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ABSTRACT	Data	from	the	1000	Genomes	project	is	quite	often	used	as	a	reference	for	human	genomic	10 

analysis.	However,	its	accuracy	needs	to	be	assessed	to	understand	the	quality	of	predictions	made	using	this	11 

reference.	We	present	here	an	assessment	of	the	genotype,	phasing,	and	imputation	accuracy	data	in	the	1000	12 

Genomes	project.	We	compare	the	phased	haplotype	calls	from	the	1000	Genomes	project	to	experimentally	13 

phased	haplotypes	for	28	of	the	same	individuals	sequenced	using	the	10X	Genomics	platform.	We	observe	14 

that	phasing	and	imputation	for	rare	variants	are	unreliable,	which	likely	reflects	the	limited	sample	size	of	15 

the	1000	Genomes	project	data.	Further,	it	appears	that	using	a	population	specific	reference	panel	does	not	16 

improve	the	accuracy	of	imputation	over	using	the	entire	1000	Genomes	data	set	as	a	reference	panel.	We	17 

also	note	that	the	error	rates	and	trends	depend	on	the	choice	of	definition	of	error,	and	hence	any	error	18 

reporting	needs	to	take	these	definitions	into	account. 19 

INTRODUCTION	 20 

The	1000	Genomes	Project	(1KGP)	was	designed	to	provide	a	comprehensive	description	of	human	genetic	variation	21 

through	sequencing	multiple	individuals1-3.	Specifically,	the	1KGP	provides	a	list	of	variants	and	haplotypes	that	can	be	22 

used	for	evolutionary,	functional	and	biomedical	studies	of	human	genetics.	Over	the	three	phases	of	the	1KGP,	a	total	of	23 

2504	individuals	across	26	populations	were	sequenced.	These	populations	were	classified	into	5	major	continental	24 
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groups:	Africa	(AFR),	America	(AMR),	Europe	(EUR),	East	Asia	(EAS),	and	South	Asia	(SAS).	The	1KGP	data	was	generated	25 

using	a	combination	of	multiple	sequencing	approaches,	including	low	coverage	whole	genome	sequencing	with	mean	26 

depth	of	7.4X,	deep	exome	sequencing	with	a	mean	depth	of	65.7X,	and	dense	microarray	genotyping.	In	addition,	a	subset	27 

of	individuals	(427)	including	mother-father-child	trios	and	parent-child	duos	were	deep	sequenced	using	the	Complete	28 

Genomics	platform	at	a	high	coverage	mean	depth	of	47X.	The	project	involved	characterization	of	biallelic	and	29 

multiallelic	SNPs,	indels,	and	structural	variants.		30 

Given	the	low	depth	of	(sequencing)	coverage	for	most	1KGP	samples,	it	is	unclear	how	accurate	the	imputed	haplotypes	31 

are,	especially	for	rare	variants.	We	quantify	this	accuracy	directly	by	comparing	imputed	genotypes	and	haplotypes	32 

based	on	low-coverage	whole-genome	sequence	data	from	the	1KGP	with	highly	accurate,	experimentally	determined	33 

haplotypes	from	28	of	the	same	samples.	Additional	motivation	for	our	study	is	given	below.	 34 

Phasing	It	is	important	to	understand	phase	information	in	analyzing	human	genomic	data.	Phasing	involves	resolving	35 

haplotypes	for	sites	across	individual	whole	genome	sequences.	The	term	’diplomics’4	has	been	coined	to	describe	36 

"scientific	investigations	that	leverage	phase	information	in	order	to	understand	how	molecular	and	clinical	phenotypes	are	37 

influenced	by	unique	diplotypes".	The	diplotype	shows	effects	in	function	and	disease	related	phenotypes.	Multiple	38 

phenomena	like	allele-specific	expression,	compound	heterozygosity,	inferring	human	demographic	history,	and	39 

resolving	structural	variants	requires	an	understanding	of	the	phase	of	available	genomic	data.	Phased	haplotypes	are	40 

also	required	as	an	intermediate	step	for	genotype	imputation.	 41 

Phasing	methods	can	be	categorized	into	methods	which	use	information	from	multiple	individuals	and	those	which	rely	42 

on	information	from	a	single	individual5.	The	former	are	primarily	computational	methods,	while	the	latter	are	mostly	43 

experimental	approaches.	Some	computational	approaches	use	information	from	existing	population	genomic	databases	44 

and	can	be	used	for	phasing	multiple	individuals.	These,	however,	may	be	unable	to	correctly	phase	rare	and	private	45 

variants,	which	are	not	represented	in	the	reference	database	used.	On	the	other	hand,	some	methods	use	information	46 

from	parents	or	closely	related	individuals.	These	have	the	advantage	of	being	able	to	use	Identical-By-Descent	(IBD)	47 

information,	and	allow	long	range	phasing,	but	require	sequencing	of	more	individuals,	which	adds	to	the	cost.	A	few	48 

methods	which	use	these	approaches	are:	PHASE6,	fastPHASE7,	BEAGLE8-9,	SHAPEIT10-11,	EAGLE12-13	and	IMPUTE	v214.	 49 

Experimental	phasing	methods,	on	the	other	hand,	often	involve	separation	of	entire	chromosomes	followed	by	50 

sequencing	of	short	segments,	which	can	then	be	computationally	reconstructed	to	generate	entire	haplotypes.	These	51 

methods	do	not	need	information	from	individuals	other	than	the	one	being	sequenced.	These	methods	involve	52 
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genotyping	being	performed	separately	from	phasing.	These	methods	fall	into	two	broad	categories,	namely	dense	and	53 

sparse	methods14.	Dense	methods	resolve	haplotypes	in	small	blocks	in	great	detail,	where	all	variants	in	a	specific	region	54 

are	phased.	However,	they	do	not	inform	the	phase	relationship	between	the	haplotype	blocks.	These	involve	diluting	55 

high	molecular	weight	DNA	fragments	such	that	fragments	from	at	most	one	haplotype	are	present	in	each	unit.	Sparse	56 

methods	can	resolve	phase	relationships	across	large	distances,	but	may	not	inform	on	the	phase	of	each	variant	in	a	57 

chromosome.	In	these	methods,	a	low	number	of	whole	chromosomes	is	compartmentalized	such	that	only	one	of	each	58 

pair	of	haplotypes	is	present	in	each	compartment.	These	compartmentalizations	are	followed	by	sequencing	to	generate	59 

the	haplotypes.	 60 

In	this	work,	we	use	phased	haplotypes	generated	using	the	10X	Genomics	method	which	uses	linked-read	sequencing15.	61 

