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ABSTRACT 

The clock of life ticks as fast as how efficiently proteins could perform their functional dynamics. 

Protein complexes execute functions via several large-scale intrinsic motions across multiple 

conformational states, which occur at a timescale of nano- to milliseconds for well-folded proteins. 

Computationally expensive molecular dynamics (MD) simulation has been the only theoretical 

tool to time and size these motions, though barely to their slowest ends. Here, we convert a simple 

elastic network model (ENM), which takes a few seconds (ubiquitin) to hours (ribosome) for the 

analysis, into a molecular timer and sizer to gauge the slowest functional motions of proteins. 

Quasi-harmonic analysis, fluctuation-profile matching (FPM) and the Wiener–Khintchine theorem 

(WKT) are used to define the “time-periods”, t, for anharmonic principal components (PCs) which 

are validated by NMR order parameters. The PCs with their respective “time-periods” are mapped 

to the eigenvalues (λENM) of the corresponding ENM modes. Thus, the power laws t(ns) = 

86.9λENM
-1.9 and σ2(Å2) = 46.1λENM

-2.5 are established allowing the characterization of the time 

scales of Nuclear Magnetic Resonance (NMR)-solved conformers, crystallographic anisotropic 

displacement parameters, and important ribosomal motions, as well as motional sizes of the latter. 
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INTRODUCTION 

The magnitude of protein functional motions for folded proteins (or ‘equilibrated’ proteins) 

modulate the rates of their underlying physiological processes1. In principle, the wider the 

conformational spread is, the longer the time it takes. Such a relation is readily realized by analyses 

of a short molecular dynamics (MD) trajectory. Despite the tremendous software/hardware 

progress made to accelerate the simulations2–6, it still requires weeks, if not months, to unravel the 

conformational spreads and time scales of fully solvated proteins/complexes with the hope that 

relevant functional motions can be resolved within the length of the simulations. 

  

On the other hand, computationally cheap (taking seconds to minutes) elastic network models 

(ENMs) have been widely used to study the relative span (variance) of spatial distributions of 

atoms and predict conformational changes for two decades7–10. These physically intuitive models 

have been used to study vibrational dynamics of all the proteins/supramolecules11,12 in Protein 

Data Bank (PDB) where the "directions" of proteins' conformational changes as observed by x-ray 

crystallography have been satisfactorily reproduced in hundreds of applications and in database-

wide studies13,14 (see the caption in Figure 1). However, the absolute time scales and variances of 

functional modes cannot be directly assessed by ENM due to its harmonic approximation. 

Functional modes, particularly, involve motions at large scales, wherein proteins traverse across 

multiple intermediate states (corresponding to local traps in the energy landscape; see the left and 

middle in Figure 1), and therefore are anharmonic in nature15–17. In other words, the true challenge 

lies on how to properly define the “time periods” of these anharmonic modes, which cannot be 

simply inferred from the length of the simulation (a small protein can travel several times on a 
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given normal mode in a long MD simulation). Once defined, efficient and accurate methods are 

needed to predict the “time periods” and absolute variances of these anharmonic modes. 

 

 

Figure 1. Time scales versus anharmonicity of the modes. The blue and green curves indicate 

the real and harmonically approximated energy landscapes, respectively. The slower the modes 

are, the larger the deviations from a simple harmonic approximation of the energy landscape 

(equivalently stated as having enriched anharmonicity15–17). ENM-approximated harmonic energy 

landscape forms an “envelope” that outlines the real anharmonic energy landscape14 (to the left in 

Figure 1), which explains the observed correspondence between the theoretically predicted and 

experimentally characterized “directions” of conformational changes. However, the time scales 

and absolute spatial span of the modes, among the slowest and often functional, cannot be 

satisfactorily assessed given the harmonic approximation, which motivated us to design the current 

method to address the issue. The time scale estimated using the Intensity Weighted Period (IWP) 

method is introduced in this work (see below). 
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In this study, we designed a novel approach using the Wiener–Khintchine theorem (WKT)18 to 

define the “time period” for every principal component (PC) mode derived from PC analysis 

(PCA) of a long MD trajectory (Figure 2)15,19,20. To better describe a dynamics variable (e.g., order 

parameters), we identify a combination of PC modes whose fluctuation profile matches the 

variable the best (Figure 3) such that the time scale (see Figure S1) of this dynamics variable can 

be indicated by the lowest PC mode among this set of modes. By analyzing several simulation 

trajectories of different lengths (120 to 600 ns) while gradually removing the slowest end of the 

spectrum, we obtain an estimated profile of order parameters that best agrees with the experimental 

ones21. The slowest end of the remaining PC modes infers a time period of 0.7 and 2.3 ns which 

clearly agrees with previously reported time ranges. Similarly, we determined the time scales for 

anisotropic displacement parameters (ADPs)22 and the spatial spread of NMR-solved conformers23 

(Figure 3). From the theoretical end, through mapping the ENM modes to corresponding 

