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Abstract 20 

Visual processing is largely organized into ON and OFF pathways that signal stimulus increments 21 

and decrements, respectively. These pathways exhibit natural pairings based on morphological and 22 

physiological similarities, such as ON and OFF alpha ganglion cells in the mammalian retina. 23 

Several studies have noted asymmetries in the properties of ON and OFF pathways. For example, 24 

the spatial receptive fields (RFs) of OFF alpha cells are systematically smaller than ON alpha cells. 25 

Analysis of natural scenes suggests these asymmetries are optimal for visual encoding. To test the 26 

generality of ON-OFF asymmetries, we measured the spatiotemporal RF properties of multiple 27 

RGC types in rat retina. Through a quantitative and serial classification, we identified three func-28 

tional pairs of ON and OFF RGCs. We analyzed the structure of their RFs and compared spatial 29 

integration, temporal integration, and gain across ON and OFF pairs. Similar to previous results 30 

from cat and primate, RGC types with larger spatial RFs exhibited briefer temporal integration and 31 

higher gain. However, each pair of ON and OFF RGC types exhibited distinct asymmetric rela-32 

tionships between receptive field properties, some of which were opposite to previous reports. 33 

These results reveal the functional organization of six RGC types in the rodent retina and indicate 34 

that ON-OFF asymmetries are pathway specific.  35 

 36 

Significance Statement  37 

Circuits that process sensory input frequently process increments separately from decrements, so 38 

called ‘ON’ and ‘OFF’ responses. Theoretical studies indicate this separation, and associated 39 

asymmetries in ON and OFF pathways, may be beneficial for encoding natural stimuli. However, 40 

the generality of ON and OFF pathway asymmetries has not been tested. Here we compare the 41 

functional properties of three distinct pairs of ON and OFF pathways in the rodent retina and show 42 

their asymmetries are pathway specific. These results provide a new view on the partitioning of 43 

vision across diverse ON and OFF signaling pathways  44 
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Introduction  45 

The division of sensory signals across neurons that respond to stimulus increments (ON) or dec-46 

rements (OFF) is a common processing motif. Examples abound: olfactory receptor neurons in the 47 

cockroach respond to either increments or decrements in odor concentration (Burgstaller and 48 

Tichy, 2011); neurons in auditory cortex respond to increments or decrements of sound intensity 49 

(Scholl et al., 2017); neurons in the fish electrosensory system signal increasing or decreasing 50 

contrasts in amplitude modulations of an electromagnetic field (Berman and Maler, 1998; Clarke 51 

et al., 2014); and neurons from retina to visual cortex respond to increments or decrements of light 52 

intensity (Hartline, 1938; Hubel and Wiesel, 1962). Thus, understanding how and why ON and 53 

OFF pathways partition sensory input is central to an understanding of sensory processing. 54 

In vision, the division of sensory processing between ON and OFF pathways is elaborate. 55 

The division originates at the first retinal synapse between photoreceptors and bipolar cells. Within 56 

one additional synaptic layer, the retina partitions visual scenes into 30-40 different channels, each 57 

instantiated by a distinct retinal ganglion cell (RGC) type (Field and Chichilnisky, 2007; Sanes 58 

and Masland, 2015). Many of these RGC types respond to either increments or decrements of light 59 

in their receptive field (RF) center (Hartline, 1938; Kuffler, 1953; Wassle and Boycott, 1991). 60 

Furthermore, many of these ON and OFF RGC types form pairs, such as ON and OFF alpha cells 61 

in cats and other mammals (Cleland and Levick, 1974; Cleland et al., 1975; Watanabe and 62 

Rodieck, 1989; Wassle and Boycott, 1991). These pairings have been established on both morpho-63 

logical and functional grounds. Morphologically, these pairs have dendritic fields that are similar 64 

in size and branching patterns, but that ramify in different depths of the inner plexiform layer 65 

(Wassle and Boycott, 1991; Dacey, 2004). Functionally, these pairs exhibit similar receptive fields 66 

with a polarity reversal. However, multi-neuron measurements have identified systematic ‘asym-67 

metries’ between some paired ON and OFF RGC types (Chichilnisky and Kalmar, 2002; Ratliff 68 

et al., 2010). For example, both ON parasol RGCs exhibit larger spatial RFs than their OFF-cell 69 

counterparts. Asymmetries between ON and OFF pathways have also been observed in temporal 70 

integration, contrast response functions, absolute sensitivity, nonlinear spatial integration, and ad-71 

aptation (Chichilnisky and Kalmar, 2002; Nirenberg et al., 2010; Pandarinath et al., 2010; Ala-72 

Laurila and Rieke, 2014; Turner and Rieke, 2016).  73 
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 4 

 These asymmetries have been studied mostly in alpha and parasol RGCs, which are prob-74 

ably homologs (Crook et al., 2008a). This raises the question, how ubiquitous are these asymme-75 

tries? Analysis of natural scenes suggests that RF size asymmetries may be an efficient coding 76 

scheme for natural scenes (Ratliff et al., 2010)(Barlow, 1961; Pandarinath et al., 2010; Karklin and 77 