1	nanogram	of	high	molecular	weight	genomic	DNA	is	distributed	across	100,000	droplets.	This	DNA	is	barcoded	and	62 

amplified	using	polymerase.	This	tagged	DNA	is	released	from	the	droplets	and	undergoes	library	preparation.	These	63 

libraries	are	processed	via	Illumina	short-read	sequencing.	A	computational	algorithm	is	then	used	to	construct	phased	64 

haplotypes	based	on	the	barcodes.	 65 

Imputation	Imputation	involves	the	prediction	of	genotypes	not	directly	assayed	in	a	sample	of	individuals.	66 

Experimentally	sequencing	genomes	to	a	high	coverage	is	an	expensive	process.	Low	coverage	sequencing	or	arrays	can	67 

be	used	as	low-cost	methods	for	sequencing.	However,	these	methods	may	lead	to	uncertainty	in	estimated	genotypes	68 

(low	coverage	sequencing)	or	missing	genotype	values	for	untyped	sites	(arrays).	Imputation	can	be	used	to	obtain	69 

genotype	data	for	missing	positions	using	reference	data	and	known	data	at	a	subset	of	positions	in	individuals	which	70 

need	to	be	imputed.	Imputation	is	used	to	boost	the	power	of	GWAS	studies16,	fine	mapping	a	particular	region	of	a	71 

chromosome17,	or	performing	meta-analysis18,	which	involves	combining	reference	data	from	multiple	reference	panels.	 72 

Imputation	uses	a	reference	panel	of	known	haplotypes	with	alleles	known	at	a	high	density	of	haplotyped	positions.	A	73 

study/inference	panel	genotyped	at	a	sparse	set	of	positions	is	used	for	sequences	which	need	to	be	imputed.	Performing	74 

imputation	involves	two	basic	steps:	 75 

• Phasing	genotypes	at	genotyped	positions	in	the	study/inference	panel 76 

• Haplotypes	from	the	inference	panel	which	match	those	in	the	reference	panel	at	the	positions	in	the	study	panel	77 

are	assumed	to	match	in	all	other	positions	 78 

Various	imputation	algorithms	perform	these	steps	sequentially	and	iteratively	or	simultaneously.	 79 
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Factors	affecting	the	quality	of	the	phasing	and	imputation	are	(1)	size	of	reference	panel	(2)	density	of	SNPs	in	reference	80 

panel	(3)	accuracy	of	called	genotypes	in	the	reference	panel	(4)	degree	of	relatedness	between	sequences	in	reference	81 

panel	and	study	sequences	(5)	ethnicity	of	the	study	individuals	in	comparison	with	the	available	reference	data	and	(6)	82 

allele	frequency	of	the	site	being	phased	or	imputed5.	 83 

Multiple	methods	have	been	developed	for	genotype	imputation19.	fastPHASE7,	MACH20-21,	BEAGLE8,22-23,	and	IMPUTE	v214	84 

are	some	widely	used	methods	for	imputation.	 85 

An	analysis	of	the	imputation	accuracy	for	the	HapMap	project	has	been	performed	about	a	decade	ago24,	but	no	similar	86 

detailed	analysis	exists	for	assessing	the	phasing	and	imputation	of	the	1000	Genomes	project,	particularly	comparing	the	87 

database	against	experimentally	phased	sequences.	We	present	here	a	detailed	assessment	of	the	quality	of	phasing	and	88 

imputation	for	the	1000	Genomes	database,	particularly	as	a	function	of	minor	allele	frequency	and	inter-SNP	distances	89 

for	biallelic	SNPs.		90 

 91 

MATERIAL	AND	METHODS	 92 

Input	Data	 93 

Processed	VCFs	were	downloaded	from	the	1000	Genomes	website.	This	data	is	available	for	each	chromosome	94 

separately.	To	obtain	agreement	with	the	experimental	data,	1000	Genomes	VCFs	corresponding	to	the	GRCh38	assembly	95 

were	downloaded.	Experimental	data	was	sequenced	using	the	10X	Genomics	platform	for	28	individuals:	5	GM,	18	HG,	96 

and	5	NA.	The	GM	and	NA	individuals	were	originally	part	of	the	HapMap	project	while	the	HG	are	from	the	1000	97 

Genomes	project.	Thirteen	of	these	individuals	were	processed	at	UCSF	and	sequenced	at	Novogene,	while	the	remaining	98 

individuals	were	processed	and	sequenced	at	Genentech.	The	populations	from	which	each	of	the	individuals	come	(as	99 

listed	in	the	Coriell	Catalog)	are:	 100 

• South	Asia	(SAS):	 101 

o Gujarati	Indians	in	Houston,	Texas,	USA	(HapMap)	[GIH]	-	GM21125*,	NA20900,	NA20902 102 

o Punjabi	in	Lahore,	Pakistan	[PJL]	-	HG03491,	HG03619 103 

o Sri	Lankan	Tamil	in	the	UK	[STU]	-	HG03679,	HG03752,	HG03838* 104 
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o Indian	Telugu	in	the	UK	[ITU]	-	HG03968 105 