(an)harmonic PC modes and their WKT-inferred “time periods”, we assign a time and size (σ2) to 

each ENM mode (Figure 4) and obtain two power laws for the time scales and size of the modes, 

respectively, with respect to their eigenvalues. The newly established power laws thus turn ENM 

into a molecular timer and sizer, which, as showcased below, could temporally and spatially 

resolve the ratcheting, L1 stalk closing and head swiveling motions of the ribosome. 
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Figure 2. Defining the time scale of the first PC mode using the three methods. The profile of 

the autocorrelation function for the third PC mode, derived from PCA of a 600-ns simulation of 

ubiquitin (PDB ID: 1UBQ) and Wiener–Khintchine theorem (eq 3), is plotted. Three time 

constants τc = 2.34 ns (indicated by the black solid arrow), τr = 2.79 ns (red hollow arrow; obtained 

using fitting in the time domain) and τw = 40.45 ns (blue shaded arrow) that characterize the 

exponential decay of the autocorrelation function 𝐶(𝑡) = 𝐴 exp (−𝑡/𝜏𝑟), characteristic time such 

that 𝜏𝑐 =  ∑ 𝐶(𝑡𝑖)Δ𝑡𝑀
𝑖=1 /𝐶(0) and IWP of the power spectrum that is 𝜏𝑤 = 2𝜋 ∑ 𝑆(𝜔𝑖)

𝑀
𝑖=1 𝜔𝑖

−1/

∑ 𝑆(𝜔𝑗)𝑀
𝑗=1 , respectively, are used to describe the vibrational relaxation process that mimics a 

damped harmonic oscillator. In addition, because the Fourier transform of an exponential function 

is a Lorentzian function24, we can also obtain τr from fitting the entire power spectrum using a 

Lorentzian function. However, the resulting τr is much smaller than τc with a fitting correlation 

close to zero (data not shown). (Inset) Theoretical profile of one particle oscillating in an 

underdamped regime. The equation comparatively shows the equivalent decay and oscillation rate 

of the autocorrelation function. The vertical arrow indicates the time period, which in this 

illustrative example is 2π/5.
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METHODS 

 

MD simulations 

Detailed simulation protocols have been previously reported25. Briefly, MD simulations were 

performed using the PMEMD module of AMBER 10. The ff99SB force field26 was used for the 

protein. The TIP3P model was used, and the distance between the outer most protein atom and the 

closest simulation box face in the initial setup was 20 Å. The system was brought to 

thermodynamic equilibrium at 300 K and 1 atm using a weak coupling thermostat and a barostat. 

The equations of motion were integrated with a time step of 2 fs. The long-range Coulomb energy 

was evaluated using the particle mesh Ewald (PME) method. MD simulation was conducted for 

600 ns, and protein configurations were recorded every 0.1 ps for the analysis.  
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RESULTS AND DISCUSSION 

 

Determining the time scales of the slowest anharmonic modes. 

To estimate the true time scale of a PC mode, we first performed a 600-ns MD simulation for the 

76 amino acid signaling protein, ubiquitin27 (PDB ID: 1UBQ). PCA analysis20 was carried out on 

the trajectory of the first 72 residues of ubiquitin which are not intrinsically disordered. In short, 

the covariance matrix, <∆R∆RT>, is constructed using a deviation matrix Q and decomposed into 

its corresponding eigenvalues and eigenvectors such that: 

 

< ∆𝐑∆𝐑T > = (𝑀 − 1)−1𝐐𝐐𝑇 = 𝐕𝚲𝐕𝑻                                 

(1) 

  

∆R is the 3N-dimensional deviation vector, and Q is the 3N  M matrix, where N and M are, 

respectively, the number of protein atoms in the analysis and the number of snapshots. Each 

column in Q represents the deviation of a given snapshot from the mean structure, while each 

element in that column is the deviation of a given atom in the x-, y- or z-dimension. V3N3N is the 

eigenvector matrix containing 3N eigenvectors (or principal components, PCs), each of which is 

3N-dimensional. 𝚲 is the 3N  3N diagonal matrix of rank-ordered eigenvalues (from large to 

small). 

 

The snapshots were projected onto all the PCs15,20 to constitute a projection matrix U3NM as 
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𝐔 = 𝐕𝑻𝐐  

(2) 

 

where the row k in U, uk = [uk,0, uk,1, …, uk,M-1], contains the projections of M snapshots onto a 

given PC eigenvector Vk for the k’th PC mode. Each snapshot of the protein structure is a scalar 

value (PC mode coordinate) on the mode k. 

