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Abstract: 21 

The varying frequencies of pharmacogenetic alleles between populations have important 22 

implications for the impact of these alleles in different populations. Current population grouping 23 

methods to communicate these patterns are insufficient as they are inconsistent and fail to reflect 24 

the global distribution of genetic variability. To facilitate and standardize the reporting of 25 

variability in pharmacogenetic allele frequencies, we present seven geographically-defined 26 

groups: American, Central/South Asian, East Asian, European, Near Eastern, Oceanian, and 27 

Sub-Saharan African, and two admixed groups: African American/Afro-Caribbean and Latino. 28 

These nine groups are defined by global autosomal genetic structure and based on data from 29 

large-scale sequencing initiatives. We recognize that broadly grouping global populations is an 30 

oversimplification of human diversity and does not capture complex social and cultural identity. 31 

However, these groups meet a key need in pharmacogenetics research by enabling consistent 32 

communication of the scale of variability in global allele frequencies and are now used by 33 

PharmGKB.  34 

  35 
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Introduction 36 

Interindividual variability in pharmacogenes has important consequences for drug 37 

efficacy and toxicity.(1, 2) Unlike the low frequencies of alleles that are considered actionable 38 

with respect to disease risk, pharmacogenetic variants with clinical relevance are common and, 39 

in fact, both presence and absence of variants provide valuable dosing information.(3, 4)  The 40 

frequencies of many pharmacogenetic alleles vary greatly by global population, meaning that 41 

people with different ancestries can have considerably different likelihoods of carrying an allele 42 

that is associated with a particular drug response. For example, the CYP3A5*3 allele has been 43 

found at a frequency of 98% in an Iranian population but at 11% in a Ngoni population from 44 

Malawi. (5, 6) A single value for global allele frequency would fail to reflect this pattern. 45 

Presenting the differences in frequencies of pharmacogenetic alleles is important for 46 

communicating the scale of their expected impact on drug response and the degree of variation 47 

between populations. This information is invaluable for furthering pharmacogenetic research and 48 

implementation.   49 

Many pharmacogenetic studies present allelic data for very specific populations, such as 50 

from a single country or ethnic group, which are difficult to incorporate into broader research or 51 

implementation. Literature curation and gene summaries, such as those from the 52 

Pharmacogenomics Knowledgebase (PharmGKB: www.pharmgkb.org), must group these 53 

specific populations when annotating pharmacogenetic studies to allow users to easily compare 54 

information from multiple studies. As such, tagging studies with population group identifiers is 55 

an important component of knowledge extraction from curated literature. These population group 56 

labels then are used in aggregating and evaluating overall evidence for gene-drug associations, 57 
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which eventually inform clinical implementation guidelines, such as those of the Clinical 58 

Pharmacogenetics Implementation Consortium (CPIC: www.cpicpgx.org).  59 

Similar to other areas of biomedical research, (7) current methods for grouping global 60 

populations in pharmacogenetics are based on subjective, vague, and inconsistent geographical 61 

boundaries, or on populations that are geographically straightforward to cluster and reflect little 62 

admixture.(8-12) As an example of the issues with current grouping methods, some studies 63 

cluster participants of Egyptian descent with African populations, while others cluster them with 64 

Middle Eastern populations.(13, 14) While this discrepancy illustrates inconsistencies of 65 

geographic borders, the clustering of African-descent populations of the Americas with 66 

populations from Africa, as seen in the 1000 Genomes African (AFR) superpopulation, provides 67 

another example of challenges posed by employing a small number of categories to describe a 68 

broad spectrum of genomically diverse groups. The genetic patterns seen in American 69 

populations with African ancestry differs dramatically from populations in Africa due to 70 

admixture primarily with European and American Indian populations. (15-17) While sharing 71 

common ancestry, the recent admixture typically observed in the Americas can complicate 72 

average allele frequency estimation or, at a minimum, make these combined groupings less 73 

homogeneous.(16) These insufficient grouping systems, often ad-hoc and not fully representative 74 

evidence from population genomic studies, create a barrier to understanding and interpreting 75 

pharmacogenetic allele frequencies in a globally representative fashion.  76 

Until July 2018, PharmGKB annotated studies using the five race categories defined by 77 

the US Office of Management and Budget (OMB): White, Black or African American, American 78 

Indian or Alaska Native, Asian, and Native Hawaiian or Pacific Islander, with an additional 79 

ethnicity OMB category of Hispanic/Latino. While PharmGKB serves as a global resource, these 80 
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OMB groups are US-centric and, as socio-cultural measures of identity, lack the capacity to 81 

capture the scale of global human diversity. We also investigated the utility of the biogeographic 82 

categories employed by the Human Genome Diversity Panel - Centre d’Etude du Polymophisme 83 