o Bengali	in	Bangladesh	[BEB]	-	HG04153,	HG04155 106 

• East	Asia	(EAS):	 107 

o Han	Chinese	in	Beijing,	China	(HapMap)	[CHB]	-	GM18552*,	NA18570,	NA18571 108 

o Chinese	Dai	in	Xishuangbanna,	China	[CDX]	-	HG00851*,	HG01802,	HG01804 109 

o Kinh	in	Ho	Chi	Minh	City,	Vietnam	[KHV]	-	HG02064,	HG02067 110 

o Japanese	in	Tokyo,	Japan	(HapMap)	[JPT]	-	NA19068* 111 

• Africa	(AFR):	 112 

o Luhya	in	Webuye,	Kenya	(HapMap)	[LWK]	-	GM19440* 113 

o Gambian	in	Western	Division,	The	Gambia	[GWD]	-	HG02623* 114 

o Esan	from	Nigeria	[ESN]	-	HG03115* 115 

• Europe	(EUR):	 116 

o Toscani	in	Italia	(Tuscans	in	Italy)	(HapMap)	[TSI]	-	GM20587* 117 

o British	from	England	and	Scotland,	UK	[GBR]	-	HG00250* 118 

o 	Finnish	in	Finland	[FIN]	-	HG00353* 119 

• America	(AMR):	 120 

o Mexican	Ancestry	in	Los	Angeles,	California,	USA	(HapMap)	[MXL]	-	GM19789* 121 

o Peruvian	in	Lima,	Peru	[PEL]	-	HG01971* 122 

Asterisks	next	to	sample	IDs	refer	to	samples	processed	at	UCSF. 123 

Preprocessing	1000	Genomes	Data	 124 

The	1000	Genomes	data	was	separated	into	individual	and	chromosome	specific	VCFs	using	vcftools25.	Further,	the	125 

variants	were	filtered	for	biallelic	SNPs,	phased,	filtered	for	PASS,	and	indels	were	removed.	The	experimentally	phased	126 

data	also	had	a	very	small	fraction	of	unphased	SNPs,	which	were	removed	by	filtering	with	vcftools.	The	analysis	was	127 

performed	only	for	autosomes.	 128 

Phasing	Analysis	 129 
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The	alternate	(ALT)	allele	frequencies	of	all	the	SNPs	of	interest	were	obtained	from	the	1000	Genomes	data	and	130 

converted	to	minor	allele	frequencies	to	be	able	to	analyze	switch	error	as	a	function	of	minor	allele	frequencies.	The	131 

filtered	SNPs	from	the	experimental	data	were	split	into	phase	sets,	based	on	phase	set	information	available	in	the	132 

experimental	VCF	files.	Switch	error	was	calculated	between	the	experimental	and	1000	Genomes	data	for	each	phase	set	133 

in	each	chromosome	of	each	individual	from	the	experimental	dataset.	Switch	error	is	defined	as	percentage	of	possible	134 

switches	in	haplotype	orientation	used	to	recover	the	correct	phase	in	an	individual26	or	proportion	of	heterozygous	positions	135 

whose	phase	is	wrongly	inferred	relative	to	the	previous	heterozygous	position27.	vcftools	returns	the	switch	error	as	well	as	136 

all	positions	of	switches	occurring	along	the	chromosome.	 137 

Switch	Error	as	a	Function	of	Minor	Allele	Frequency	ALT	allele	frequencies	were	accessed	for	each	of	the	switch	138 

positions	from	the	data	and	were	converted	to	minor	allele	frequencies.	Distribution	of	switch	positions	as	a	function	of	139 

minor	allele	frequency	was	plotted	for	each	chromosome	in	each	individual.	 140 

Switch	Error	as	a	Function	of	Inter	SNP	Distance	Positions	of	each	SNP	were	accessed	from	the	data.	The	number	of	141 

intermediate	switches	were	counted	for	all	pair	of	SNPs,	not	only	consecutive	SNPs.	If	the	number	of	switches	between	142 

two	SNPs	were	odd,	a	switch	error	was	counted.	This	was	used	to	calculate	the	distribution	of	switch	errors	as	a	function	143 

of	inter-SNP	distance.	 144 

	145 

Imputation	Analysis	 146 

The	entire	imputation	analysis	is	performed	for	each	chromosome	for	each	individual.	 147 

Generate	Recombination	Map	IMPUTE	v213	makes	available	recombination	maps	for	each	chromosome	using	the	1000	148 

Genomes	data	for	the	GRCh37	assembly.	A	recombination	map	was	obtained	for	each	chromosome	for	GRCh38	by	lifting	149 

over	the	GRCh37	maps	using	the	liftover	software.	~8k	positions	(0.2%)	were	removed	from	the	lifted	over	150 

recombination	map	because	liftover	resulted	in	them	being	in	the	incorrect	order.	 151 

Generate	Reference	Panel	A	reference	haplotype	panel	was	generated	for	all	individuals	from	the	1000	Genomes	data	by	152 

subsetting	it	to	the	specific	population	of	interest.	1000	Genomes	data	for	the	individuals	which	were	experimentally	153 

sequenced	was	not	included	in	the	reference	panel.	vcftools	was	used	to	filter	out	the	individuals	of	interest	from	the	1000	154 
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Genomes	data.	bcftools	was	used	to	convert	the	VCF	data	to	haps-sample-legend	format.	An	alternate	approach	was	also	155 

used,	where	the	entire	1000	Genomes	data	was	used	to	generate	a	reference	haplotype	panel.	 156 

Generate	Study	Panel	A	study	panel	was	generated	for	the	experimentally	sequenced	individuals	selected.	The	study	157 

panel	is	assumed	to	be	genotyped	at	positions	corresponding	to	the	Illumina	InfiniumOmni2.5-8	array.	Array	positions	158 

were	lifted	over	from	GRCh37	to	GRCh38	using	liftover.	1000	Genomes	haplotypes	(since	1000	Genomes	data	is	159 

prephased,	the	study	panel	is	also	in	the	form	of	haplotypes	rather	than	genotypes)	for	those	positions	for	those	160 

individuals	were	selected	to	create	the	study	panel	using	vcftools.	Filtered	VCF	files	were	converted	to	the	haps-sample	161 

format	using	bcftools.	 162 

Run	Imputation	Missing	positions	are	imputed	using	IMPUTE	v2.	Imputation	was	performed	in	5Mb	windows.	The	163 

genotype	output	by	imputation	was	converted	to	VCF	format	using	bcftools.	VCFs	produced	over	all	windows	were	164 

combined	using	vcf-concat.	IMPUTE	v2	generally	phases	the	typed	genotyped	sites	in	study	panel.	This	is	followed	by	165 

imputation	which	is	performed	by	assuming	that	haplotypes	in	the	study	panel	that	match	the	haplotypes	in	the	reference	166 

panel	at	the	typed	sites	also	match	in	the	untyped	sites.	IMPUTE	v2	then	performs	an	iterative	process	performing	167 

multiple	Monte-Carlo	steps	alternating	phasing	and	imputation.	For	this	analysis,	however,	as	haplotypes	from	the	1000	168 