 

M snapshots projected on mode k together with padded M zeros result in a projection series 

𝑢𝑘(𝑠) = {𝑢𝑘0, 𝑢𝑘1, … 𝑢𝑘𝑀−1, 0𝑀, 0𝑀+1 … 02𝑀−1}, based on which the autocorrelation function for 

the mode k is calculated as follows. Let 𝑢�̃�(𝜔) = {𝑢𝑘0̃, 𝑢𝑘1,̃ … 𝑢𝑘2𝑀−1̃ } be the Fourier transform 

of 𝑢𝑘(𝑠) , and the spectral density of the process 𝑢𝑘(𝑠)  can be defined as 𝑆𝑘(𝜔) =

 {|𝑢𝑘0̃|2, |𝑢𝑘1̃|2, … |𝑢𝑘2𝑀−1̃ |2}. According to the Wiener–Khintchine theorem18, the autocorrelation 

function of 𝑢𝑘(𝑠), 𝐶𝑘(𝑡), can be calculated as the inverse Fourier transform of the spectral density 

𝑆𝑘(𝜔) such that 

 

𝐶𝑘(𝑡) = < 𝑢𝑘(𝑠)𝑢𝑘(𝑡 + 𝑠) > =  
1

2𝑀
∑ 𝑆𝑘(𝑓)

2𝑀−1

𝑓=0

𝑒
2𝜋𝑖𝑓𝑡

2𝑀  

(3) 

 

where, 𝑓 = 𝜔/2𝜋 is the frequency. The mathematical and computational implementation details 

are provided in the Supporting Information. 
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Figure 2 shows that the 𝐶3(𝑡) of the third PC mode, where 𝐶3(0) is unity (after normalization) at 

time zero, drops to where there are negative correlations and rises back above zero before 

eventually vanishing in an oscillatory manner. Most of the slowest modes demonstrate such a 

behavior, which can be approximated as a harmonic oscillator in underdamped regimes (illustrated 

in the inset of Figure 2). Our purpose here is to define a reasonable “time period” for such a 

process, which will be inferred as the time scale (or “one period”) of mode k. 

 

We initiated three attempts to define the time period of the PC mode. For the first one, we 

approximated the relaxation of 𝐶(𝑡) from unity to zero (the first time it hits a value barely larger 

than zero) as an exponential decay with a relaxation time constant of τr. Because the Fourier 

transform of an exponential function is a Lorentzian function24, we can also obtain τr from fitting 

the entire power spectrum using a Lorentzian function, in contrast with fitting 𝐶(𝑡) within a 

limited time range [when 𝐶(𝑡) > 0]. For the second method, we define the characteristic time 

constant τc, as the integration of 𝐶(𝑡) over the simulation time divided by 𝐶(0) which is equal to 

τr if 𝐶(𝑡) is indeed an exponentially decaying function. For the third attempt, we simply take the 

intensity-weighted average of the periods in the power spectrum of 𝑆(ω) such that: 

 

𝜏𝑤,𝑘 =   
2𝜋 ∑ 𝑆𝑘(𝜔𝑖)𝜔𝑖

−1𝑀
𝑖=1

∑ 𝑆𝑘(𝜔𝑖)
𝑀
𝑖=1

 

(4) 

 

where 𝑆𝑘(𝜔𝑖)  is the intensity (or “weight”) for the frequency component ωi (ωi
-1 is its 

corresponding period). As shown in Figure 2, τw, the intensity-weighted period (IWP), reaches a 

time scale where the 𝐶(𝑡) is close to the peak of the first wave, resembling a time period of a 
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damped oscillator, while neither relaxation time τr (obtained from the fitting in both time and 

frequency domains) nor characteristic time τc covers the time span for a period of an approximated 

damped oscillator. Other slow modes behave similarly to the PC mode 3, while in the fast modes, 

τw, τr and τc characterize a very fast decay in 𝐶(𝑡) and have similar values. The comparison of time 

scales determined using these three methods for all PC modes are shown in Figure S1. Therefore, 

we choose τw to describe the time scale of a PC mode derived from the MD trajectories. 

 

Determining the time scales of experimentally observed dynamical variables 

The spatial distribution of every residue (or every atom) in a protein near its folded (equilibrated) 

state can be observed by Cα RMSF of a NMR-resolved structural ensemble20, NMR order 

parameters21 and x-ray crystallographical anisotropic displacement parameters (ADPs)22. Plotting 

the dynamical value for each residue against its residue index results in so-called “observed 

fluctuation profiles” (oFPs) (Figure 3, top, black circles). Every residue has one magnitude of 

RMSF, one order parameter and 6 ADP values (including variance xx-, yy-, zz- and covariance 

xy-, yz- and xz- components22). Concurrently, we derive the theoretical counterparts of these 

measured variables from a MD snapshot-derived covariance matrix, <∆R∆RT>MD,k, comprising all 

the PC modes ≥ kth mode (lower PC modes have larger variance) 

 

< ∆𝐑∆𝐑𝑻 >𝑀𝐷,𝑘 = ∑ 𝜆𝑎𝐕𝑎𝐕𝑎
𝑻

3𝑁−6

𝑎=𝑘

 

(5) 
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where Va is the eigenvector with its corresponding eigenvalue, a, taken from the diagonal of  in 

eq 1 for the a’th PC mode. 

 

Next, we seek the optimal k where the profile derived from <∆R∆RT>MD,k has the best agreement 

with the oFPs by having the highest Pearson’s correlation coefficient (p)
28. After finding the best 

k via fluctuation profile matching (FPM), τw,k of the PC mode k is assigned to the observed 

dynamical variable, as its estimated time scale. 