Simoncelli, 2011). These results suggest asymmetries may be preserved across ON and OFF path-78 

way pairs. However, these analyses were agnostic to the particular aspects of the visual image 79 

represented by distinct cell types, which may dictate distinct asymmetries (or even symmetry) for 80 

efficient coding. 81 

 The goal of this study was to measure the organization of RFs across multiple pairs of ON 82 

and OFF RGCs to determine the extent to which asymmetries are general or pathway specific. We 83 

measured the RF properties of hundreds of simultaneously recorded rat RGCs using a multi-elec-84 

trode array. We developed a procedure for functionally classifying RGCs based on their responses 85 

to diverse visual stimuli. This classification yielded six irreducible cell types -- three pairs of ON 86 

and OFF RGC types. Across three pairs of ON and OFF RGCs from these six types, we found that 87 

the relative organization and the presence of functional asymmetries was pathway dependent. Each 88 

pair exhibited a distinct set of asymmetries in spatiotemporal integration and contrast response 89 

functions. These results indicate that asymmetries between ON and OFF pairs are common, but 90 

that the differences between pairs vary with the cell type and their light response properties.  91 

 92 

Materials and Methods 93 

Tissue preparation and MEA Recordings: 94 

All experiments followed procedures approved by the Institutional Animal Care and Use 95 

Committee of Duke University and Salk Institute for Biological Studies. Long Evans rats were 96 

euthanized by IP injection of ketamine and xylazine. Retinas were removed in darkness under 97 

infrared illumination with infrared converters as described previously (Anishchenko et al., 2010; 98 

Yu et al., 2017). A ~1.5 x 3 mm segment of dorsal retina centered 3.5-4 mm above the optic nerve 99 

and +/- 1mm along the vertical meridian was isolated. This region of retina was targeted to mini-100 

mize variability across experiments and to target retinal locations with cones expressing mostly 101 

M-opsin. The retina was placed RGC side down on an electrode arrays consisting of 512 electrodes 102 

at 60 µm interelectrode spacing, spanning an area of 0.9 x 1.8 mm (Litke et al., 2004). The voltage 103 

trace recorded on each electrode was bandpass filtered between 80 and 2,000 Hz, sampled at 20 104 
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kHz, and stored for off-line analysis (Frechette et al., 2005). Spikes were initially sorted by an 105 

automated algorithm and the resulting clusters were checked and corrected manually using custom 106 

spike sorting software (Shlens et al., 2006; Yu et al., 2017). The autocorrelation function of sorted 107 

spikes was used to validate putative RGCs by checking for a refractory period (1.5 ms (Field et 108 

al., 2007)). To track the RGCs across different visual stimuli, spike shapes were sorted in the same 109 

subspace determined by principal components analysis (PCA) of the spike waveforms. Neuron 110 

identity was further confirmed across different stimuli by checking that the electrical image (EI 111 

(Petrusca et al., 2007)) for each neuron matched across conditions. A matched neuron between 112 

two stimulus conditions was determined by the EI pair with the highest inner product across the 113 

two stimulus conditions (Field et al., 2009). A typical experiment resulted in recording and track-114 

ing the responses of 300-400 RGCs across three visual stimuli. 115 

 116 

Visual Stimuli and RGC Response Properties 117 

Visual stimuli from a gamma-corrected CRT video display (Sony Trinitron) refreshing at 118 

120 Hz, or an OLED display (Emagine) refreshing at 60 Hz, were focused on the retina via an 119 

inverted microscope (Yu et al., 2017). Two different stimuli were used to measure the functional 120 

properties of recorded RGCs; each was photopic with a mean intensity of either between 3000 or 121 

10,000 photoisomerizations/rod/s (Field et al., 2009; Yu et al., 2017). First, a checkerboard noise 122 

stimulus was used to estimate the spatiotemporal RF by reverse correlation (Chichilnisky, 2001). 123 

Each checker of the noise stimulus was 40x40 microns on the retina and noise images were updated 124 

at 60 Hz. Second, sine wave gratings with a spatial period of 320 µm on the retina were drifted in 125 

8 directions at two speeds (150 and 600 µm/s). This stimulus identified RGCs that were sensitive 126 

to motion (Figure 1A) (Yu et al., 2017).  127 

 128 

RGC classification 129 

RGCs from seven retinas were classified in this study. The number of cells identified for 130 

each type in each retina are provided in Table 1. The classification approach consisted of two 131 

stages: a feature selection process followed by a serial, quantitative classification using unsuper-132 

vised learning. The feature selection process identified response properties that robustly isolated 133 

one or a small number of RGC types from all other types (e.g. isolating DS-RGCs from nonDS-134 
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RGCs, Figure 1A). The quantitative classification clustered neurons using these features by a two-135 