Genomes	project	were	directly	used	to	generate	the	study	panel,	the	phasing	step	was	not	performed.	 169 

Filter	Positions	For	one	part	of	the	analysis,	i.e.	estimating	errors	in	the	positions	represented	in	the	experimentally	170 

phased	VCFs	(henceforth	called	experimental	SNPs),	the	positions	from	those	VCFs	were	filtered	from	the	imputed	data	171 

using	vcftools.	Experimental	genotypes	from	the	experimental	VCFs	were	obtained	for	each	individual	of	interest	using	172 

vcftools.	SNPs	with	duplicate	entries	in	either	the	imputed	or	experimental	data	were	removed.	Continent-specific	allele	173 

frequencies	were	obtained	for	the	experimental	SNPs	from	the	1000	Genomes	data	using	vcftools,	to	be	able	to	analyze	174 

switch	error	as	a	function	of	Minor	Allele	Frequencies.	For	the	other	part	of	the	analysis,	i.e.	estimating	errors	for	all	175 

positions	in	the	1000	Genomes	data,	the	allele	fractions	were	similarly	obtained	for	all	of	the	SNPs.	 176 

Imputation	Error	Imputation	error	was	computed	as	fraction	of	genotypes	being	incorrectly	identified.	Imputation	error	177 

was	computed	for	both,	the	SNPs	in	the	experimental	data	and	all	the	SNPs	in	1000	Genomes	data.	Error	is	computed	as	a	178 

function	of	minor	allele	frequency.	The	continent-specific	minor	allele	frequencies	were	used	for	analyzing	the	imputation	179 

error.		180 
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For	all	analysis	where	error	rate	is	computed	as	a	function	of	the	continent-specific	minor	allele	frequency	(genotyping	181 

error	and	imputation	error;	Figs.	1,2,7,8),	the	minor	allele	frequencies	are	binned	as	MAF=0.0%,	0.0%	<	MAF	<	0.2%,	182 

0.2%	<=	MAF	<0.5%,	0.5%	<=	MAF	<	1%,	1%	<=	MAF	<	5%,	MAF	>=	5%.	For	the	analysis	where	all	1000	Genomes	minor	183 

allele	frequencies	are	used	(phasing	error	and	imputation	error	comparing	use	of	multiple	reference	panels;	Figs.	3,	4,	9),	184 

the	minor	allele	frequencies	are	binned	into	only	five	bins,	i.e.	there	is	no	MAF=0.0%	bin.	Rest	of	the	bins	are	the	same	as	185 

for	the	continent-specific	MAF	bins. 186 

Experimental	Methods	 187 

Samples	processing:	HMW	Genomic	DNA	was	extracted	and	converted	into	10x	sequencing	libraries	according	to	the	188 

10X	Genomics	(Pleasanton,	CA,	USA)	Chromium	Genome	User	Guide	and	as	published	previously28.	Briefly,	GEMS	were	189 

made	with	1.25ng	HMW	template	gDNA,	Master-mix	Genome	Gel	Beads	and	partitioning	oil	on	the	microfluidic	Genome	190 

Chip.	Isothermal	incubation	of	the	GEMs	(for	3	h	at	30°C;	for	10	min	at	65°C;	stored	at	4°C)	produced	barcoded	fragments	191 

ranging	from	a	few	to	several	hundred	base	pairs.	After	dissolution	of	the	Genome	Gel	Bead	in	the	GEM	Illumina	Read	1	192 

sequencing	primer,	16bp	10x	barcode	and	6bp	random	primer	are	released.	The	GEMs	were	then	broken	and	the	pooled	193 

fractions	were	recovered.	Silane	and	Solid	Phase	Reversible	Immobilization	(SPRI)	beads	were	used	to	purify	and	size	194 

select	the	fragments	for	library	preparation.	Library	prep	was	performed	according	to	the	manufacturer's	instructions	195 

described	in	the	Chromium	Genome	User	Guide	Rev	C.	Libraries	were	made	using	10x	Genomics	adapters.	The	final	196 

libraries	contain	the	P5	and	P7	primers	used	in	Illumina	bridge	amplification.	The	barcoded	libraries	were	then	quantified	197 

by	qPCR	(KAPA	Biosystems	Library	Quantification	Kit	for	Illumina	platforms).	Sequencing	was	done	using	Illumina	HiSeq	198 

4000	with	2×150	paired-end	reads.		Raw	reads	were	processed,	aligned	to	the	reference	genome,	and	had	SNPs	called	and	199 

phased	using	10X	Genomics’	Long	Ranger	software	(version	2.1.1	or	2.1.6)	with	the	“wgs”	pipeline	with	default	settings.		200 

RESULTS	 201 

The	1000	Genomes	project	chromosome-specific	VCFs	for	the	GRCh38	assembly	contain	between	6.4M	(chr1)	to	1.1M	202 

(chr22)	variants	over	all	the	2504	individuals.	After	filtering	for	biallelic	SNPs,	phased,	filtered	for	PASS,	removing	indels,	203 

we	are	left	with	6.15M	(chr1)	to	1.05M	(chr22)	variants.	The	experimentally	phased	data	from	the	10X	Genomics	platform	204 

has	different	numbers	of	called	variants	for	each	sequenced	individual.	For	chromosome	1,	the	number	of	called	variants	205 

varies	from	414K	to	494K	across	the	28	individuals,	while,	for	chromosome	22,	the	number	of	called	SNPs	varies	from	206 

