1

2 Potential Application of Bacteriophages in Enrichment Culture for Improved Prenatal

- 3 Streptococcus agalactiae Screening
- 4

5	Jumpei	Uchiyama ^a #,	Hidehito	Matsui ^b ,	Hironobu	Murakami ^a ,	Shini-chiro	Kato ^c ,	Naoki
---	--------	--------------------------	----------	-----------------------	----------	-------------------------	-------------	---------------------	-------

6 Watanabe^a, Tadahiro Nasukawa^a, Keijiro Mizukami^a, Masaya Ogata^a, Masahiro Sakaguchi^a,

7 Shigenobu Matsuzaki^d, Hideaki Hanaki^b

8

9	^a School of	Veterinary	Medicine, A	Azabu Un	niversity, 1	Kanagawa,	Japan

- 10 ^b Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
- ^c Research Institute of Molecular Genetics, Kochi University, Kochi, Japan

¹² ^d Kochi Medical School, Kochi University, Kochi, Japan

13

14 Running title: Bacteriophages for *Streptococcus agalactiae* Screening

15

16 #Address correspondence to Jumpei Uchiyama, uchiyama@azabu-u.ac.jp.

17

18 ABSTRACT

19 Vertical transmission of *Streptococcus agalactiae* can cause neonatal infections. A culture 20 test in the late stage of pregnancy is used to screen for the presence of maternal S. 21 agalactiae for intrapartum antibiotic prophylaxis. For the test, vaginal-rectal swab sampling 22 is immediately followed by enrichment culture and bacterial identification. In some cases, 23 Enterococcus faecalis competes with and overgrowths S. agalactiae in the enrichment 24 culture. Consequently, the identification test occasionally yields false-negative results. 25 Bacterial viruses, bacteriophages (phages), infect and kill specific host bacteria. In the 26 current study, we explored the feasibility of using phages to minimize the undesirable E. faecalis outgrowth and facilitate S. agalactiae detection in an experimental setting. Phage 27 28 mixture was prepared using three phages that specifically infect *E. faecalis*: phiEF24C, 29 phiEF17H, and phiM1EF22. The mixture inhibited the growth of 86.7% (26/30) of E. 30 faecalis strains tested in the enrichment broth. When single strains of E. faecalis and S. 31 agalactiae were inoculated in the enrichment broth containing the phage mixture, bacterial 32 growth was inhibited or facilitated, respectively. Further, several sets of S. agalactiae and E. 33 faecalis strains were co-cultured, and bacteria were detected on chromogenic agar after the 34 enrichment culture. S. agalactiae was dominant after plating a phage mixture-treated

- 35 co-culture, while it was barely detected after plating the untreated co-culture. Considering
- 36 these observations, the phage mixture can be employed in the *S. agalactiae* culture test to
- 37 increase test accuracy.
- 38
- 39 Keywords: phage, Enterococcus faecalis, Streptococcus agalactiae, culture enrichment
- 40

41 INTRODUCTION

42	Streptococcus agalactiae (also called group B streptococcus) is vertically transmitted to the
43	newborn during delivery, and can cause neonatal infections (1, 2). Common early-onset
44	diseases caused by this organism in infants include sepsis and pneumonia, and (rarely)
45	meningitis (1, 2). To prevent such infections, prenatal S. agalactiae culture test is
46	recommended in the late stage of pregnancy (1, 2). In the case of a positive test result, the
47	pregnant carrier is prophylactically treated with antibiotics to prevent vertical transmission
48	of S. agalactiae during the intrapartum period (1, 2).
49	For the S. agalactiae culture test, the Center of Disease Control and Prevention
50	highly recommends an enrichment culture, followed by conventional S. agalactiae
51	identification (3, 4). In the culture test, a swab is taken from the vaginal and anorectal areas,
51 52	identification $(3, 4)$. In the culture test, a swab is taken from the vaginal and anorectal areas, and the samples are inoculated and cultured in an enrichment culture broth selective for <i>S</i> .
52	and the samples are inoculated and cultured in an enrichment culture broth selective for S.
52 53	and the samples are inoculated and cultured in an enrichment culture broth selective for <i>S</i> . <i>agalactiae</i> . After the enrichment culture, bacterial identification is performed, e.g., by using
52 53 54	and the samples are inoculated and cultured in an enrichment culture broth selective for <i>S</i> . <i>agalactiae</i> . After the enrichment culture, bacterial identification is performed, e.g., by using the Christie-Atkins-Munch-Petersen test, serologic identification, growth on chromogenic

identification tests (5-8). To address the problem of false-negative results, selectiveantimicrobial agents to be included in the enrichment broth should be re-evaluated.

Bacteriophages (phages), i.e., bacterial viruses, infect specific bacteria. Some 60 61 phages infect and lyse bacteria at the specificity level of species and strains. These phage 62 characteristics have been used to eliminate most cells in a bacterial population and facilitate the isolation of less prevalent environmental bacteria that produce novel bioactive 63 64 compounds (9). Phage applicability for the isolation of food-poisoning microbes in the food microbiology field has also been examined (10). Hence, potentially, phage application 65 might also be used to reduce the unwanted growth of *E. faecalis* and facilitate *S. agalactiae* 66 growth in an S. agalactiae enrichment culture in clinical microbiology. Indeed, phages that 67 68 specifically infect E. faecalis have been isolated from environmental samples, such as sewage and canal water (11-13). In the current study, we examined the applicability of E. 69 70 faecalis-specific phages to suppress E. faecalis growth in S. agalactiae enrichment culture.

71

72 MATERIALS AND METHODS

73 **Bacteria, phages, and culture media.** Strains of *E. faecalis* (n = 30), *S.* 74 *agalactiae* (n = 7), *Enterococcus avium* (n = 5), and *Enterococcus faecium* (n = 5) were

75	isolated from vaginal swabs using the Chrom-ID Strepto B test (bioMérieux,
76	Marcy-l'Étoile, France). The swabs were obtained after random sampling at local hospitals
77	in eastern Japan (Table S1). Bacteria were cultured at 37°C under aerobic or microaerobic
78	(i.e., 5% CO ₂) condition, as appropriate, based on their specific growth requirements (Table
79	S1).
80	Phage phiEF24C has been isolated and characterized, as described elsewhere (12,
81	14, 15). Phage phiEF17H was newly isolated from canal water in Kochi (Japan). Phage
82	phiM1EF22 was newly isolated from sewage water in Tokyo (Japan) (Table S2). The
83	isolation procedures are described elsewhere (12). E. faecalis strains KUEF01, KUEF25,
84	and KUEF27, described in Table S1, were used as host bacteria for phages phiEF24C,
85	phiEF17H, and phiM1EF22, respectively, for phage amplification and plaque assay.
86	Bacterial-phage suspensions were cultured aerobically at 37°C.
87	Enterococcus spp. and phages were cultured in tryptic soy broth or agar (TSA),

88 and S. agalactiae was cultured in Todd-Hewitt broth (THB), unless stated otherwise.