 

For instance, we can take an ensemble of 32 NMR-determined conformers (PDB ID: 1G6J) and 

form a Cα-only 3N3N covariance matrix (see Supporting Information). Then, we sum the x-, 

y- and z-components for each residue from the diagonal in the covariance matrix to obtain an 

RMSF profile shown in Figure 3a, top. There are 210 (3N – 6 = 210) RMSFMD,k profiles, each 

calculated using all the PC modes ≥ kth mode. Among the 210 RMSF profiles, RMSFMD,k=25 has 

the highest correlation (0.69) with RMSFexp. Thereby, we claim that the spatial spread of this NMR 

ensemble takes place within the time scale of about τw,k=25 = 9.32 ns (Figure 3a, middle and 

bottom). 
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Figure 3. Time scale mapping for different experimental data that characterize protein 

dynamics. The first rows for (a, b and c) are, respectively, the oFP of RMSF derived from an 

NMR-determined ensemble (PDB: 1G6J), ADP values (only the diagonal elements are shown) 

and NMR-measured order parameters against residue index of ubiquitin, where the experimental 

profiles are plotted in scattered black circles, and the best fit PC mode profile is plotted in thick 

red lines. (a, top) The experimental profile best matches (p = 0.69) the theoretical RMSF derived 

from a 600-ns MD simulation, where all PC modes ≥25 are included to contribute to <∆R∆RT>MD,k 

(k = 25); further removing modes higher than mode 24 would impair the correlation. Profiles of 

different k values are also plotted for comparison. (a, middle) The autocorrelation function for the 

best-matched mode k = 25 is computed via WKT following eq 3. In addition, (a, bottom) its 

corresponding power spectrum, 𝑆(ω), plotted against its constituent frequencies 𝑓 = 𝜔/2𝜋, can 
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be obtained before the inverse Fourier transform. Only the contributions of frequencies lower than 

109 Hz are plotted. A black arrow is drawn to point from the implied IWP’s frequency, (1/τw), to 

its corresponding IWP (τw) in the ordinate (taken natural logarithm) of the chart in panel (d). (b 

and c) In a similar spirit as (a), panels (b and c) are plotted for the experimental ADPs (PDB: 

2GBJ) and NMR order parameters21 of ubiquitin, with the best matched modes determined as k=41 

and k=191, respectively. Note that the PCAs performed for (a and b) are Cα-based and for (c), the 

PCA is based on all-heavy-atoms and H atoms bonded to backbone N’s. (d) IWP (τw) is plotted 

against the PC mode index for both Cα-based (3N – 6 = 210 modes; in blue) and all-heavy-atom 

based (3N – 6 = 1923 modes; in red) PCA. 

 

For the case of ADP, ADPexp (taken from PDB ID: 2GBJ) has the highest correlation (0.86) with 

ADPMD,k=41, see Figure 3b, top. PC mode 41 has a τw value of 6.17 ns, which we assign as the 

time scale of the ADP distributions for ubiquitin. The correlation coefficients of RMSF and ADP 

oFPs compared with the theoretical profiles derived using different k’s are shown in Figure S2a. 

 

The NMR order parameters, S2, describes the order of the backbone -NH bond vector rij = (xij, yij, 

zij) pointing from atom i to j (herein, i is N, and j is H) which can be approximated as20,29,30 

 

𝑆𝑖𝑗
2 =

3

2
(< 𝑥𝑖𝑗

2 >2+< 𝑦𝑖𝑗
2 >2+< 𝑧𝑖𝑗

2 >2+ 2 < 𝑥𝑖𝑗𝑦𝑖𝑗 >2+ 2 < 𝑥𝑖𝑗𝑧𝑖𝑗 >2+ 2 < 𝑦𝑖𝑗𝑧𝑖𝑗 >2) −
1

2
 

(6) 

 

Here, the length of rij is normalized to unity. The angular brackets denote averages taken over the 

M snapshots; herein M = 6,000,000 or 1,200,000 are for the 600 ns and 120 ns trajectories, 
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respectively. S2 takes on values between 0, for freely rotated bonds (disordered), and unity, for 

perfectly “ordered” bonds. PCA is carried out for all the heavy atoms plus the hydrogen atoms in 

the amino (–NH) groups along the backbone of ubiquitin on the long 600-ns MD simulations and 

the associated five-constituent 120-ns sub-trajectories. 

 

Through FPM, it was found that τw,k=191 = 2.34 ns and σ2
k=191 = 0.44 Å2 (Figure 3c and see 

correlation as a function of PC mode index, peaked at the mode 191, in Figure S2b), characterizes 

the time scale and size of motion for the observed order parameter profiles21. When we applied the 

current method to shorter trajectories, it was found among five 120-ns simulations that the S2
exp 

profile consistently maps to the PC modes with τw values between 0.7 ns and 1.0 ns (see one 120-

ns result in Figure S3a). 