104K	to	120K.	After	performing	a	similar	filtering	for	the	experimental	data,	the	number	of	biallelic	PASS	phased	SNPs	207 

ranges	between	298K	and	357K	for	chromosome	1	and	64K	and	75K	for	chromosome	22.	 208 
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	209 
																																																					(a)																																																																																																																					(b)	210 

Figure	1	Distribution	of	SNPs	as	a	function	of	continent-specific	minor	allele	frequencies	(a)	only	experimental	SNPs	(b)	all	1000	211 
Genomes	SNPs 212 

The	SNPs	from	the	experimentally	phased	VCFs	(Fig.	1a),	averaged	over	continent	groups	show	that	the	vast	majority	of	213 

SNPs	in	this	selection	have	high	continent-specific	MAF	values	(>	5%).	Comparing	across	continents	for	the	continent	214 

invariant	SNPs,	the	African	and	American	individuals	have	an	order	of	magnitude	less	continent	invariant	SNPs	than	the	215 

European,	East	Asian	and	South	Asian	individuals.	However,	if	we	look	at	all	the	SNPs	in	the	1000	Genomes	Data	(filtered	216 

for	biallelic	PASS	phased	SNPs)	as	a	function	of	continent-specific	MAF,	the	distribution	we	observe	has	a	very	different	217 

trend.	There	is	a	significant	over-representation	of	the	very	low	continent-specific	MAF	SNPs	(<	0.1%),	∼	5	∗	107,	as	218 

compared	to	all	the	subsequent	higher	MAF	SNPs,	which	all	range	<	1	∗	107.	 219 

These	discrepancies	between	the	numbers	in	the	1000	Genomes	data	and	in	the	experimentally	phased	data,	as	well	as	220 

the	differing	trends	as	a	function	of	MAF	occur	because	the	1000	Genomes	data	includes	a	SNP	if	even	one	individual	in	221 

the	2504	individuals	has	a	variant	(heterozygous	or	homozygous-alternate)	at	that	position	while	the	experimental	data	222 

includes	a	SNP	only	if	that	particular	individual	has	a	variant	(heterozygous	or	homozygous-alternate)	at	that	position.	223 

This	results	in	a	much	larger	number	of	overall	SNPs	being	present	in	the	1000	Genomes	data	as	compared	to	the	224 

experimental	and	also	the	majority	of	the	1000	Genomes	SNPs	having	extremely	low	MAF,	as	those	would	occur	only	in	225 

one	or	a	few	individuals.		226 

Genotyping	Error	227 
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	228 
																																																								(a)																																																																																																																																(b)	229 
Figure	2	Genotyping	error	(a)	in	the	experimental	VCF	positions	as	a	function	of	continent-specific	minor	allele	frequency	averaged	over	230 
all	chromosomes	over	all	individuals	in	each	continent	(b)	false	positive	vs	false	negative	rates	(defined	in	text)	for	all	1000	Genomes	231 
SNPs 232 

Genotyping	error	is	computed	comparing	the	1000	Genomes	genotypes	with	the	experimental	genotypes.	The	233 

experimental	genotypes	for	all	SNPs	not	present	in	the	experimental	VCF	for	each	individual	are	assumed	to	be	234 

homozygous	reference.	Mismatched	genotypes	are	counted	as	errors.		Figure	2a	looks	at	the	errors	(fraction	of	genotypes	235 

which	are	incorrect)	for	the	experimental	VCF	positions	as	a	function	of	the	continent-specific	minor	allele	frequencies.	236 

There	is	higher	error	at	the	population	invariant	sites	(MAF=0.0%)	in	the	African	and	American	populations	than	the	237 

European,	East	Asian	and	South	Asian	populations.	This	correlates	with	a	lower	total	number	of	population	invariant	238 

SNPs	in	those	continents	(Fig.	1a).	For	non-invariant	SNPs,	we	observe,	as	expected,	a	decreasing	error	rate	with	239 

increasing	minor	allele	frequency,	to	a	<1.5%	error	genotyping	error	rate	for	the	SNPs	with	minor	allele	frequencies	>	1%.		240 

Comparing	false	positive	(sites	non-homozygous	reference	in	1000	Genomes	data	and	homozygous	reference	in	the	241 

experimental	data)	vs	false	negative	(sites	homozygous	reference	in	1000	genomes	data	and	non-homozygous	reference	242 

in	the	experimental	data)	error	rates	for	all	1000	Genomes	sites	(Fig.	1b),	we	see	that	the	genotyping	for	the	European	243 

and	American	individuals	is	very	accurate,	with	both	low	false	positive	and	false	negative	rates.	The	East	Asian	and	South	244 

Asian	populations	both	have	mostly	low	false	positive	rates,	but	show	a	wide	range	(factor	of	2)	of	false	negative	rates,	245 

while	showing	only	a	~15%	variation	in	the	false	positive	rates	for	most	individuals.	In	contrast,	the	African	individuals	246 

mostly	have	relatively	low	false	negative	rates,	but	have	among	the	highest	false	positive	rates.	This	indicates	that	the	247 

sequencing	in	the	1000	Genomes	project	has	over	called	non-homozygous	reference	variants	in	African	individuals	248 

compared	to	the	rest,	and	over	called	SNPs	as	homozygous	reference	in	some	of	the	East	and	South	Asian	individuals. 249 

Phasing	 250 
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	251 

Figure	3	Switch	error	as	a	function	of	Minor	Allele	Frequencies	for	different	individual	chromosomes.	Chromosome	21	shows	higher	252 
switch	error	for	large	MAF	values	 253 

Phasing	errors	are	all	analyzed	for	overall	1000	Genomes	minor	allele	frequencies,	not	continent	specific	MAFs.	254 

Comparing	the	switch	error	across	individual	chromosomes	(Fig.	3),	we	observe	that	the	switch	error	ranges	between	25	255 

−	30%	for	the	rare	MAF	(<	0.1%)	SNPs,	falling	to	<	5%	for	SNPs	with	MAFs	1	−	5%.	The	majority	of	SNPs,	which	fall	in	the	256 