89 Granada-type broth with slight modification [GBwSM; 25.0 g/l proteose peptone no. 3,

- 90 14.0 g/l soluble starch, 2.5 g/l glucose, 1.0 g/l pyruvic acid sodium salt, 0.1 g/l cysteine
- 91 hydrochloride, 0.3 g/l magnesium sulfate, 11.0 g/l 3-(*N*-morpholino)propane sulfonic acid,

100	Phage genome sequencing. After phage amplification, phage particles were
99	(Osaka, Japan).
98	purchased from Nacalai Tesque (Kyoto, Japan) and FUJIFILM Wako Pure Chemical
97	from Becton, Dickinson, and Co. (Franklin Lakes, NJ). All chemicals and reagents were
96	agalactiae enrichment broth. Unless stated otherwise, all culture media were purchased
95	(modified Lim broth; Kyokuto Pharmaceutical Industrial, Tokyo, Japan) was used as an S.
94	agalactiae enrichment broth (16, 17). Alternatively, the pigmented enrichment Lim broth
93	mg/l metronidazole, and 15 mg/l nalidixic acid, pH 7.4] was originally prepared as the S.
92	10.7 g/l disodium hydrogen phosphate, 0.5 mg/l crystal violet, 10 mg/l colistin sulfate, 10

101 purified from 500 ml of phage lysate by CsCl density-gradient centrifugation, as described 102 elsewhere (18). Phage genomic DNA was then prepared by phenol-chloroform extraction of 103 the collected purified phage band, as described (18). Shotgun library was prepared for each 104 phage DNA using the GS FLX Titanium rapid library preparation kit (Roche Diagnostics, 105 Indianapolis, IN), according to the manufacturer's instruction. The libraries were analyzed 106 using a GS Junior 454 sequencer (Roche Diagnostics). The sequence reads were assembled using the 454 Newbler software (version 3.0; 454 Life Sciences, Branford, CT). The 107 108 genome sequences were analyzed by using BLASTn at the National Center for

109	9 Biotechnology Information	(NCBI;
110	0 https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&P	AGE_TYPE=BlastSearch&
111	1 LINK_LOC=blasthome; last accessed: 5 May, 2018). The gen	omes were annotated using a
112	2 prokaryotic genome annotation pipeline, DFAST (https://dfast.	nig.ac.jp/) (19, 20).
113	3 Multi-locus sequence typing (MLST) of <i>E. faecali</i>	s strains. E. faecalis strains
114	4 were cultured overnight, bacterial DNA was extracted, and MI	LST analysis was performed,
115	5 according to the procedures described elsewhere (21). The sec	quence alleles were analyzed
116	6 using the E. faecalis MLST database (https://pubmlst.org/	'efaecalis/; last accessed: 5
117	7 January, 2018) to designate sequence types (STs) (22). The co	oncatenating allele sequences
118	8 were analyzed using MEGA 7.0.18, and sequence alignment in	nplemented in ClustalW was
119	9 followed by phylogenetic tree construction by the UPGMA me	thod (23).
120	0 Examination of antibacterial activity of <i>E. faecalis</i>	to <i>S. agalactiae</i> . The anti- <i>S</i> .
121	1 agalactiae activity of E. faecalis was examined by spot-o	on-lawn assay, as described
122	2 elsewhere (24). Briefly, 200 μ l of overnight bacterial culture o	f a single S. agalactiae strain
123	3 were mixed with a melted 0.5% (w/v) soft agar and plated	onto 1.5% (w/v) agar. One
124	4 microliter of <i>E. faecalis</i> overnight culture was spotted on the	ne solidified top agar. After
125	5 incubation overnight at 37°C in a microaerophilic condition,	S. agalactiae growth around

126 the spotted *E. faecalis* was examined.

127	Analysis of phage lytic activity. The phage host range was determined by a streak
128	test, as described elsewhere (12, 15). Briefly, 200 μ l of overnight bacterial culture of a
129	single bacterial strain were mixed with a melted 0.5% (w/v) soft agar and plated onto 1.5%
130	(w/v) agar. Phage suspension (ca. $1.0 \times 10^{8-9}$ PFU/ml) was streaked onto the solidified top
131	agar. After incubation overnight at 37°C, bacterial lysis, with or without plaque formation,
132	was examined.
133	Analysis of bacterial growth inhibition by the phage mixture in S. agalactiae
134	enrichment broths. Bacteria were cultured until optical density of 0.4–0.6 at 600 nm. After
135	washing and diluting with GBwSM, 3.0–5.0 \times 10^8 CFU/ml bacterial suspension was
136	prepared in GBwSM. Each phage suspension was diluted in THB to ca. 3.0×10^8 PFU/ml,
137	3.0×10^6 PFU/ml, and 3.0×10^4 PFU/ml. Phage mixtures were prepared by mixing equal
138	volumes of phage suspensions at the same dilution. Then, 5 μl of bacterial suspension and 5
139	μl of phage mixture were added to 140 μl of GBwSM in a well of a flat-bottomed
140	polystyrene 96-well plate (AS ONE Co., Osaka, Japan). In the experiments, 5 μl of THB
141	was used instead of the bacterial suspension and/or phage mixture as a control. The 96-well
142	plate was incubated at 37°C and sample turbidity was measured over time at 595 nm, using

a Multiskan JX spectrophotometer (Thermo Labsystems, Stockholm, Sweden). The
experiments were conducted in triplicate, and the growth curves were then plotted using
averaged values with standard deviations.

146 Analysis of bacterial densities in S. agalactiae and E. faecalis co-culture with 147 **phage mixtures.** Rifampicin-resistant mutant clone of S. agalactiae was isolated by 148 aerobically culturing S. agalactiae strain KUGBS2 on TSA containing 20 µg/ml rifampicin 149 at 37°C for 2 d. The putative mutant clones were re-purified at least three times; each 150 re-purification round was repeated for 1 d under the same incubation conditions. One 151 resultant rifampicin-resistant mutant clone of strain KUGBS2 was obtained and was 152 tentatively designated as strain KUGBS2rif. S. agalactiae strain KUGBS2rif and E. 153 faecalis strain KUEF08 were cultured individually until optical density of 0.4–0.6 at 600 nm. After diluting with the enrichment broth, suspensions of 3.0×10^4 CFU/ml S. 154 agalactiae strain KUGBS2rif and 3.0×10^7 CFU/ml E. faecalis strain KUEF08 were 155 156 prepared. Each phage suspension was diluted with THB to ca. 3.0×10^6 PFU/ml or $3.0 \times$ 157 10⁴ PFU/ml. By mixing equal volumes of phage suspensions at the same dilution, mixtures 158 of two different dilutions of phages were prepared.