Humain (HGDP - CEPH), which groups its 52 populations into Africa, Europe, Middle East, 84 

South and Central Asia, East Asia, Oceania and the Americas.(8, 18, 19) These population labels 85 

work well for the populations included in the HGDP data set, which are not located in 86 

ambiguous regions between group borders and which mostly contain populations with little 87 

admixture. However, papers curated at PharmGKB can include populations located all over the 88 

world, including in the transitional zones between HGDP geographical regions and admixed 89 

populations. This leads to ambiguity in how such populations would be grouped using HGDP 90 

categories. In conclusion, existing systems are insufficient for capturing the diversity of study 91 

populations in a replicable manner that is consistent with patterns of human genetic variation. 92 

Therefore, we sought to define a grouping system of global populations that could be 93 

used consistently to annotate pharmacogenetic studies and relevant alleles, and could capture 94 

global human population genetic patterns. Using population genetics data sources, including the 95 

1000 Genomes Phase 3 data release and the HGDP, we propose a simple and robust grouping 96 

pattern based on nine broad biogeographic regions that represent major geographic regions of the 97 

world (Figure 1). It is important to note that classifying individuals and communities into a few 98 

distinct groups with defined boundaries conflicts with our understanding of human variation, 99 

history, and social/cultural identities. As a result, we respectfully present these groups as a tool 100 

to represent broad differences in frequencies of pharmacogenetic variation rather than as a 101 

classification of human diversity.  102 

 103 
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 104 

Results 105 

We chose this geographic clustering pattern because geography has historically been the 106 

greatest predictor of genetic variation between human populations, with genetic distance 107 

increasing as geographic distance increases.(20) This geographic pattern aids consistency in 108 

population groupings by setting boundaries along national borders. To simplify utility, 109 

geographic boundaries between groupings are drawn predominantly along country borders, with 110 

only Russia divided into east and west along the Ural Mountains boundary due to the large size 111 

and genetic heterogeneity of the country. We intend these groups to represent peoples with a 112 

predominance of ancestors who were in the region pre-Diaspora and pre-colonization. 113 

We have also included two admixed groups representing populations with recent gene 114 

flow between geographically-based populations and therefore, have distinct genetic patterns 115 

which are not adequately reflected by any single geographically-based group. (7) While many 116 

populations reflect a degree of admixture, we selected these two populations because they are 117 

frequently reported in pharmacogenetic studies. 118 

We consider these nine groups sufficient to better illustrate the broad diversity in global 119 

allele frequencies, yet small enough to apply easily and to be tractable in grouping specific 120 

populations.(21-24) The groups are given below with their abbreviations. 121 

 122 

Geographical populations 123 

American (AME): The American genetic ancestry group includes populations from both North 124 

and South America with ancestors predating European colonization, including American Indian, 125 
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Alaska Native, First Nations, Inuit, and Métis in Canada, and Indigenous peoples of Central and 126 

South America.  127 

Central/South Asian (SAS): The Central and South Asian genetic ancestry group includes 128 

populations from Pakistan, Sri Lanka, Bangladesh, India, and ranges from Afghanistan to the 129 

western border of China.  130 

East Asian (EAS): The East Asian genetic ancestry group includes populations from Japan, 131 

Korea, and China, and stretches from mainland Southeast Asia through the islands of Southeast 132 

Asia. In addition, it includes portions of central Asia and Russia east of the Ural Mountains.  133 

European (EUR): The European genetic ancestry group includes populations of primarily 134 

European descent, including European Americans. We define the European region as extending 135 

west from the Ural Mountains and south to the Turkish and Bulgarian border.  136 

Near Eastern (NEA): The Near Eastern genetic ancestry group encompasses populations from 137 

northern Africa, the Middle East, and the Caucasus. It includes Turkey and African nations north 138 

of the Saharan Desert. 139 

Oceanian (OCE): The Oceanian genetic ancestry group includes pre-colonial populations of the 140 

Pacific Islands, including Hawaii, Australia, and Papua New Guinea.  141 

Sub-Saharan African (SSA): The Sub-Saharan African genetic ancestry group includes 142 

individuals from all regions in Sub-Saharan Africa, including Madagascar.(25)  143 

 144 

Admixed populations 145 

African American/Afro-Caribbean (AAC): Individuals in the African American/Afro-Caribbean 146 

genetic ancestry group reflect the extensive admixture between African, European, and 147 

Indigenous ancestries(26) and, as such, display a unique genetic profile compared to individuals 148 
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from each of those lineages alone. Examples within this cluster include the Coriell Institute’s 149 