MAF	>	5%	category,	have	an	error	<	2.5%.	However,	a	comparatively	higher	switch	error	at	larger	MAF	values	(>	5%)	is	257 

observed	for	chromosome	21.	This	plot	(Fig.	3)	shows	only	a	subset	of	chromosomes	a	single	individual	(GM18552),	but	258 

this	trend	is	observed	for	all	other	chromosomes	and	individuals	studied.		259 

	260 
																											(a)																																																																(b)																																																																								(c)	261 

Figure	4	Switch	error	(a)	Total	switch	error	(number	of	switches	in	experimental	SNPs/total	number	of	experimental	SNPs)	for	each	262 
individual	(b)	Switch	error	as	a	function	of	Minor	Allele	Frequencies	averaged	over	all	individuals	in	each	continent.	(c)	Switch	error	as	a	263 
function	of	Minor	Allele	Frequencies	for	all	individuals	colored	by	continent.		264 

Figure	4a	shows	the	total	switch	error	for	each	of	the	individuals.	The	total	switch	errors	for	all	the	individuals	studied	go	265 

up	to	∼	2.5%.	The	switch	errors	for	the	East	Asian	individuals	are	grouped	together,	while	those	for	the	South	Asian	266 

individuals	show	greater	variability.	This	is	in	line	with	the	general	observation	that	South	Asian	populations	have	an	267 

overall	greater	heterogeneity	than	do	East	Asian	populations	[J.	Wall,	Unpublished	data] 268 
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Analyzing	the	switch	error	as	a	function	of	minor	allele	frequency	averaged	over	all	chromosomes	of	all	individuals	of	a	269 

population	(Fig.	4b),	we	observe	low	switch	error,	<	5%,	for	low	minor	allele	frequencies	(MAF)	(1	−	5%).	For	rare	SNPs	270 

with	MAF	(0.2	−	1%),	the	switch	error	is	∼	5	−	10%.	For	extremely	rare	minor	allele	SNPs,	i.e.	MAF	<	0.2%,	the	error	is	271 

much	higher,	i.e.	15	−	35%.	For	all	higher	MAF	values	(>	5%),	the	error	is	<	2.5%.	The	average	error	rate	for	the	272 

individuals	from	the	African	populations	is	almost	the	same	over	the	range	of	MAF	values	>	0.1%.	 273 

As	observed	in	Figure	4c,	the	differences	in	the	error	rates	between	individuals	decrease	with	increasing	minor	allele	274 

frequency.	Individuals	from	South	Asia	show	a	larger	variation	in	error	as	a	function	of	MAF	as	compared	to	individuals	275 

from	East	Asia.	The	individuals	from	the	African	populations	have	the	lowest	switch	error	over	the	range	of	MAF	values.	276 

Individual	NA20900,	an	individual	from	the	Gujarati	Indians	in	Houston	(GIH)	population	has	the	lowest	switch	error	as	a	277 

function	of	minor	allele	frequency	for	the	low	MAF	SNPs.	 278 

	279 

	 	 	280 
(a) 																																																																																																																							(b)	281 

Figure	5	Switch	error	as	a	function	of	inter-SNP	distance	(a)	Switch	error	as	a	function	of	inter-SNP	distances	averaged	over	individuals	282 
in	each	continent.		(b)	Switch	error	as	a	function	of	inter-SNP	distances	for	all	individuals	colored	by	continent.	 283 

We	also	analyzed	phasing	error	as	a	function	of	the	distances	between	SNPs	(Fig.	5).	The	phasing	error	increases	as	a	284 

function	of	the	inter-SNP	distance,	i.e.	SNPs	which	are	further	apart	are	more	likely	to	be	out	of	phase	with	each	other.	The	285 

within	population	trends	are	the	same	as	for	switch	error	vs	MAF,	where	the	individuals	from	South	Asia	show	a	larger	286 

spread	as	compared	to	the	individuals	from	East	Asia.	Individual	NA20900	shows	the	lowest	error	rate,	same	as	for	the	287 

comparison	of	error	vs	MAF	(Fig.	4c).	 288 

Comparing	the	switch	error	as	a	function	of	MAF	vs.	the	switch	error	as	a	function	of	inter-SNP	distance,	we	see	that	the	289 

individuals	from	the	African	populations	show	distinctly	opposite	trends.	For	low	MAF	SNPs,	the	error	is	the	lowest	290 

averaging	over	the	African	individuals,	while	across	the	range	of	inter-SNP	distances,	the	average	over	the	African	291 
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individuals	was	the	highest	error.	The	reason	this	occurs	can	be	understood	from	the	fact	that	there	are	a	higher	number	292 

of	low	MAF	SNPs	in	the	African	individuals	in	the	experimental	data	(Fig.	1a),	as	well	as	an	overall	higher	number	of	SNPs	293 

in	those	individuals,	leading	to	a	higher	SNP	density	for	these	individuals.	In	addition,	there	is	less	linkage	disequilibrium	294 

(LD)	in	the	individuals	from	the	African	populations,	which	would	make	it	harder	to	phase	them	accurately29-30.		Hence,	295 

pairs	of	SNPs	are	more	likely	to	be	out	of	phase	with	each	other,	leading	to	higher	switch	error	as	a	function	of	inter-SNP	296 

distance.	 297 

Imputation	 298 

	299 
																																																																	(a)																																																																																																					(b)	300 

Figure	6	Total	imputation	error	(a)	Total	imputation	error	in	experimental	SNPs	(number	of	incorrect	genotypes	in	all	experimental	301 
SNPs/total	number	of	experimental	SNPs)	for	each	individual	(b)	Total	imputation	error	in	all	1KG	SNPs	(number	of	incorrect	genotypes	302 
in	all	1KG	SNPs/total	number	of	1KG	SNPs)	for	each	individual	 303 

Imputation	error	is	computed	as	the	fraction	of	SNPs	with	incorrectly	imputed	genotypes.	However,	depending	on	the	304 

subset	of	SNPs	under	consideration,	the	error	can	be	computed	in	two	different	ways,	(1)	fraction	of	experimental	SNPs	305 

incorrectly	imputed	and	(2)	fraction	of	all	1KG	SNPs	incorrectly	imputed.	In	the	case	of	the	second	definition	of	error,	the	306 

experimental	calls	for	all	the	positions	not	in	the	experimental	VCFs	are	set	to	homozygous-reference.	 307 