159 For the experiment, 100 µl each of *S. agalactiae* strain KUGBS2rif and *E. faecalis*

160	strain KUEF08, and 300 μ l of phage mixture were added to 10 ml of the S. agalactiae
161	enrichment broth. As negative controls, the same volume of THB was added instead of
162	bacterial suspensions and/or phage suspensions. The mixtures were microaerobically
163	incubated at 37°C for 24 h. Total bacterial density, and S. agalactiae strain KUGBS2rif and
164	E. faecalis strain KUEF08 densities were determined. Total bacterial densities were
165	determined on TSA. TSA supplemented with 20 μ g/ml rifampicin and
166	Enterococcus-selective agar (EF agar base "Nissui"; Nissui Pharmaceutical Co., Tokyo,
167	Japan) were used to determine the densities of S. agalactiae strain KUGBS2rif and E.
168	faecalis strain KUEF08, respectively. S. agalactiae strain KUGBS2rif did not grow on the
169	Enterococcus-selective agar; conversely, E. faecalis strain KUEF08 did not grow on TSA
170	containing 20 µg/ml rifampicin.

171 Detection of bacteria on chromogenic selective agar after *S. agalactiae* and *E.* 172 *faecalis* co-culture with phage mixtures. *S. agalactiae* and *E. faecalis* were cultured 173 individually until optical density of 0.4–0.6 at 600 nm. *S. agalactiae* and *E. faecalis* 174 cultures were diluted with THB to ca. $3.0-5.0 \times 10^4$ CFU/ml and ca. 3.0×10^7 CFU/ml, 175 respectively. After dilution of individual phage suspensions in THB to ca. 1.0×10^7 PFU/ml, 176 phage mixture was prepared by mixing equal volumes of the diluted phage suspensions.

177	For the experiment, 30 μ l each of bacterial suspensions of S. agalactiae and E.
178	faecalis, and 30 μ l of phage mixture were added to 3 ml of the enrichment broth. As a
179	negative control, the same volume of THB was added instead of the phage mixture. After
180	24-h incubation at 37°C, a loop-full of the suspension was inoculated on the Chrom-ID
181	Strepto B agar (bioMérieux). After 24-h incubation at 37°C in darkness, colony color and
182	appearance on agar plates were examined. All incubations were made under
183	microaerophilic conditions.
184	Accession numbers. The phiEF17H and phiM1EF22 genome sequences were
185	deposited in the GenBank under the accession numbers AP018714 and AP018715,
186	respectively.
187	Statistical analysis. The data were statistically analyzed using EZR (Saitama
188	Medical Center, Jichi Medical University, Saitama, Japan), which is a graphical user
189	interface for R (The R Foundation for Statistical Computing, Vienna, Austria) (25).
190	Student's t-tests were used to analyze differences between bacterial densities in different
191	treatments. The value of $P < 0.01$ was considered to indicate statistically significant
192	difference.

Data availability. By publishing in the journal, the authors agree that, subject to

193

194	requirements or limitations imposed by local and/or U.S. Government laws and regulations,
195	any materials and data that are reasonably requested by others are available from a publicly
196	accessible collection or will be made available in a timely fashion, at reasonable cost, and
197	in limited quantities to members of the scientific community for noncommercial purposes.
198	The authors guarantee that they have the authority to comply with this policy either directly
199	or by means of material transfer agreements through the owner.
200	
201	RESULTS AND DISCUSSION
202	Phage characteristics. Phages phiEF24C, phiEF17H, and phiM1EF22 were used
203	in the current study. Phage phiEF24C, one of the well-studied Enterococcus phages, is
203 204	in the current study. Phage phiEF24C, one of the well-studied <i>Enterococcus</i> phages, is classified into the family <i>Myoviridae</i> subfamily <i>Spounavirinae</i> (26). Based on the
204	classified into the family Myoviridae subfamily Spounavirinae (26). Based on the
204 205	classified into the family <i>Myoviridae</i> subfamily <i>Spounavirinae</i> (26). Based on the whole-genome sequence similarities to the phage phiEF24C genome, phages phiEF17H
204 205 206	classified into the family <i>Myoviridae</i> subfamily <i>Spounavirinae</i> (26). Based on the whole-genome sequence similarities to the phage phiEF24C genome, phages phiEF17H and phiM1EF22 share viral taxonomy with that phage (Table S3). Phages sharing this
204 205 206 207	classified into the family <i>Myoviridae</i> subfamily <i>Spounavirinae</i> (26). Based on the whole-genome sequence similarities to the phage phiEF24C genome, phages phiEF17H and phiM1EF22 share viral taxonomy with that phage (Table S3). Phages sharing this particular viral taxonomy are highly virulent toward host bacteria (27).

211	Moreover, E. faecalis strains, which interfere S. agalactiae culture tests, do not seem to
212	show antibacterial activity (e.g., bacteriocin production) to the S. agalactiae, while some of
213	them are able to show anti-bacterial activity to a variety of bacteria (5, 28). Testing the
214	antibacterial activity to S. agalactiae strains by the spot-on-lawn assay, no anti-S.
215	agalactiae activity was observed among these E. faecalis strains.
216	Phage lytic activity was examined by a streak test using these E. faecalis strains
217	(Fig. 1). Phages phiEF24C, phiEF17H, and phiM1EF22 showed lytic activity toward
218	63.3% (19/30), 76.7% (23/30), and 66.7% (20/30), respectively, of the tested E. faecalis
219	strains. Lytic activities of the three phages with other bacterial vaginal swab isolates (E.
220	avium, E. faecium, and S. agalactiae strains) were also examined, but no lytic activity was
221	observed.

Lytic activity of the phage mixture as an *E. faecalis*-selective antimicrobial agent. Phages phiEF24C, phiEF17H, and phiM1EF22 lysed different *E. faecalis* strains and also some common strains. Theoretically, a combination of these three phages lysed a broader range of *E. faecalis* strains than any single phage tested. Phage mixture containing the three phages was prepared by mixing phage particles in 1:1:1 ratio. The lytic spectrum of the phage mixture was then examined by using a streak test. The phage mixture showed

228	lytic activity toward 86.7% (26/30) of E. faecalis strains tested (Fig. 1). Four E. faecalis
229	strains were not lysed by the phages, namely, KUEF02 (MLST ST47), KUEF18 (ST64),
230	KUEF15 (ST30), and KUEF28 (ST179). The phage mixture did not show any lytic activity
231	with the other tested bacteria, i.e., E. avium, E. faecium, and S. agalactiae.
232	To evaluate the effect of the phage mixture on the growth of E. faecalis in the
233	enrichment broth, E. faecalis growth was monitored in the presence of three dilutions of the
234	phage mixture in GBwSM. The medium lacked the customary pigment enhancer
235	methotrexate to improve data reliability (16, 17). After bacterial inoculation, phage mixture
236	was added to the multiplicity of infection (MOI) of each phage of 1, 10^{-2} , or 10^{-4} . For the <i>S</i> .
237	agalactiae enrichment culture, 18-24-h incubation is recommended (3, 4). Consequently,
238	the turbidity of cultures of 30 E. faecalis strains described in Fig. 1 was recorded in the
239	presence or absence of the phage mixture over 24 h.
240	To simplify data interpretation, E. faecalis growth curves were tentatively
241	categorized into four patterns (A–D), after comparing with the growth curve of untreated <i>E</i> .
242	faecalis (Fig. 2A). For strains representing pattern A growth curve, E. faecalis growth was
243	inhibited throughout the experiment. For strains representing pattern B growth curve, E.