 

Hence, despite different simulation lengths being used, our method consistently reports a time 

scale of 0.7 ns and 2.3 ns for this set of dynamics variables characterized by the NMR relaxation 

experiments, consistent with the correlation time of methyl symmetry axis motion (300 to 500 

ps)31 using the extended model-free approach, while the “back-calculated” analysis of spectral 

densities using MD simulations reported time constants of 0.6, 0.9, and 1.5 ns32. 

 

We observed that S2
MD,k=1 shows slightly larger (less ordered) bond fluctuations than S2

exp (Figure 

S3b), which implies that within the 600 and 120-ns timeframes, the protein samples a wider 

conformational space than that sampled during the NMR relaxation experiment. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 16, 2018. ; https://doi.org/10.1101/384511doi: bioRxiv preprint 

https://doi.org/10.1101/384511


17 

 

Using the herein proposed method, which integrates PCA, WKT, IWP and FPM, we investigated 

the time scales of three types of experimentally determined dynamic variables. 

 

Determination of time scales of the ENM modes and inference of time scales from the ENM 

eigenvalues 

It is cumbersome to repetitively perform long MD simulations every time to characterize the time 

scales of experimentally observed dynamics variables. Here, we devised a computationally light 

molecular timer that can estimate the time scales of modes from anisotropic network model 

(ANM)10,14. To realize this, FPM of RMSF profiles derived from ANM modes and from MD PC 

modes was used to map each ANM mode to a PC mode. The ANM derived covariance matrix, 

<∆R∆RT>ANM,l, for all ANM modes ≥ l (lower ANM modes have lower frequencies or smaller 

eigenvalues) was calculated as follows 

 

< ∆𝐑∆𝐑𝑻 >𝐴𝑁𝑀,𝑙 =
𝑘𝐵𝑇

𝛾
∑ 𝜆𝑎

−1𝐕𝑎𝐕𝑎
𝑻

3𝑁

𝑎=𝑙+6

 

(7) 

 

where Va and a are the eigenvector and eigenvalue of the a’th ANM mode, respectively. While, 

γ is the universal spring constant, kB is the Boltzmann constant and T is the absolute temperature 

with 
𝑘𝐵𝑇

𝛾
 set to unity. The RMSFANM,l and ADPANM,l profiles were computed from the 

<∆R∆RT>ANM,l matrix with the same methods used for MD-derived profiles of RMSF and ADP. 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 16, 2018. ; https://doi.org/10.1101/384511doi: bioRxiv preprint 

https://doi.org/10.1101/384511


18 

 

FPM is applied to each ANM mode l’s RMSFANM,l profile to identify the kth PC’s RMSFMD,k profile 

with the highest correlation. By doing this, every ANM mode l can be assigned the time scale (τw) 

of its best-matched kth PC mode. If there are more than one ANM mode mapped to a PC mode, the 

ANM mode having the highest correlation with that PC mode would be kept. We then fit the 

remaining ANM eigenvalues (ANM) with their mapped time scales (tANM) in the form of a power 

law tANM = c  ANM
d to obtain the constants c and d, as described in the Supporting Information 

and Figure 4a. The time scales estimated from the power law can then be used to study the 

slowest/functional modes (low ANM modes) of proteins and FPM can be used to estimate the time 

scales of experimentally observed dynamics variables (see below). 
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Figure 4. Frequency mapping for ANM to obtain the power law of w  as a function of ANM 

eigenvalues. (a) The ANM analysis and PCA of long MD trajectories are obtained for ubiquitin 

(residues 1-72, Cα-only). The τw of every PC mode obtained using IWP was mapped to the most 

correlated ANM mode using FPM. (a, top left), First l-1 ANM modes are removed to obtain a 

covariance matrix comprising modes ≥l. The RMSF of each residue, RMSFANM,l, is the square root 

of the sum of x-, y- and z-components of its variance. This RMSFANM,l is compared to the 

RMSFMD,k comprising PC modes ≥k. Each ANM mode l (light-green circles) is mapped to the 

highest correlated PC mode k by comparing RMSF profiles. When multiple ANM modes are 

mapped to the same PC mode k, only the pair with the highest correlation is kept (dark-green 
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circles). The τw of the PC mode k is then assigned to the ANM mode l. For example, the first (l = 

1) ANM mode maps to the 5th PC mode (red arrow). (a, bottom left), The τw’s are plotted against 

the PC mode index (identical to the blue curve in Figure 3d). (a, bottom right), The τw’s are 

plotted against λANM (the eigenvalues of ANM modes). Linear regression gives the power law 

𝑡𝐴𝑁𝑀(ns) = 52.6011 × 𝜆𝐴𝑁𝑀
−1.3524  for ubiquitin. (b) Time scales of the examined dynamics 

variables, including the ANM modes, are assigned by herein introduced PCA+WKT+FPM 

approach for ubiquitin, except that the time scales of ribosomal motions are estimated by the 

general power law  𝑡𝐴𝑁𝑀(ns) = 86.9387 × 𝜆𝐴𝑁𝑀
−1.8886  derived from the combined τw and λANM of 

ubiquitin, FGF2 and HPNAP. 