Figure	6a	shows	the	total	imputation	error	in	the	experimental	SNPs	while	Figure	6b	shows	the	total	imputation	error	in	308 

the	1KG	SNPs	for	each	of	the	individuals.	The	total	imputation	errors	in	the	experimental	SNPs	for	all	the	individuals	309 

studied	go	up	to	∼	4%.	For	this	subset	of	SNPs,	the	two	American	individuals	have	the	among	the	highest	imputation	310 

errors.	The	imputation	errors	for	the	East	Asian	individuals	are	grouped	together,	while	those	for	the	South	Asian	311 

individuals	show	greater	variability.	This	agrees	with	our	observations	for	the	switch	error	(Fig.	4a).	In	the	1KG	SNPs,	on	312 

the	other	hand,	since	we	are	looking	at	a	much	larger	set	of	SNPs,	most	of	which	are	homozygous-reference	in	any	given	313 

individual,	we	see	a	much	smaller	error	<∼	1%.		314 
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	315 
																																																															(a)																																																																																												(b)	316 

Figure	7	Imputation	accuracy	experimental	VCF	positions	(a)	Imputation	error	in	the	experimental	SNPs	as	a	function	of	Minor	Allele	317 
Frequencies	averaged	over	individuals	in	each	continent.	(b)	Imputation	error	in	the	experimental	SNPs	as	a	function	of	Minor	Allele	318 
Frequencies	for	all	individuals	colored	by	continent.	 319 

Imputation	error	in	experimental	SNPs	Figure	7a	shows	a	wide	range	of	error	rates	as	function	of	the	continent-320 

specific	minor	allele	frequency.	The	continent	invariant	positions	(MAF=0.0%)	are	imputed	almost	as	accurately	as	the	321 

high	MAF	(>5%	in	3	populations,	and	>1%	in	two	populations)	SNPs.	In	these	positions,	we	make	the	same	observation	as	322 

we	did	for	the	original	genotyping	in	the	1000	genomes	reference	data	(Fig.	2a),	i.e.	the	errors	in	the	European,	East	Asian	323 

and	South	Asian	individuals	for	these	continent	invariant	positions	are	lower	than	those	for	the	American	and	African	324 

individuals.		For	the	very	rare	SNPs,	i.e.	MAF	<	0.2%,	the	error	is	as	high	as	∼	60%.	These	extremely	high	error	rates	are	325 

only	observed	in	the	American	individuals	and	a	few	of	the	South	Asian	individuals.	For	the	rest	of	the	individuals,	the	326 

error	rates	are	<	50%.	In	the	mid-range	of	MAF	values,	i.e.	0.2%	to	1%,	the	errors	range	between	10	−	20%.	The	SNPs	with	327 

higher	MAF	values	are	fairly	accurate,	with	errors	<	2%	for	common	SNPs	(MAF	>	5%).	This	can	also	be	seen	looking	at	all	328 

the	individuals	separately	(Fig.	7b).	The	South	Asian	(Gujarati	in	Houston,	Texas)	individual	NA20900	still	shows	the	329 

lowest	error	rate	as	a	function	of	MAF	for	imputation,	just	as	it	does	for	the	switch	error	(Fig.	4c).		330 

 331 

																																																							(a)																																																																																																												(b)	332 
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Figure	8	Imputation	accuracy	all	1KG	SNPs	(a)	Imputation	error	in	all	the	1000	Genomes	positions	as	a	function	of	Minor	Allele	333 
Frequencies	averaged	over	individuals	in	each	continent.	(b)	Imputation	error	in	all	the	1000	Genomes	positions	as	a	function	of	Minor	334 
Allele	Frequencies	for	all	individuals	colored	by	continent.	 335 

Imputation	error	in	all	1KG	SNPs	Computing	the	error	using	all	the	1KG	SNPs,	we	see	a	different	trend	for	the	errors	as	336 

a	function	of	minor	allele	frequency	(Figs.	8a,	8b).	The	invariant	sites	have	very	low	errors	~10-4.		For	the	variant	sites,	the	337 

errors	increase	as	a	function	of	minor	allele	frequency,	as	opposed	to	decreasing	as	they	do	in	the	experimental	only	SNPs.	338 

The	reason	this	happens	is	that	contrasting	the	number	of	experimental	SNPs	(Fig.	1a)	with	the	numbers	of	all	1KG	339 

SNPs(Fig.	1b),	while	the	number	of	low	MAF	SNPs	is	1-2	orders	of	magnitude	less	than	the	number	of	SNPs	with	MAF	>	340 

5%	in	the	experimental	data,	the	number	of	very	low	MAF	SNPs	is	2-10	times	greater	than	the	number	of	SNPs	with	MAF	341 

>	5%	in	the	whole	1000	Genomes	data.	The	vast	majority	of	the	very	low	MAF	SNPs	in	the	whole	1000	Genomes	data	are	342 

homozygous-reference,	since	those	SNPs	show	variation	in	only	one	or	very	few	1000	Genomes	individuals.	Hence,	343 

imputation	predictions	get	most	of	those	positions	correct	in	most	of	the	individuals.	As	a	result,	the	fraction	of	those	very	344 

rare	SNPs	which	are	predicted	incorrectly	is	much	lower	when	considering	all	the	1000	Genomes	SNPs	as	compared	to	345 

only	considering	the	experimental	SNPs,	where	most	of	the	SNPs	are	high	MAF	SNPs.	 346 

Consistent	with	the	observations	for	the	experimental	only	SNPs,	at	very	rare	SNPs	(MAF	<	0.2%),	the	American	347 

individuals	still	have	the	highest	error	rate.	The	individuals	from	the	South	Asian	populations	still	show	a	greater	spread	348 

than	those	from	the	East	Asian	populations.	Individual	NA20900	still	shows	the	lowest	error	rate	as	with	previous	349 

observations.		350 

	351 
																																																			(a)																																																																																																									(b)	352 