244 *faecalis* growth was initially inhibited (8 h post inoculation) and then gradually recovered.

245	For strains representing pattern C growth curve, bacteria showed an initial growth but were
246	then lysed. Pattern C was a typical phage lysis pattern at the lower MOI tested. E. faecalis
247	strains that exhibited growth patterns A-C were inhibited by the phage treatment. The
248	tested E. faecalis strains treated with higher concentrations of phage mixtures and ones that
249	were most sensitive to phage mixture treatments tended to exhibit growth patterns A, B,
250	and C, in the order of strongest to weakest inhibition. On the other hand, phage treatment
251	did not inhibit <i>E. faecalis</i> strains exhibiting growth pattern D. The four phage-insensitive <i>E.</i>
252	faecalis strains (KUEF02, KUEF18, KUEF15, and KUEF28), and E. avium, E. faecium,
253	and S. agalactiae strains exhibited growth pattern D. The reasons for such tentative growth
254	pattern categorization (i.e., growth patterns A-D) were probably due to (1) different
255	sensitivity of E . faecalis strains to phages, and (2) the use of three dilutions of the phage
256	mixture in experiments.

The tentative grouping of growth patterns of the 30 tested *E. faecalis* is summarized in Fig. 2B. Phage mixture treatments at the highest and the second highest phage density (i.e., MOI 1 and 10^{-2} , respectively) inhibited the growth of 86.7% (26/30) of *E. faecalis* strains, which was in agreement with the results of the streak test (Fig. 1). On the other hand, when the phage density was reduced (i.e., MOI 10^{-4}), the number of *E*.

262	faecalis strains whose growth was inhibited was reduced (76.7%, 23/30 strains). The latter
263	23 strains largely represented growth pattern C, probably because the input phage titer was
264	much lower than that in the other phage mixture treatments. The seven remaining E .
265	faecalis strains that exhibited growth pattern D included the four phage mixture-insensitive
266	strains mentioned above and strains KUEF03 (ST3), KUEF19 (ST16), and KUEF30 (ST16).
267	In the current study, a correlation between growth patterns and STs was not observed
268	among the E. faecalis strains tested.
269	Based on these observations, we concluded that the phage mixture inhibited the
270	growth of 86.7% (26/30) of <i>E. faecalis</i> strains tested, when used at sufficiently high density
271	(i.e., MOI of at least 10^{-2}).
272	The effect of phage mixture on S. agalactiae and E. faecalis cell densities in
273	experimental enrichment cultures. Phage mixture may have been contaminated with this
274	anti-S. agalactiae agents during phage mixture preparation (i.e., during phage propagation
275	on the E. faecalis host). However, incubation of phage mixture with S. agalactiae did not
276	significantly affect bacterial viability, compared with a THB-treated negative control (Fig.
277	S1), excluding the possibility of phage mixture contamination with anti-S. agalactiae
278	substances.

279	The effects of phage mixture were then examined in co-cultures of E. faecalis and
280	S. agalactiae in the Granada-type enrichment broth. The rifampicin-resistant mutant clone
281	of strain KUGBS2, KUGBS2rif, was isolated. S. agalactiae strain KUGBS2rif and E.
282	faecalis strain KUEF08 were used to quantify viable bacterial individually. To mimic the
283	situation that S. agalctaie was poorly recovered, S. agalactiae strain KUGBS2rif and E.
284	faecalis strain KUEF08 were inoculated into GBwSM at 3.0×10^2 CFU/ml and 3.0×10^5
285	CFU/ml, respectively. Either of the two dilutions of phage mixture (at MOI of each phage
286	of 10^{-1} and 10^{-3} to <i>E. faecalis</i>) were added. As a negative control, THB was used instead of
287	the phage mixture.
288	Changes in bacterial cell density (total bacteria, S. agalactiae, and E. faecalis)
280	were then monitored over time (Fig. 3) Resed on the determined total bacteria numbers

were then monitored over time (Fig. 3). Based on the determined total bacteria numbers, bacteria grew exponentially for up to 12 h, following which the cultures entered the stationary phase of growth. Hence, 12–24-h incubation was sufficient to achieve bacterial enrichment in that particular experimental setting. Moreover, changes in *E. faecalis* and *S. agalactiae* cell densities were then evaluated. In the negative control group (i.e., no phage treatment), *E. faecalis* grew much better than *S. agalactiae*. In the phage treatment groups, the opposite was observed. After 12 and 24 h, in the phage treatment groups, cell density of

E. faecalis was significantly lower than that of *S. agalactiae* (P < 0.01).

297	Several types of enrichment broths are commercially available for S. agalactiae
298	culture test. In addition to the GBwSM medium, we also evaluated the effectiveness of
299	phage treatment of an <i>E. faecalis</i> and <i>S. agalactiae</i> co-culture in the commercially available
300	pigmented enrichment Lim broth (Fig. S2). The experiments were performed as described
301	above. Inhibition of <i>E. faecalis</i> growth, compared with the untreated group, was observed
302	in phage treatment groups at both MOIs of each phage tested (i.e., 1 and 10^{-2}) (Fig. S3).
303	This indicated that phage mixture inhibited E. faecalis growth and facilitated S. agalactiae
304	growth in both S. agalactiae enrichment broths.
305	Efficient detection of S. agalactiae after enrichment culturing in the presence
305 306	Efficient detection of <i>S. agalactiae</i> after enrichment culturing in the presence of phage mixture. In the <i>S. agalactiae</i> culture test, bacteria are generally identified in a
306	of phage mixture. In the S. agalactiae culture test, bacteria are generally identified in a
306 307	of phage mixture. In the <i>S. agalactiae</i> culture test, bacteria are generally identified in a culture aliquot after enrichment culture. Consequently, we then evaluated the efficiency of
306 307 308	of phage mixture. In the <i>S. agalactiae</i> culture test, bacteria are generally identified in a culture aliquot after enrichment culture. Consequently, we then evaluated the efficiency of <i>S. agalactiae</i> identification after the experimental enrichment culture. As the identification
306307308309	of phage mixture. In the <i>S. agalactiae</i> culture test, bacteria are generally identified in a culture aliquot after enrichment culture. Consequently, we then evaluated the efficiency of <i>S. agalactiae</i> identification after the experimental enrichment culture. As the identification assay, we used growth on the <i>S. agalactiae</i> chromogenic agar, in which <i>S. agalactiae</i>