 

 

For the case of ubiquitin, ANM mode 1 is mapped to PC mode 5 therefore it is assigned the time 

scale, τw,k=5 = 27.03 ns (Figure 4a). Similarly, the RMSFANM for modes 4 and 10 are mapped to 

PC modes 7 and 11 with the corresponding time periods τw of 21.95 and 14.87 ns, respectively. 

This suggests that the motions described by the first 10 ANM modes for ubiquitin, or the slowest 

end of ANM, should occur within the timeframe of 13 to 28 ns (see Figure 4b). Fitting the ANM’s 

with the tANM’s we obtain a power law for ubiquitin, 𝑡𝐴𝑁𝑀(ns) = 52.6011 × 𝜆𝐴𝑁𝑀
−1.3524. 

 

To extend the applicability of this method, we apply the aforementioned method to two other 

proteins. We performed PCA+IWP analysis on the 200-ns MD trajectories of an FGF2 monomer 

(126 residues; PDB ID: 1BFG) and HPNAP (144 residues; PDB ID: 1JI4) to derive time scales 

(τw) of each protein’s PC modes. Then, we combined the mapped time scales of the ANM modes 
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and the corresponding eigenvalues for these three proteins (ubiquitin, FGF2 and HPNAP) to derive 

the general power law 𝑡𝐴𝑁𝑀(ns) = 86.9387 × 𝜆𝐴𝑁𝑀
−1.8886 (Figure S4a). 

 

Although the dynamics is apparently a function of protein sizes as well as internal topology, we 

noted that a correlation can be found between the eigenvalues of the slowest modes and the 

corresponding protein sizes (Figure S4b), which implies that considering eigenvalue alone could 

have taken into account the protein size effect in our power laws. 

 

In the next section, we will show that good predictions of time scales for many dynamics variables 

can be obtained using this general power law. Thus, a simple molecular timer that characterizes 

functional motions of biomolecules is obtained. Figure 4b summarizes the time scales of all the 

discussed experimental observables and ANM modes of interest. 

 

Verification of the general ANM power law via the dynamics analysis of ubiquitin, FGF2 

and HPNAP 

To validate the applicability of this general power law, we now examine the estimated time scales 

of the experimental RMSF and ADP profiles (Figures 3a and 3b) using ANM instead of PCA of 

a long MD trajectory. The results showed that theoretical ADPs predicted from removing the first 

7 ANM modes agree the best with the experimental ADPs. By substituting the eigenvalue of mode 

8 in the general power law, we obtain a time scale of 5.38 ns, which is close to the earlier PCA 

result of 6.17 ns. In a similar vein, the RMSF profile derived from the 32 NMR conformers (PDB 

ID: 1G6J) matches the best with the theoretical RMSF comprising the ANM mode 4 and above, 

which maps to a time scale of 8.70 ns according to the general power law. This is close to the 
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earlier PCA mapping result of 9.32 ns (mapped to the 25th PC mode). Furthermore, for FGF2 and 

HPNAP, we found the time scale of each ANM mode predicted by the general power law closely 

agrees with that estimated from FPM+WKT, with correlations of 0.95 for FGF2 and 0.93 for 

HPNAP, respectively. 

 

Derive ANM power law for the sizes of functional motions 

Since each ANM mode has been mapped to a PC mode, one can describe the PC mode variance 

(the eigenvalue of PC mode) as a function of the corresponding ANM eigenvalue. Combining the 

aforementioned three protein cases, the linear regression of a log-log plot provides a new power 

law such that 𝜎2(Å2) = 46.0538 × 𝜆𝐴𝑁𝑀
−2.5085 (see the Supporting Information). This power law, 

governing the sizes (variance) of motion as a function of ANM eigenvalues, together with the time 

power law jointly suggest that the protein’s functional motions follow a 𝑡1.33~〈𝜎2〉 relationship. 

In the meanwhile, the normal mode theory provides a relation 〈𝜎2〉 = 𝑘𝐵𝑇 𝑚𝜔2⁄  for the harmonic 

oscillator (where  is the frequency for the normal mode of interest), suggesting that 𝑡2~〈𝜎2〉, 

while the Einstein–Smoluchowski relation (or fluctuation-dissipation theorem) for freely diffused 

particle in 1D describes a 〈𝜎2〉 = 2𝐷𝑡 relation, or equivalently 𝑡~〈𝜎2〉. 

