. 

MEG and EMG preprocessing  
MEG data analysis made use of SPM850 (Wellcome Trust Centre for Neuroimaging, 

London, United Kingdom), Fieldtrip51 (Donders Institute for Brain Cognition and Behaviour) 
and custom MATLAB code. MEG data was downsampled to 1000 Hz, epoched for pre-
processing into long trials spanning -2.8 to +12s around the fractal cue to include a baseline 
fixation, fractal cue, ‘Go’ cue, sequence production and feedback. A 48-52Hz stopband filter 
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was then applied to remove the 50 Hz power line noise within these long epochs. Channel 
artefacts were inspected in each participant, but no channels were identified as corrupted in 
any of the datasets. Due to the need to retain as many trials as possible for pattern 
classification and the involvement of long epochs, physiological artifacts related to heart rate, 
eyeblink and breathing were identified based on the characteristic topography and time-
course for each participant using ICA (RUNICA algorithm) and removed from the dataset. 
This procedure was carried out blind to the sequence conditions using the Fieldtrip 
component data browser which allows the inspection of the topography and trial-by-trial 
time-course of the components. ICA-corrected data was then submitted to multivariate 
classification analysis, with the test probabilities calculated for a shorter epoch encompassing 
the preparation and production phases only (-2 to 4.5 sec after the ‘Go’ cue). The EMG data 
was downsampled, epoched and filtered in the same way as the MEG data. No trials were 
removed from the data set, so that the EMG data from the same trials as in the MEG dataset 
was submitted to multivariate classification analysis. 

Pattern classifier analysis 
First we trained a standard linear discriminant analysis (LDA) classifier to distinguish 

the MEG activity at the onset of each of the five button presses in a sequence. Following 
preprocessing, mean signal amplitude on each sensor during the 10ms period immediately 
before the onset of each response button press in the sequence was determined for all correct 
trials (mean proportion of correct trials across participants: 97.3% (SD: 3.1%); range: 87.2-
99.7%;). These mean signal amplitude values were used as a training dataset for all correct 
trials of each of the four sequences, respectively. The mean sensor pattern for each button 
press, and the common sensor-by-sensor co-variance matrix was determined from the 
training data set. A Gaussian-linear multi-class classifier (cf. Supplementary Material) was 
then used to calculate the posterior probability of an activity pattern belonging to each of the 
five presses in the sequence across non-overlapping 10ms time windows in each trial of a) the 
same sequence (‘within’) and b) a sequence with the same target timing, but a different finger 
order (‘across’). The same procedure was used for the analysis of EMG patterns. 

For statistical analysis of competitive queuing during sequence preparation, an 
average probability for each of the five press patterns was determined for per trial in a 1s time 
window immediately before the ‘Go’ cue. We then quantified the competitive queuing 
strength in each trial by taking the median difference in posterior probabilities for each pair 
of consecutive finger presses (i.e. from 1st to 2nd, 2nd to 3rd, 3rd to 4th and 4th to 5th). Since the 
1st press had a special status with the finger identity and target onset timing remaining the 
same across sequences for each participant, we also calculate this distance measure without 
the 1st press probability (median difference from 2nd to 3rd, 3rd to 4th and 4th to 5th). To display 
pattern probability dynamics, probabilities for each finger press pattern were averaged across 
trials for each 10ms time window, and then averaged across sequences. For display purposes 
only, the data was smoothed using a sliding average boxcar of 100 ms (i.e. ten 10ms time 
bins) using the MATLAB fastsmooth function 
(https://uk.mathworks.com/matlabcentral/fileexchange/19998-fast-smoothing-function). 

Source reconstruction 
The linearly constrained minimum variance (LCMV) beamformer spatial filter 

algorithm from the Dynamic Analysis in Source Space (DAiSS) toolbox for SPM12 was used 
to estimate cortical activity on a 10mm grid for whole brain analyses based on preprocessed 
MEG data. Co-registration to MNI coordinates was based on nasion, left and right pre-
auricular fiducial points, and the forward model was derived from a single shell fit to the 
inner skull surface of a canonical T1 image. This data was then submitted to searchlight 
analysis. 
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Searchlight analysis 
To identify the neural origin of the competitive queuing signal during sequence 