313	added (at an MOI of each phage at 10^{-1} to <i>E. faecalis</i>), and the cultures incubated.
314	Enrichment culture aliquots were plated on chromogenic agar, and the resultant colony
315	appearance evaluated (Fig. 4). After enrichment of all phage-treated S. agalactiae-E.
316	faecalis sets, S. agalactiae colonies were dominant on the agar plates. By contrast, in
317	enrichment cultures without phage treatment, only few S. agalactiae colonies were
318	observed on the chromogenic agar, while E. faecalis colonies were dominant. The same
319	experiment was performed using the modified Lim broth and several S. agalactiae-E.
320	faecalis combinations (Fig. S4). The data were in agreement with observations made using
321	the GBwSM medium. Thus, the phage mixture treatment improved the S. agalactiae
322	culture test by inhibiting the undesirable growth of <i>E. faecalis</i> , even when the initial <i>E</i> .
323	faecalis cell density was as high 10^5 CFU/ml.
324	Phage application potential in the clinical setting. In the current study, we
325	showed that a specific phage mixture effectively inhibited the growth of <i>E. faecalis</i> in an <i>S</i> .
326	agalactiae culture test in the experimental setting. Before reagent manufacture and clinical
327	application, phage composition in the phage mixture, the usage per assay (i.e., volume and

328 phage density), storage of the phage mixture, and production cost should be optimized.

329

As a first consideration, strains insensitive to the phage mixture may occur at a

330	higher than expected rate in the clinical setting. To address this issue, phage sensitivity of E .
331	faecalis strain should be constantly examined. The effective spectrum of phages in a
332	mixture can be modified by replacing and/or adding other phages, including newly-isolated
333	phages, naturally-evolved phages, and/or genetically-modified phages (29, 30). E.g., by
334	adding six newly isolated phages to the phage mixture developed in the current study, we
335	increased the inhibition efficiency among the tested E. faecalis strains to 96.7% (29/30)
336	(data not shown). Hence, updating the composition of the phage mixture will help to
337	address the problem associated with the phage-insensitive strains.
338	Next, we considered the usage per assay. Assuming that the volume of the
339	enrichment broth is ca. 3–4 ml, a drop of phage mixture suspension (i.e., 30–50 μ l of a
340	solution of ca. 1.0×10^7 PFU/ml of each phage) would suffice for an assay. Such usage per
341	assay is in line with the usage of phage mixture in experiments performed in the current
342	study (Fig. 4). Thus, phage mixture complies with the usage expected in a clinical setting.
343	Moreover, the quality of the phage mixture should be guaranteed to allow its
344	commercialization. Phages are generally stable at 4°C in culture media for a certain period
345	of time (31, 32), which suggests that phage products can be distributed on a market-scale
346	using the cold chain. Accordingly, we examined the infectious density of each phage

347	solution during storage at 4°C for 270 d, and we did not observe any substantial reduction
348	in phage particle density during this time period (Fig. S5). Shelf life of culture medium is
349	generally up to 6 months (33), and no loss in sensitivity in S. agalactiae enrichment broths
350	were observed after at least 4 months (34). Thus, the stability of the phage mixture
351	appeared to be in line with the storage of the enrichment broths.
352	Finally, the use of phage mixture should be cost-effective. Phage production on a
353	bioreactor-scale has been recently investigated because of increased interest in phage
354	therapy. Consequently, the cost of phage production is estimated to be 4.4×10^{-13} /phage
355	particle (35-37). Hence, the calculated cost of phage mixture per assay in the current study
356	is only $$2.2 \times 10^{-7}$ ($$4.4 \times 10^{-13}$ /phage particle multiplied by the number of phage particles
357	in the mixture, i.e., 1.0×10^7 PFU/ml $\times 50$ µl). Several commercial phage companies have
358	been founded worldwide (38). Thus, phage mixture may, in theory, be produced for the S.
359	agalactiae culture test in a cost-effective manner.

After commercialization of the phage mixture, special attention should be devoted to the biological characteristics of phages to avoid laboratory accidents, since phage products are not commonly used in the clinical microbiology. Phages multiply exponentially and exceed bacterial growth, which might lead to phage contamination and

364	interference with E. faecalis culture tests in a clinical laboratory. To avoid such accidents,
365	appropriate safety precautions should be instated when preparing to use phage products.
366	These can include change of gloves after usage, aseptic handling at a specified bench, and
367	storage in a specific cabinet (39). We believe that that the phage mixture satisfies the usage
368	in terms of application volume and density, as long as the knowledge and safety precautions
369	for phage products are disseminated and implemented.
370	Considering the above, we anticipate that the phage mixture will become
371	commercially available for S. agalactiae enrichment broths in the future and will be used in
372	the clinical setting.
373	
374	ACKNOWLEDGMENTS
375	We thank Mr. Takuya Nakajima and Ms. Mio Sasaki (School of Veterinary
376	Medicine, Azabu University, Kanagawa, Japan) for support in performing the experiments.
377	This research was partially supported by research project grants awarded by the Azabu
378	University Research Services Division. All the authors significantly contributed to the work.
379	There are no conflicts of interest to declare.
380	

381 **REFERENCES**

- 382 1. Morgan JA, Cooper DB. 2018. Pregnancy, Group B Streptococcus. StatPearls
- 383 Publishing, Treasure Island, FL [updated 11 February, 2018].
- 2. Edmond KM, Kortsalioudaki C, Scott S, Schrag SJ, Zaidi AK, Cousens S, Heath PT.
- 385 2012. Group B streptococcal disease in infants aged younger than 3 months:
- 386 systematic review and meta-analysis. Lancet 379:547–556.
- 387 3. Cagno CK, Pettit JM, Weiss BD. 2012. Prevention of perinatal group B
- 388 streptococcal disease: updated CDC guideline. Am Fam Physician 86:59–65.
- 389 4. Rosa-Fraile M, Spellerberg B. 2017. Reliable detection of group B *Streptococcus* in
- 390 the clinical laboratory. J Clin Microbiol 55:2590–2598.
- 391 5. Dunne WM, Jr., Holland-Staley CA. 1998. Comparison of NNA agar culture and
- 392 selective broth culture for detection of group B streptococcal colonization in women.
- 393 J Clin Microbiol 36:2298–2300.
- 6. Park CJ, Vandel NM, Ruprai DK, Martin EA, Gates KM, Coker D. 2001. Detection
- of group B streptococcal colonization in pregnant women using direct latex
 agglutination testing of selective broth. J Clin Microbiol 39:408–409.
- 397 7. Binghuai L, Yanli S, Shuchen Z, Fengxia Z, Dong L, Yanchao C. 2014. Use of