 

Predicting the size, conformation and time scale of ribosomal motions with the variance and 

time power laws 

 

Finding the relevant mode that describes the ribosomal body rotation (ratcheting) motion 

As an example to showcase a successful application of the power laws, we predict the size and 

time scale of the ribosomal body rotation motion (ratcheting)11,33 between the 30S and 50S 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 16, 2018. ; https://doi.org/10.1101/384511doi: bioRxiv preprint 

https://doi.org/10.1101/384511


23 

 

subunits of the Thermus thermophilus ribosome33, which is essential for ribosomal translocation 

during protein translation34,35. It is known that such a body rotation is generally around an axis that 

connects the mass centers of large and small subunits11,33,36. Therefore, we first performed ANM 

on the non-rotated structure of the ribosome (PDB ID: 4V6F37) and then created deformed 

conformations along each of the slowest 50 ANM modes (there are 63,774 modes in total) by 

assuming a unity value for the scaling factor 𝑘𝐵𝑇/𝛾 (see eq S23). Next, we superimpose non-

rotated and ANM-deformed ribosome only at their 50S subunits so that the combined rotation and 

deformation of 30S alone can be analyzed. We further isolated only the 30S rotation and obtained 

its corresponding rotation axis for each of the 50 ANM conformers (see Supporting 

Information). Among these 50 modes, the rotation axis derived from mode 25 was identified to 

have the smallest deviation angle ( = 11.6o) from the vector that connects the mass centers of 30S 

and 50S subunits. Therefore, we consider mode 25 as the ribosomal ratcheting motion. 

 

Obtaining the size of functional motion and the rotated conformation of the ribosome 

The variance of ANM mode 25 can be obtained from the variance power law 𝜎2(Å2) =

46.0538 × 𝜆𝐴𝑁𝑀
−2.5085, the square root of which gives the size of conformational change, namely the 

structure difference between rotated and non-rotated ribosome. Given the unit vector of mode 25 

and the size of the deformation, the rotated ribosome conformation can be obtained. Our predicted 

rotated ribosome conformation shows a 9° rotation which is close to the experimentally measured 

rotation of 7° (according to non-rotated state [PDB ID: 4V6F] and rotated state [PDB ID: 

4V9H])37,38. 

 

Obtaining the time scale of ribosomal ratcheting motion 
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Using the introduced time power law and the ANM eigenvalues, one can estimate the time scales 

of these modes (Table S1). The ribosomal ratcheting motion which mode 25 resembles is 

estimated to take place with a time scale of  160.7 µs, in contrast to 6.5 ns if estimated from a 

purely harmonic approximation20 (by using PCA only). 

 

It has been reported via the single-molecule Förster resonance energy transfer experiments35 and 

stopped-flow apparatus39 that the transit rate between the non-rotated and rotated state is faster 

than 25-100 ms35 and 5 ms39, respectively. Recently, it became possible to conduct explicit solvent 

simulations for the 70S ribosome6,40. A 1.3-µs explicit solvent MD simulation for the 70S 

ribosome40 showed that 30S can have a body rotation of ~-2 degrees with the head swiveling 

approximately +5 degrees, which contrasts with the observed ~+7 degrees for a full body rotation 

and ~+20 degrees for a complete head rotation, characterized using X-ray41 crystallography and 

cryo-EM5,42. In view of the portion of body rotation completed within 1.3 µs, the ANM power law 

estimates a time scale of ~161 µs, which falls in between incomplete body rotation (1.3 µs) and 

stopped flow suggested transition time (<5 ms). 

 

Finding the relevant modes that describe 30S head swiveling and L1 stalk closing motion of the 

ribosome and characterizing the size and time scales of these motions 

30S head swiveling motion and L1 stalk motion are also known to be involved in the ribosomal 

translocation process34. The 30S head is defined as the 3’ major domain of the 16S rRNA spanning 

residues 921-1396 and the complexed proteins43 (colored in cyan at the bottom right of Figure 

S5). Its rotational motion relative to the body domain, coined as the swiveling motion, can swivel 

up to 18° after binding EF-G and the concomitant GTP hydrolysis. This intra-subunit motion 
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together with the inter-subunit ratcheting of the whole 30S drives tRNA translocation5. 

Consequently, when the swiveling motion is impeded by an obstacle, such as an mRNA 

pseudoknot, the dissociation of E-site tRNA and EF-G can be hindered44. 

 

On the other hand, L1 stalk is defined as the complex between the helices 76-78 of 23S rRNA and 

the L1 ribosomal protein45. The L1 stalk motion is not only influenced by the 30S motions45 and 

the downstream mRNA structures46 but also by its binding to the P-site tRNA (L1 stalk closing)47 

and guiding it from the P-site to the E-site which involves motions as large as ~20 Å48. 

 

By applying the power laws, we are not only interested in reproducing observed sizes of 

conformational changes but also provided estimated timescales for these intrinsic and functional 

motions in ribosome. 

 

A similar method used to identify the ANM mode that corresponds to the ratcheting motion was 

applied to find the corresponding mode for the swiveling motion (Supporting Information). The 

main differences are that the axis of rotation for head swiveling is defined as the vector pointing 

from the COM of the 30S body to the COM of the 30S head and the deformed conformer is 

superimposed at the 50S and 30S body of the non-rotated ribosome (PDB ID: 4V6F), see 

Supporting Information for details. As mentioned in the previous section, we can calculate the 

rotation axis for each of the 50 slowest ANM modes. The axis of rotation computed for ANM 

mode 32 has the smallest angle (θ = 3.9°) deviating from the axis of rotation of the swiveling 

motion. Deforming the conformation along ANM mode 32 scaled by the variance power law 

results in an angle of rotation of 3.2° in contrast to the observed 4.4° rotation in the corresponding 
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structures (PDB ID: 4V6F and PDB ID: 4V9H). The predicted time scale using the eigenvalue of 

mode 32 and the time power law is ~70 μs. 