Figure	9	Imputation	error	as	a	function	of	Minor	Allele	Frequencies	for	European	individuals	comparing	the	European	reference	panel	353 
v/s	the	entire	1KG	reference	panel	(a)	experimental	SNPs	(b)	All	1000	Genomes	SNPs 354 
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Comparison	of	reference	panels	Here,	we	compare	the	imputation	errors	resulting	from	using	different	reference	355 

panels	for	imputation.	A	continent-specific	reference	panel	for	the	individual	of	interest,	a	reference	panel	which	includes	356 

all	of	the	1000	Genomes	individuals,	and	a	continent-specific	reference	panel	for	a	different	continent	from	the	one	from	357 

which	the	individuals	are,	are	chosen.	The	minor	allele	frequencies	used	here	are	for	all	the	overall	1000	Genomes	minor	358 

allele	frequencies,	instead	of	a	continent-specific	minor	allele	frequency,	since	we	want	to	understand	the	impact	of	the	359 

choice	of	reference	panel,	and	continent-specific	MAFs	would	not	align	with	the	whole	reference	or	the	reference	from	360 

another	continent.	In	this	case,	we	look	at	the	imputation	error	in	the	3	European	individuals	when	imputation	is	carried	361 

out	with	the	European	reference,	the	South	Asian	reference,	and	the	whole	1000	Genomes	reference.		362 

The	observed	result	for	experimental	only	SNPs	(Fig.	8a)	when	comparing	reference	panels	for	the	European	individuals	363 

is	very	similar	when	looking	at	all	1000	Genomes	SNPs	(Fig.	8b).	The	imputation	accuracy	when	using	the	entire	1000	364 

Genomes	data	as	a	reference	panel	gives	a	slightly	better	accuracy	than	using	just	a	European	specific	reference	panel.	365 

The	error	while	using	an	incorrect	reference	panel,	however,	is	up	to	a	factor	of	2	greater	than	the	error	when	using	the	366 

appropriate	reference,	or	when	using	the	whole	1000	Genomes	reference	panel.	The	trend	of	error	as	a	function	of	MAF	is,	367 

again,	the	opposite	of	what	was	observed	when	looking	at	only	the	experimental	SNPs.		368 

DISCUSSION		 369 

The	1000	Genomes	Project	data	have	been	widely	used	as	a	reference	for	estimating	continent-specific	allele	frequencies,	370 

and	as	a	reference	panel	for	phasing	and	imputation	studies.		Since	the	project’s	design	involved	low-coverage	(~7X)	371 

sequencing	for	most	of	the	samples,	it	was	unknown	a	priori	how	accurate	the	1KGP’s	genotype	and	haplotype	calls	were,	372 

especially	for	rare	variants.		This	accuracy	obviously	directly	impacts	the	usefulness	of	the	1KGP	data.		With	the	advent	of	373 

inexpensive,	commercial	platforms	for	experimentally	phasing	whole	genomes,	it	is	possible	to	directly	quantify	the	374 

genotype	and	haplotype	error	rates	of	the	1KGP	data.			375 

	376 

Our	comparison	of	28	experimentally	phased	genomes	with	the	1KGP	data	found	that	the	latter	is	highly	accurate	for	377 

common	and	low-frequency	variants	(i.e.,	MAF	≥	0.01).		As	expected,	accuracy	declined	with	decreasing	MAF,	with	rare	378 

variants	(MAF	<	0.01)	not	reliably	imputed	onto	haplotypes.		Surprisingly	though,	the	genotype	calls	were	reasonably	379 

accurate	even	for	rare	variants.		This	observation	may	not	generalize	to	other	low-coverage	sequencing	studies	due	to	the	380 

complicated	and	labor-intensive	protocol	used	for	variant	calling	in	the	1KGP.		We	conclude	that	the	1KGP	data	is	best	381 

used	as	a	reference	panel	for	imputing	variants	with	MAF	≥	0.01	into	populations	closely	related	to	the	1KGP	groups,	and	382 

is	probably	of	limited	utility	for	imputation	in	rare	variant	association	studies.		Larger	subsequent	imputation	panels,	such	383 
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as	the	one	generated	by	the	Haplotype	Reference	Consortium	(HRC)31,	are	likely	much	more	useful	for	imputing	rare	384 

variants,	at	least	in	well-studied	European	populations.		However,	even	this	large	reference	panel	may	be	of	limited	385 

usefulness	for	imputation	into	other	human	groups.		While	our	results	suggest	that	using	a	region-specific	reference	panel	386 

(for	the	correct	region)	for	imputation	is	only	slightly	worse	than	using	a	worldwide	panel,	the	choice	of	an	incorrect	387 

regional	panel	makes	the	imputation	considerably	worse.		So,	large	European-based	haplotype	reference	panels	will	be	of	388 

limited	utility	for	imputing	variants	into	East	Asian,	South	Asian,	or	African-American	genomes,	while	imputation	studies	389 

involving	understudied	groups	such	as	Middle	Easterners,	Melanesians	or	Khoisan	are	likely	to	have	error	rates	390 

substantially	higher	than	what	was	observed	in	our	study.	This	is	a	consequence	of	the	fact	that	most	rare	variants	are	391 

region-specific;	imputation	only	works	when	the	variant	being	imputed	shows	up	often	enough	in	the	reference	panel.	In	392 

summary,	while	the	1KGP	and	HRC	provide	valuable	genomic	resources	that	can	augment	the	power	of	GWAS	in	groups	393 

with	European	ancestry,	additional	large-scale	genome	sequencing	of	diverse	human	populations	will	be	necessary	to	394 

obtain	comparable	benefits	of	imputation	in	genetic	association	studies	of	non-European	groups.	395 

	396 

Finally,	we	note	that	the	absolute	error	rate	varied	by	an	order	of	magnitude,	depending	on	the	specific	definitions	of	397 

error	that	were	used.		This	highlights	the	importance	of	definitional	clarity	in	studies	that	evaluate	the	accuracy	of	398 

genomic	resources. 399 
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