398		MALDI-TOF mass spectrometry for rapid identification of group B Streptococcus
399		on chromID Strepto B agar. Int J Infect Dis 27:44–48.
400	8.	Baden M, Higashiyama T, Ikemoto T, Okada Y. 2016. Evaluation of direct latex
401		agglutination of selective broth for detection of group B streptococcal carriage in
402		pregnant women. J Japn Soc Clin Microbiol 26:7–13.
403	9.	Kurtböke D. 2005. Actinophages as indicators of actinomycete taxa in marine
404		environments. Antonie Van Leeuwenhoek 87:19–28.
405	10.	Muldoon MT, Teaney G, Li J, Onisk DV, Stave JW. 2007. Bacteriophage-based
406		enrichment coupled to immunochromatographic strip-based detection for the
407		determination of Salmonella in meat and poultry. J Food Prot 70:2235–2242.
408	11.	Khalifa L, Coppenhagen-Glazer S, Shlezinger M, Kott-Gutkowski M, Adini O,
409		Beyth N, Hazan R. 2015. Complete genome sequence of Enterococcus
410		bacteriophage EFLK1. Genome Announc 3:pii:e01308-15.
411	12.	Uchiyama J, Rashel M, Maeda Y, Takemura I, Sugihara S, Akechi K, Muraoka A,
412		Wakiguchi H, Matsuzaki S. 2008. Isolation and characterization of a novel
413		Enterococcus faecalis bacteriophage phiEF24C as a therapeutic candidate. FEMS
414		Microbiol Lett 278:200–206.

415	13.	Khalifa L, Gelman D, Shlezinger M, Dessal AL, Coppenhagen-Glazer S, Beyth N,
416		Hazan R. 2018. Defeating antibiotic- and phage-resistant Enterococcus faecalis
417		using a phage cocktail in vitro and in a clot model. Front Microbiol 9:326.
418	14.	Uchiyama J, Rashel M, Takemura I, Wakiguchi H, Matsuzaki S. 2008. In silico and
419		in vivo evaluation of bacteriophage phiEF24C, a candidate for treatment of
420		Enterococcus faecalis infections. Appl Environ Microbiol 74:4149–4163.
421	15.	Uchiyama J, Takemura I, Satoh M, Kato S, Ujihara T, Akechi K, Matsuzaki S,
422		Daibata M. 2011. Improved adsorption of an Enterococcus faecalis bacteriophage
423		phiEF24C with a spontaneous point mutation. PLoS One 6:e26648.
424	16.	de la Rosa M, Perez M, Carazo C, Pareja L, Peis JI, Hernandez F. 1992. New
425		Granada Medium for detection and identification of group B streptococci. J Clin
426		Microbiol 30:1019–1021.
427	17.	Heelan JS, Struminsky J, Lauro P, Sung CJ. 2005. Evaluation of a new selective
428		enrichment broth for detection of group B streptococci in pregnant women. J Clin
429		Microbiol 43:896–897.
430	18.	Nasukawa T, Uchiyama J, Taharaguchi S, Ota S, Ujihara T, Matsuzaki S, Murakami
431		H, Mizukami K, Sakaguchi M. 2017. Virus purification by CsCl density gradient

432		using general centrifugation. Arch Virol 162:3523–3528.
433	19.	Tanizawa Y, Fujisawa T, Nakamura Y. 2018. DFAST: a flexible prokaryotic genome
434		annotation pipeline for faster genome publication. Bioinformatics 34:1037–1039.
435	20.	Tanizawa Y, Fujisawa T, Kaminuma E, Nakamura Y, Arita M. 2016. DFAST and
436		DAGA: web-based integrated genome annotation tools and resources. Biosci
437		Microbiota Food Health 35:173–184.
438	21.	Ruiz-Garbajosa P, Bonten MJ, Robinson DA, Top J, Nallapareddy SR, Torres C,
439		Coque TM, Cantón R, Baquero F, Murray BE, del Campo R, Willems RJ. 2006.
440		Multilocus sequence typing scheme for Enterococcus faecalis reveals
441		hospital-adapted genetic complexes in a background of high rates of recombination.
442		J Clin Microbiol 44:2220–2228.
443	22.	Jolley KA, Maiden MC. 2010. BIGSdb: scalable analysis of bacterial genome
444		variation at the population level. BMC Bioinformatics 11:595.
445	23.	Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics
446		analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.
447	24.	Vijayakumar PP, Muriana PM. 2015. A microplate growth inhibition assay for
448		screening bacteriocins against Listeria monocytogenes to differentiate their

449		mode-of-action. Biomolecules 5:1178–1194.
450	25.	Kanda Y. 2013. Investigation of the freely available easy-to-use software "EZR" for
451		medical statistics. Bone Marrow Transplant 48:452–458.
452	26.	Lefkowitz EJ, Dempsey DM, Hendrickson RC, Orton RJ, Siddell SG, Smith DB.
453		2018. Virus taxonomy: the database of the International Committee on Taxonomy of
454		Viruses (ICTV). Nucleic Acids Res 46:D708–D717.
455	27.	Klumpp J, Lavigne R, Loessner MJ, Ackermann HW. 2010. The SPO1-related
456		bacteriophages. Arch Virol 155:1547–1561.
457	28.	Nes IF, Diep DB, Holo H. 2007. Bacteriocin diversity in Streptococcus and
458		Enterococcus. J Bacteriol 189:1189–1198.
459	29.	Ando H, Lemire S, Pires DP, Lu TK. 2015. Engineering modular viral scaffolds for
460		targeted bacterial population editing. Cell Syst 1:187–196.
461	30.	Koskella B, Brockhurst MA. 2014. Bacteria-phage coevolution as a driver of
462		ecological and evolutionary processes in microbial communities. FEMS Microbiol
463		Rev 38:916–931.
464	31.	Ackermann H, Tremblay D, Moineau S. 2004. Long-term bacteriophage
465		preservation WFCC Newsl 38:35–40.