preparation at the sensor and the source levels we used a searchlight approach in combination 
with LDA. The searchlight size corresponded to ~1% of the data, i.e. three sensors at the 
sensor level and 20 voxels at the source level. For the focal LDA analysis at the sensor level, 
we first determined the two nearest neighbours of each sensor based on the MEG sensor 
layout. As in the case of the whole-head analysis, the LDA classifier was then trained on 
mean signal amplitude from those three sensors during the 10ms period immediately before 
the onset of each physical button in correct trials. Next, we tested the classifier on mean 
signal amplitude from the same three sensors in a single 10ms time window 500ms before the 
‘Go’ cue and quantified the probability of each finger press being decoded in each trial. 
Finally, as in the previous competitive queuing distance analysis, we computed the median 
distance between the probability of the 1st to 5th (‘within’) and 2nd to 5th (‘across’) finger 
presses, respectively, averaged across trials for each sequence and then across sequences for 
each participant. We then z-transformed the median distance values across sensors for each 
participant and computed a one-sample t-statistic on z-score values at each sensor across 
participants. This data was then plotted as t-statistic at the scalp level and significant sensors 
at p<0.01 marked with a point and a label. 

The same analysis was applied to mean signal amplitude in source space using 
searchlights of 20 voxels as features in the LDA. Whole brain results were subjected to a 
random effects analysis with an uncorrected threshold of t(15) > 3.73, p<0.00. Peak voxels 
and t-values of significant clusters were then reported, and the data plotted as t-statistics with 
a threshold of t(15) > 5.24, p < .05 (FWE corrected at the voxel level) centred on the peak 
voxel 52. Peak voxels and t-values of significant clusters were then reported in the results and 
the data plotted as a t-statistic at the scalp level at a threshold of t(15) > 5.24, p < .05 (FWE 
corrected at the voxel level) centred at the peak voxel (MNI coordinates: 30, -30, -24). The 
data thresholded at t(15) > 3.73, p < .001 (uncorrected) can be found in Supplementary 
Figure 3a.  

Finally, to identify regions that were driving the differences between finger presses 
during the sequence production period, we employed a searchlight approach in combination 
with LDA using data from the production period only. As in the analysis described above, the 
searchlight size corresponded to ~1% of the data – three sensors at the sensor level and 20 
voxels at the source level. Here the LDA classifier was trained to distinguish between the 
activity patterns of sensors or voxels during the 10ms period immediately before the onset of 
each physical button in correct trials. We used a five-fold cross-validation procedure 
(iteratively training on 80% of trials and testing on the remaining 20%) and quantified the 
probability of each finger press being correctly identified within trials for each finger press 
sequence. The data was than averaged across sequences and z-scored across sensors or voxels 
within each participant. Sensor accuracy results were then plotted as t-statistic at the scalp 
level and significant sensors at p<0.01 marked with a point and a label. At the source level, 
whole brain results were corrected using a random effects analysis with an uncorrected 
threshold of t(15) > 3.73, p<0.001. Peak voxels and t-values of significant clusters were then 
reported in the results and the data plotted as t-statistics at the scalp level with a threshold of 
t(15) > 5.93, p < 0.05 (FWE corrected at the voxel level) centred on the peak voxel (MNI 
coordinates: -22, -38, 52) 52. The data thresholded at t(15) > 3.73, p<0.001 (uncorrected) can 
be found in Supplementary Figure 3b. 
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Supplementary Material 

Supplementary Figure 1: Individual press pattern probability traceplots. Trace plots for individual 
participants display the probability of each pattern classification related to the 1st-5th finger press 2000ms 
before and 4500ms after the ‘Go’ cue a. ‘within’ and b. ‘across’ finger sequences with the same target timing. 
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[Data for participants S9-16 continued on the next page.] 
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Supplementary Figure 2: Effects of positional shifts of finger presses ‘across’ sequences with the same 
timing, but a different finger order. Individual traceplots show the ‘across’ sequence pattern probability 
labeled by position in the classified (‘now’) and trained (‘was’) sequence, respectively. In each participant, the 
graphs are split by finger order (F1 and F2), and indicate the temporal competitive queuing distance for each 
sequence in percent, respectively.  
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Supplementary Figure 3: The source data as in Figure 7c-d plotted at a lower threshold of t(15) > 3.73, p < 
.001 (uncorrected) and centered at the peak voxel (MNI coordinates: 30, -30, -24) in panel a. and voxel (MNI 
coordinates: -22, -36, 52) in panel b. 
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