 

The L1 stalk interacts with the tRNA at the E-site of the ribosome during the ratcheting and the 

swiveling motions. To identify the ANM mode(s) corresponding to this motion, each of the top 50 

slowest ANM modes was scaled by the variance power law and used to deform the non-rotated 

conformation (PDB ID: 4V6F), see Supporting Information for details. The conformations 

deformed with ANM mode 27 and 28 have the two closest distance (~26 Å and ~30 Å, 

respectively) between the COM of L1 stalk and the COM of the E-site in the ribosome with the 

predicted time scales of ~105-128 μs. The obtained distance of ~26-30 Å is closer to the rotated 

conformation (25 Å; PDB ID: 4V9H) while the corresponding distance in the non-rotated ribosome 

(PDB ID: 4V6F) is 42 Å. 

 

The fact that the timescale of the ratcheting motion is much closer to the L1 stalk closing than the 

swiveling motion suggests a stronger coupling between the ratcheting and the L1 stalk closing, 

whereas the 30S head moves more independently from the other two. Indeed, the correlation 

analysis over a dozen of cryo-EM and x-ray solved structures carried out by Agirrezabala et al.49 

showed that the correlation between  the ratcheting angles and the swiveling angles is about 0.19 

(p-value = 0.4241) while that between ratcheting and L1 stalk closing is 0.99 (p-value < 0.0001) 

 

Collectivity of the ribosomal motions 

Tama and Sanejouand’s definition of collectivity (how global a motion is) was applied to each of 

the ANM modes50. As expected, global ratcheting and L1 stalk closing (which is coupled to 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 16, 2018. ; https://doi.org/10.1101/384511doi: bioRxiv preprint 

https://doi.org/10.1101/384511


27 

 

ratcheting) motions observed in ANM modes 25, 27 and 28 are among the modes with the 

highest collectivity within the slowest 50 ANM modes (Figure S5), whereas the independent 

local motion of head swiveling has a relatively low collectivity.  
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CONCLUSIONS 

In this study, we show that the distributions (or profiles) of dynamical variables can serve as a 

hallmark to suggest the underlying time scale needed for such distributions. Using profile 

matching, the profile can be mapped to a specific ANM mode whose timescale can be estimated 

by a power law established in this study from long MD simulations, PCA, fluctuation profile-

matching and the Wiener–Khintchine theorem. 

 

The two power laws we derived are combined to give 〈𝜎2〉 = 0.1223𝑡1.3282.  Therefore, for the 

motions (variance) of the same size (〈𝜎2〉), a harmonic oscillator travels the fastest (𝑡2~〈𝜎2〉)10, 

followed by a “guided” diffusion motion (𝑡1.33~〈𝜎2〉) along functional modes for a solvated 

protein, and the slowest (the least efficient) goes to the free diffusion (𝑡~〈𝜎2〉)18. The guided 

motions take much longer time than what harmonic oscillators would anticipate for particularly 

large amplitude motions, while the difference between the two is negligible for small 

conformational changes (fast motions). The result can imply delicate time controls in biological 

functions at the molecular level. In that, higher-order structures (e.g., translating ribosome) or 

enzymes central to the signal cascade (e.g., phosphorylation-executing adenylate kinases) would 

take a much longer time to involve large conformational rearrangements in executing critical 

functions to ensure that the event is rare and manageable, compared to what is needed for 

housekeeping proteins, such as lysozyme or ubiquitin, to maintain homeostasis. We expect that 

the introduced molecular timer and sizer with its accompanying theories can aid in our quantitative 

understanding of functional and anharmonic motions of biomolecules. The timer has now been 

implemented in the online server DynOmics14 (http://dyn.life.nthu.edu.tw/oENM/). 
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SUPPORTING INFORMATION 

Details of the principal component analysis (PCA), Wiener–Khintchine theorem (WKT), 

Intensity Weighted Period (IWP), Fluctuation Profile Mapping (FPM), theoretical profiles of 

RMSF, ADP and order parameters, Anisotropic Network Model (ANM), fitting the time and 

variance power laws and identification and prediction of the size and time scale of ANM modes 

corresponding to important ribosomal motions. Figures showing time scales computed using 

IWP, characteristic time and relaxation time, correlations between the MD derived RMSF, ADP 

and order parameter profiles using all PC modes ≥k with their respective oFPs of Ubiquitin, 

computed order parameter from the 120 ns and 600 ns trajectories of Ubiquitin compared to the 

experimental order parameter, comparison of IWP with the power law estimated time scale, 

relationship between protein sizes and ANM’s slowest mode and collectivity of the slowest 50 

ANM modes of the non-rotated ribosome. Table containing the eigenvalues and time power law 

estimated time scales for the slowest 50 ANM modes of the non-rotated ribosome. 
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