28

466	32.	Lobocka MB,	Glowacka A,	Golec P.	2018.	Methods	for	bacteriopha	age	preservatior	1
-----	-----	-------------	-------------	----------	-------	---------	-----	-------------	-----	--------------	---

- 467 Methods Mol Biol 1693:219–230.
- 468 33. Ulisse S, Peccio A, Orsini G, Di Emidio B. 2006. A study of the shelf-life of critical
- 469 culture media. Vet Ital 42:237–247.
- 470 34. Carvalho Mda G, Facklam R, Jackson D, Beall B, McGee L. 2009. Evaluation of
- 471 three commercial broth media for pigment detection and identification of a group B

472 *Streptococcus (Streptococcus agalactiae)*. J Clin Microbiol 47:4161–4163.

- 473 35. Agboluaje M, Sauvageau D. 2018. Bacteriophage production in bioreactors.
- 474 Methods Mol Biol 1693:173–193.
- 475 36. Krysiak-Baltyn K, Martin GJO, Gras SL. 2018. Computational modeling of
- 476 bacteriophage production for process optimization. Methods Mol Biol 1693:195–
 477 218.
- 478 37. Krysiak-Baltyn K, Martin GJO, Gras SL. 2018. Computational modelling of large
 479 scale phage production using a two-stage batch process. Pharmaceuticals (Basel)
 480 11:pii:E31.
- 481 38. Forde A, Hill C. 2018. Phages of life the path to pharma. Br J Pharmacol 175:412–
 482 418.

29

483	39.	Los M, Czyz A, Sell E, Wegrzyn A, Neubauer P, Wegrzyn G. 2004. Bacteriophage
484		contamination: is there a simple method to reduce its deleterious effects in
485		laboratory cultures and biotechnological factories? J Appl Genet 45:111-120.
486		
487		

488 Figure legends

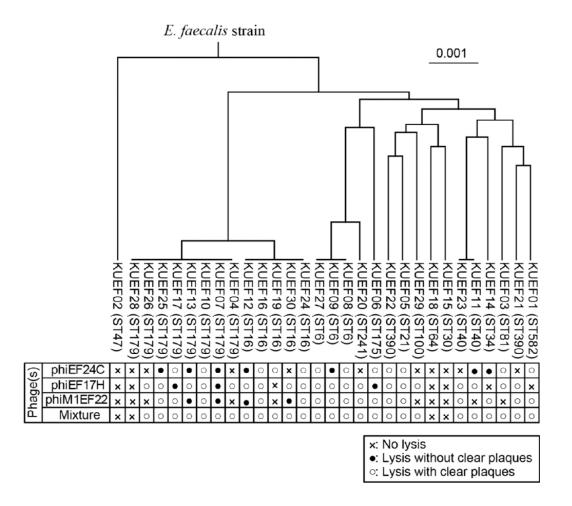

489

FIG 1 E. faecalis strains isolated from vaginal swabs and their sensitivity to phages. 490 491 Phylogenetic tree of *E. faecalis* strains was constructed based on the concatenated MLST 492 alleles. In the phylogenetic tree, *E. faecalis* strain names are followed by STs in brackets. 493 Phage sensitivities to each phage and phage mixture are shown below the phylogenetic tree. 494 FIG 2 Effects of phage mixture treatment on E. faecalis growth in GBwSM. (A) Four 495 496 growth patterns of E. faecalis strains treated with phage mixture. E. faecalis strains were 497 treated, or not, with the phage mixture, and culture turbidities were evaluated by measuring 498 optical density at 595 nm (OD595) over time. Thirty E. faecalis strains isolated from 499 vaginal swabs, described in Fig. 1, were individually tested. The growth curves were 500 graphed using means and standard deviations from triplicate experiments. The growth 501 curves of phage-treated *E. faecalis* strains were categorized into four types, patterns A–D, 502 after comparing with the growth curves of untreated E. faecalis strains. For the growth 503 patterns A–C, phage treatments with all tested phage dilutions inhibited *E. faecalis* growth 504 compared with the negative control (i.e., no phage treatment). In growth pattern D, phage

505	mixture did not inhibit bacterial growth. The representative growth curves were presented:
506	pattern A, strain EF08 treated with phage mixture at MOI of each phage to <i>E. faecalis</i> at 1;
507	pattern B, strain EF22 treated with phage mixture at MOI of each phage to E. faecalis at
508	10^{-2} ; pattern C, strain EF05 treated with phage mixture at MOI of each phage to <i>E. faecalis</i>
509	at 10^{-4} ; pattern D, strain EF02 treated with phage mixture at MOI of each phage to E.
510	faecalis at 1. (B) Summary of the effect of phage mixture treatments on E. faecalis growth
511	when three different phage mixture dilutions were tested. Phage densities (MOI) for each
512	phage type were 1, 10^{-2} , or 10^{-4} . <i>E. faecalis</i> growth patterns were classified based on the <i>E</i> .
513	faecalis growth patterns described in Fig. 2A, and are summarized as cumulative bar
514	graphs.
515	
516	FIG 3 Growth of E. faecalis and S. agalactiae co-cultures in the presence or absence of

FIG 3 Growth of *E. faecalis* and *S. agalactiae* co-cultures in the presence or absence of phage mixtures in GBwSM. No phage treatment (A); or treatment with phages at 10^{-3} at (B) or 10^{-1} (C) MOI of each phage to *E. faecalis*. The means with standard deviations were calculated from triplicate experiments, and are plotted as points with error bars. Time points at which *S. agalactiae* density was significantly higher than that of *E. faecalis* are indicated by asterisks (P < 0.01; Student's *t*-test).

523	FIG 4 Bacterial identification on chromogenic agar after experimental enrichment
524	co-culture of S. agalactiae and E. faecalis. Combinations of single strains of E. faecalis and
525	S. agalactiae were used to inoculate GBwSM, and were cultured in the presence of the
526	phage mixture (MOI of each phage to <i>E. faecalis</i> : 10 ⁻¹) or THB. After enrichment culture,
527	aliquots were spread on the chromogenic agar, and the resultant bacterial colonies were
528	evaluated. Colonies of S. agalactiae and E. faecalis are red and blue, respectively. Left and
529	right panels, photographs of chromogenic agar plates inoculated with enriched cultures
530	treated with THB or phage mixtures, respectively. Representative data for three out of five
531	S. agalactiae-E. faecalis sets are shown, namely, KUGBS2-KUEF08 (A), KUGBS1-
532	KUEF24 (B), and KUGBS6–KUEF26 (C).

FIG 1 *E. faecalis* strains isolated from vaginal swabs and their sensitivity to phages. Phylogenetic tree of *E. faecalis* strains was constructed based on the concatenated MLST alleles. In the phylogenetic tree, *E. faecalis* strain names are followed by STs in brackets. Phage sensitivities to each phage and phage mixture are shown below the phylogenetic tree.