African Caribbean in Barbados (ACB) population and the African Americans from the 150 

Southwest US (ASW) population, (27) and individuals from Jamaica and the US Virgin Islands.  151 

Latino (LAT): The Latino genetic ancestry group is not defined by an exclusive geographic 152 

region, but includes individuals of Mestizo descent, individuals from Latin America, and self-153 

identified Latino individuals in the United States. Like the African American/Afro-Caribbean 154 

group, the admixture in this population creates a unique genetic pattern compared to any of the 155 

discrete geographic regions, with individuals reflecting mixed Native and Indigenous American, 156 

European, and African ancestry. 157 

 158 

The Central/South Asian, East Asian and European groups presented here are equivalent 159 

to the 1000 Genomes South Asian (SAS), East Asian (EAS) and European (EUR) super 160 

populations, respectively. As such, we have adopted the relevant 1000 Genomes super 161 

population codes as abbreviations for each of these groups to maintain consistency. While the 162 

1000 Genomes Ad Mixed American (AMR) super population shows complete overlap with the 163 

Latino group, we have opted to use the abbreviation LAT for this group. This removes the 164 

potential for confusion between the Latino group and the other admixed group of African 165 

American/Afro-Caribbean. 166 

Figure 1 illustrates the countries included in each of the seven geographical groups and 167 

removes any ambiguity of the group boundaries. As this map shows the boundaries of each 168 

group pre-colonization and pre-Diaspora, the two admixed groups, African American/Afro-169 

Caribbean and Latino are not shown. We intend this map to be used as a guide for grouping 170 

genetic ancestral populations. Study subjects of an ancestry that is not within the geographic 171 
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cluster in which they currently live will be included in the geographic cluster reflecting their 172 

ancestry. For example, South Africans of Dutch descent would be included in the European 173 

cluster rather than the Sub-Saharan African cluster. However, when lacking a clear description 174 

otherwise, the population will be included in the group that includes its home country. 175 

This approach highlights the importance of understanding and recording detailed self-176 

identified and self-reported race and ethnicity in the context of genetic studies. While self-177 

reported race and ethnicity can be influenced by an individual’s social and cultural background 178 

and thus may not perfectly correlate with genetic ancestry (28), it is more reliable than 179 

assignment of race or ethnicity by another person (e.g. a healthcare professional) (29). However, 180 

it should be noted that self-reported measures can be complicated by collection processes, (30) 181 

including an incomplete selection of possible identity categories, or allowing only one selection 182 

and thus failing to capture whether an individual may identify with multiple categories or none at 183 

all (29). These classification limitations can be particularly prevalent among populations with a 184 

high degree of admixture. 185 

To validate the genetic variability distinguished by these population groups, we 186 

conducted Principal Components Analysis (PCA) using autosomal genotype data of unrelated 187 

individuals from 1000 Genomes and HGDP. As seen in Figure 2A, the first two principal 188 

components (PCs) separate populations by geographic region, especially along continental 189 

boundaries, and illustrate the increasing genetic distance between populations of increasing 190 

geographic distance. As can be seen in the overlapping PC distribution of individuals of different 191 

population groups, human genetic diversity is a spectrum,(19) and therefore the geographic 192 

boundaries of these groups should be understood as an obligatory divide to create relevant 193 

groupings, with the acknowledgement that these borders are constrained by modern country 194 
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borders and therefore are inherently arbitrary in geographic space.(19) However, as shown in 195 

Figure 2B, only a few PCs are needed to accurately predict these population clusters. Even with 196 

only 4 PCs, the minimum area under the curve (AUC) for correct cluster prediction is 97.9% for 197 

most populations using multiple logistic regression. The only outlier is the African 198 

American/Afro-Caribbean cluster, consistent with ancestral similarity to the African cluster.(15, 199 

31) Here still, with a larger number of PCs, the AUC is above 93%, even with the observed 200 

ancestry outliers present in the 1000 Genomes African Americans in the Southwest US (ASW) 201 

population.(32) While no categorization will result in perfect prediction, given the spectrum of 202 

human diversity, the statistical validation of this clustering from broad autosomal data makes 203 

these clusters both relevant and useful for PharmGKB. 204 

 205 

In Figure 3, we demonstrate that the groups we have selected are effective for 206 

representing the diversity of global allele frequencies in pharmacogenes. We present here the 207 

frequency of four single nucleotide polymorphisms (SNPs) with important pharmacogenetic 208 

implications. The ‘A’ allele of rs1065852 is the defining SNP of the cytochrome P450 2D6 209 

(CYP2D6) *10 haplotype and is also found in combination with other variants in multiple 210 

CYP2D6 haplotypes. Haplotypes containing this SNP are associated with decreased CYP2D6 211 

activity, which has important implications for drugs that are CYP2D6 substrates, including 212 

codeine, selective serotonin reuptake inhibitors, ondansetron, and tricyclic antidepressants.(33-213 

36) The CYP2C9 alleles *2 (defined by rs1799853), *3 (defined by rs1057910), and *8 (defined 214 

by rs7900194) are associated with reduced enzyme function and therefore are associated with 215 

recommended changes to the dosing of warfarin and phenytoin, which are substrates of 216 

CYP2C9.(37, 38) Using data from the 1000 Genomes, we show the frequency of the four SNPs 217 
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in these biogeographic groups. The range of frequencies between populations illustrates the 218 

importance of showing allele frequency by group in order to convey its impact on drug response 219 

globally.  220 

The SNP rs1065852 shows stark continental patterns (Figure 3A). The ‘A’ allele is found 221 

at high frequencies within East Asian populations, ranging from 66.2% in Vietnam (KHV) to 222 

36.1% in Japan (JPT). This allele is less frequent in other continental populations, such as Sub-223 

Saharan African (3.5-16.5%), European (14.6-24.7%), and Central/South Asian (10.4-25.6%). 224 

As can be seen from the range of frequencies of the three CYP2C9 alleles, the most common 225 

reduced function allele varies globally, with the *8 allele much more common in Sub-Saharan 226 

African populations (1.8-7.6%) than the *2 (<1%) or *3 (monomorphic in Africa) (Figure 3B-227 

D). Conversely, the *8 allele is rare in European populations (<1%), while *2 (8.1-15.2%) and 228 

*3 (5.6-8.4%) are more common. Patterns such as this one can result in bias in the utility of 229 

dosing algorithms, such as the International Warfarin Pharmacogenetics Consortium (IWPC) 230 

dosing algorithm for warfarin, which adjusts dose based on the presence of the *2 and *3 alleles 231 

but does not include the *8 allele.(39) 232 

 233 

Discussion  234 

  While individual pharmacogenetic testing (either pre-emptive or at point-of-care) remains 235 

the most effective and appropriate way to implement pharmacogenetic knowledge for the care of 236 

an individual,(40, 41) we recognize the need in clinical and genetic research for a standardized 237 

method to broadly group populations based on biogeographic region. For example, identifying 238 

populations with high frequencies of certain pharmacogenetic alleles can help to direct targeted 239 

screening when resources are constrained and inform priorities for future pharmacogenetic 240 
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research.(20) However, the groups we present are large and the summary information presented 241 

should be understood as an approximation dependent on existing studies in that region, which 242 

may be limited to a few locations. As such, these groups are not suitable for use in guiding 243 

specific implementation programs; rather, they should be seen as a tool for research purposes. 244 

It should be noted that this grouping system does have limitations. Classifying 245 

individuals into these population groups can be complicated by social and cultural identities(8, 246 

10, 42-44) and membership of an individual within one of these population groups is inherently 247 

an imperfect surrogate for predicting the likelihood that the individual carries a particular genetic 248 

variant.(41, 45) As can be seen in the analysis of rs1065852 above, the frequency of the ‘A’ 249 

allele can vary by up to 30% between populations which are all included in the East Asian group. 250 

Furthermore, while the grouping system is based on overall genome-wide average patterns, 251 

which typically follow a clinal variation pattern correlated with geographic proximity,(8, 23, 24, 252 

46, 47) variation in individual genes or individual populations do not always follow these 253 

gradual patterns.(9-12, 41) In an attempt to mitigate some of these limitations, we encourage 254 

researchers using this grouping system to also provide specific details regarding the geographical 255 

and racial or ethnic origins of their subjects. 256 

Because aggregate annotations of pharmacogenetic research and summary allele 257 

frequencies are based only on available studies, additional studies are needed that include a 258 

greater diversity of populations to make pharmacogenetic research and allele frequency 259 

summaries more representative.(48) For example, the Sub-Saharan African (SSA) grouping 260 

represents a large swath of human genomic diversity, which is not adequately represented in the 261 

available data from HGDP and 1000 Genomes. Increased representation of these populations in 262 

pharmacogenetics studies may lead to the discovery of clinical differences within the larger 263 
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grouping. Furthermore, large, reference genetic studies with targeted allele information, like that 264 

emerging from the Population Architecture using Genomics and Epidemiology (PAGE) study 265 