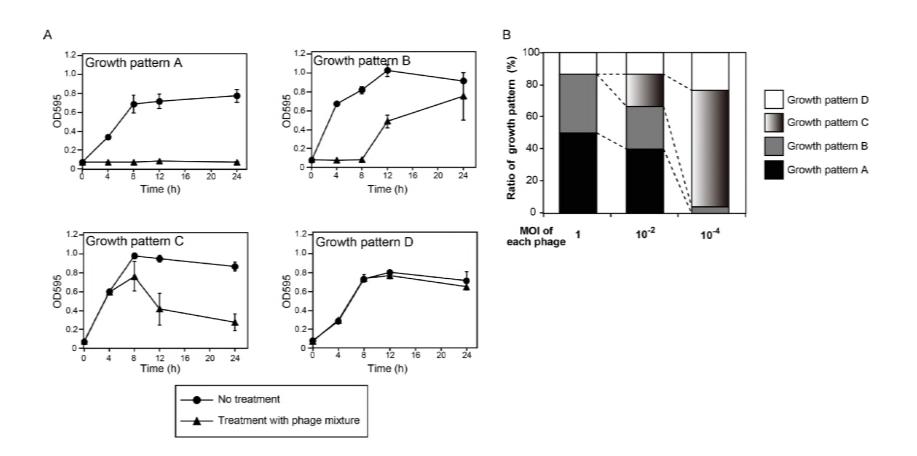
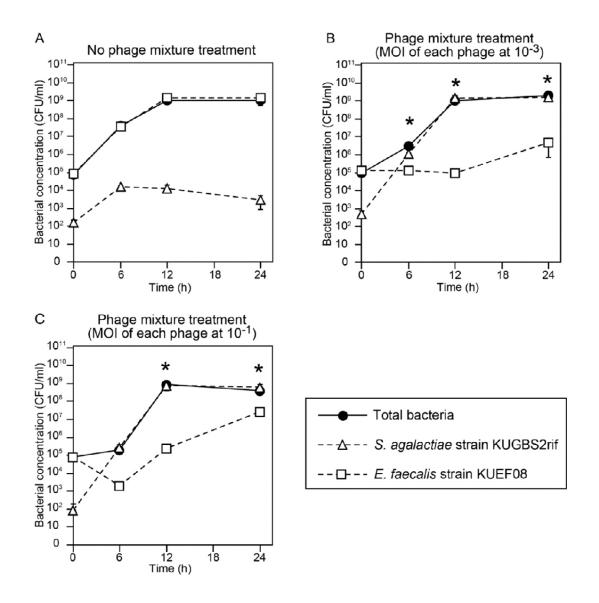
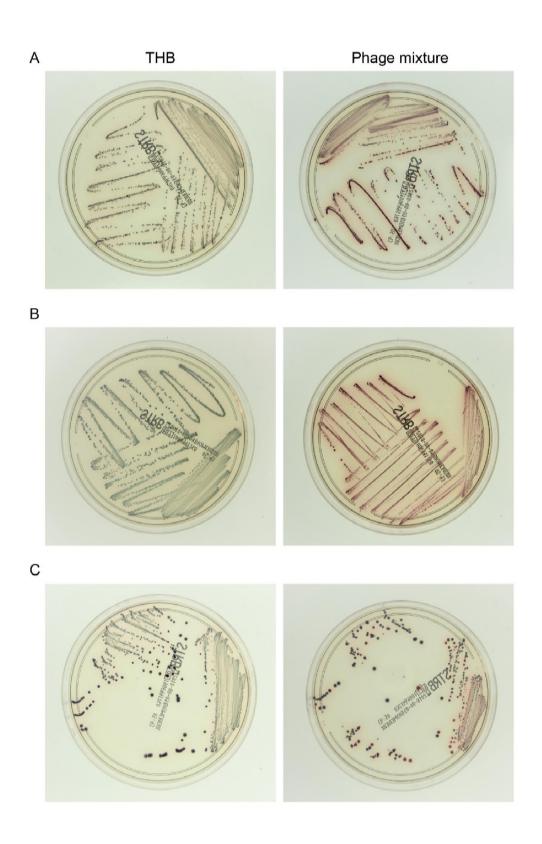




FIG 2 Effects of phage mixture treatment on *E. faecalis* growth in GBwSM. (A) Four growth patterns of *E. faecalis* strains treated with phage mixture. *E. faecalis* strains were treated, or not, with the phage mixture, and culture turbidities were evaluated by measuring optical

density at 595 nm (OD595) over time. Thirty *E. faecalis* strains isolated from vaginal swabs, described in Fig. 1, were individually tested. The growth curves were graphed using means and standard deviations from triplicate experiments. The growth curves of phage-treated *E. faecalis* strains were categorized into four types, patterns A–D, after comparing with the growth curves of untreated *E. faecalis* strains. For the growth patterns A–C, phage treatments with all tested phage dilutions inhibited *E. faecalis* growth compared with the negative control (i.e., no phage treatment). In growth pattern D, phage mixture did not inhibit bacterial growth. The representative growth curves were presented: pattern A, strain EF08 treated with phage mixture at MOI of each phage to *E. faecalis* at 1; pattern B, strain EF22 treated with phage mixture at MOI of each phage to *E. faecalis* at 1. (B) Summary of the effect of phage mixture treatments on *E. faecalis* growth when three different phage mixture dilutions were tested. Phage densities (MOI) for each phage type were 1, 10⁻², or 10⁻⁴. *E. faecalis* growth patterns were classified based on the *E. faecalis* growth patterns described in Fig. 2A, and are summarized as cumulative bar graphs.

FIG 3 Growth of *E. faecalis* and *S. agalactiae* co-cultures in the presence or absence of phage mixtures in GBwSM. No phage treatment (A); or treatment with phages at 10^{-3} at (B) or 10^{-1} (C) MOI of each phage to *E. faecalis*. The means with standard deviations were calculated from triplicate experiments, and are plotted as points with error bars. Time points at which *S. agalactiae* density was significantly higher than that of *E. faecalis* are indicated by asterisks (P < 0.01; Student's *t*-test).

FIG 4 Bacterial identification on chromogenic agar after experimental enrichment coculture of *S. agalactiae* and *E. faecalis*. Combinations of single strains of *E. faecalis* and *S. agalactiae* were used to inoculate GBwSM, and were cultured in the presence of the phage mixture (MOI of each phage to *E. faecalis*: 10⁻¹) or THB. After enrichment culture, aliquots were spread on the chromogenic agar, and the resultant bacterial colonies were evaluated. Colonies of *S. agalactiae* and *E. faecalis* are red and blue, respectively. Left and right panels, photographs of chromogenic agar plates inoculated with enriched cultures treated with THB or phage mixtures, respectively. Representative data for three out of five *S. agalactiae–E. faecalis* sets are shown, namely, KUGBS2–KUEF08 (A), KUGBS1–KUEF24 (B), and KUGBS6–KUEF26 (C).