(www.pagestudy.org), may provide compelling evidence to adjust these group boundaries based 266 

on frequency patterns specific to pharmacogenetic alleles. Continued evolution of this grouping 267 

system will be key to ensuring that misclassification of individuals is kept to a minimum. 268 

However, it should be understood that some misclassification is inevitable and will only be truly 269 

avoided when every patient can access comprehensive pharmacogenetic testing. 270 

Despite these limitations, broad population groups are needed for illustrating global 271 

diversity with respect to pharmacogenetic variation and the average predicted phenotypes in 272 

populations. These nine proposed biogeographic groups provide a consistent way to present 273 

these data based on a system that is grounded in robust data on population genetic patterns, and 274 

their introduction is particularly timely given the recent commentaries by Bonham et al. and 275 

Cooper et al. (7, 49) PharmGKB is now using these population groups in curation activities, and 276 

we recommend that these groups and accompanying map be considered the standard grouping 277 

mechanism for population pharmacogenetics. Ultimately, individual pharmacogenetic testing of 278 

all patients, regardless of ancestry, is needed to deliver truly personalized medicine. However, 279 

the population groups we present are useful for the standardized presentation of pharmacogenetic 280 

studies, global allele frequency summaries in pharmacogenetic research and broad clinical 281 

screening.   282 

 283 

Methods 284 

The MVN joint callset for 1000 Genomes data Phase 3 (21) was downloaded directly form the 285 

website for downstream interpretation. For principal component analysis (PCA), we filtered sites 286 
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with a MAF < 0.5% and thinned sites given windows of 100 kilobases or 10 variants and r2>0.2, 287 

resulting in 156,211 sites. PCA was performed in PLINK 1.9 (50). Forward stepwise logistic 288 

regression was subsequently performed, adding 1 PC at a time, to predict population labels in a 289 

bivariate fashion. Prediction accuracy was assessed using the AUC-ROC estimator, as included 290 

in the R package ‘epicalc.’ To make assessments transparent, we included all individuals with 291 

specific population labels, although it has been demonstrated in multiple venues that there are 292 

several known ancestry outliers within 1000 Genomes populations of the Americas (17, 32). 293 

Plots were performed in R and ggplot2. 294 

 295 

Study Highlights 296 

What is the current knowledge on the topic? 297 

The frequency of pharmacogenetic alleles can very significantly between different populations 298 

around the world. Grouping populations can simplify reporting of pharmacogenetic alleles but 299 

current methods used to group populations are inadequate and are applied inconsistently. 300 

What question did this study address? 301 

Can we improve how populations are grouped for the reporting of pharmacogenetic alleles? 302 

What does this study add to our knowledge? 303 

We present nine new biogeographical groups based on geographical location or recent genetic 304 

admixture for use in pharmacogenetic research. These groups have been validated using 305 

autosomal genetic data from large-scale sequencing initiatives. 306 

How might this change clinical pharmacology or translational science? 307 

These groups have already been adopted for use in curation activities at PharmGKB. It is hoped 308 

that use of these groups will become standard in pharmacogenetics research. 309 
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Figures: 465 

 466 

 467 

Figure 1: Map of geographical boundaries included in each geographical population group. 468 

Group boundaries for the seven geographical groups fall predominantly along national 469 

boundaries to aid the assignment of group membership. The two admixed groups of African 470 

American/Afro-Caribbean and Latino are not shown on this figure as the map indicates the 471 

borders of each geographical group based on the location of genetic ancestors pre-Diaspora and 472 

pre-colonization, which cannot be applied to the two admixed groups. It should also be 473 

recognized that, due to the large geographical areas covered by each group, a single group does 474 

not accurately represent the large amount of genetic diversity found in that one region. 475 

 476 

 477 
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 478 

Figure 2: Principal component analysis comparing genetic distances of populations with 479 

close geographic proximity using 1000 Genomes participants. (A) The genetic gradient 480 

between populations is illustrated along PCs 1 vs 2 and PCs 3 vs 4, showing that, while 481 

completely discrete population boundaries are challenging, the groupings proposed here provide 482 

a statistically robust grouping. (B) AUCs of logistic regression to predict cluster membership, 483 

showing high degree of population structure.   Note that, because none of the 1000 Genomes 484 

populations fall into the American (AME) group, no reference data were available to include this 485 

group in the analysis.486 
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 487 

Figure 3: Maps illustrating how the proposed biogeographical grouping system can be used to illustrate the variability in 488 

global frequencies of key pharmacogenetic alleles. Allele frequencies from 1000 Genomes are shown across global populations for 489 

(A) CYP2D6*10, (B) CYP2C9*2, (C) CYP2C9*3 and (D) CYP2C9*8. 490 
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