Gaussian mixture model. 136 

Stage One: The feature selection process was performed using one of the seven retina re-137 

cordings in this manuscript. This stage was used to identify response parameters that distinguished 138 

one set of RGCs from all others. In this initial dataset, high-dimensional data was parameterized 139 

and visualized in a lower dimensional space by PCA. These spaces consisted of either two or three 140 

dimensions, each defined by a response parameter such as the overall spike rate or the shape of the 141 

temporal RF (e.g. Figure 1C). Limiting the dimensionality facilitated robustly clustering RGCs 142 

with relatively limited data (e.g. a few hundred RGCs). Once a set of response features were iden-143 

tified that clearly separated one group of RGCs from the others, the spatial RFs of the grouped 144 

RGC were inspected to check whether they were regularly spaced. If grouped RGCs were regularly 145 

spaced, the features used were saved for quantitative clustering (see Stage Two). Performing fea-146 

ture selection before quantitative classification improved the performance of the unsupervised 147 

clustering algorithm by minimizing misclassification rates.  148 

Stage Two: To quantitatively cluster each group of RGCs (Figure 1), a two Gaussian mix-149 

ture model (GMM) was fit in the same two or three-dimensional feature space defined above in 150 

Stage One. The GMM allowed boundaries to be drawn between clusters according to the maximum 151 

likelihood that RGCs belonged to one Gaussian distribution or the other. RGC types were classi-152 

fied one at a time in a serial fashion to prevent overfitting and avoid ambiguity in choosing the 153 

right number of clusters. Each cluster was tested for statistical significance (Tukey’s range test), 154 

and the irreducibility of each type was verified by testing for a mosaic organization (Figure 3). The 155 

order of this serial classification and the response parameters that consistently identified RGCs 156 

across recordings is shown in Figure 1. 157 

 158 

Verifying RGC Types 159 

Clustered RGCs were identified as an irreducible cell type by inspecting the normalized 160 

nearest neighbor distribution (NNND; Figure 3) (DeVries and Baylor, 1995; Field et al., 2007). 161 

The NNND is defined as 2R / (S1 + S2). R is the distance between the spatial RF of each RGC and 162 

its nearest neighbor’s RF. S1 and S2 are SDs of the Gaussian fits for each RGC’s spatial RF meas-163 

ured along the line connecting the centroids. If the two spatial RF ‘touch’ at the 1-SD contour for 164 

each cell, then the NNND will equal 2.  165 
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NNNDs indicate a mosaic-like arrangement of RFs when they exhibit a clear exclusion 166 

zone at short nearest-neighbors at distances (Wassle and Riemann, 1978). To test the null hypoth-167 

esis that the observed NNND were consistent with a random sampling of RGCs, we generated 100 168 

NNND distributions from randomly sampled RGCs within each experiment (Figure 3A). The num-169 

ber of sampled cells equaled the number of RGCs in the original mosaic. A two-sample Kolmo-170 

gorov-Smirnov test was used to estimate the probability that the observed NNND was consistent 171 

with that expected from a randomly sampled set of RGCs. In 38 of 42 mosaics tested, the null 172 

hypothesis was rejected with p < 0.05 (Figure 3B).  173 

 174 

Estimation of linear spatiotemporal RFs. 175 

A linear approximation to the spatiotemporal RF of each RGC was obtained by reverse 176 

correlation to compute the STA (Chichilnisky, 2001). Frames up to 500 ms preceding a spike were 177 

included in the analysis. The spatial RF was the set of stimulus pixels (stixels) whose absolute 178 

peak intensity exceeded 4.5 robust standard deviations of all pixel intensities (Yu et al., 2017). The 179 

temporal RF was defined as the time-dependent average of these significant stimulus pixels. Once 180 

the temporal RF was computed, the dot product between every stixel of the STA was computed 181 

with the temporal RF. This collapsed the STA across time to a single image, which was used as an 182 

estimate of the spatial RF.  183 

This analysis to extract estimates of the spatial and temporal RFs assumes the spatiotem-184 

poral RF is separable into a single spatial and temporal filter. The validity of this assumption was 185 

examined using singular value decomposition (SVD; (Golomb et al., 1994)). SVD factorizes a 186 

matrix into a rank-ordered set of vector pairs whose outer products are weighted and linearly com-187 

bined to reproduce the original matrix. A perfectly space-time separable RF will produce a single 188 

pair of non-zero vectors capturing the spatial and temporal RFs respectively. Prior to performing 189 

SVD, a Gaussian spatial filter was applied to the full spatiotemporal RF to reduce noise in the 190 

STA. This Gaussian filter was circular with an SD of 0.75 stixels. After applying this filter, SVD 191 

indicated that across cell types, >90% of the variance in the STA could be captured by the outer 192 

product of a single pair of spatial and temporal filters. This indicates that the linear RF structure 193 

was largely consistent with a space-time separable model.  194 

 195 

Space-time plots 196 
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To generate average space-time plots of RGC RFs (Figure 5), the entire spatiotemporal RF 197 

was filtered for each cell with a circular Gaussian filter, SD = 0.75 stixels. A 21x21 (924 microns 198 

x 924 microns) stixel region around the center of mass of the spatial RF was cropped. The average 199 

3-dimensional spatiotemporal RF of each RGC type was computed by averaging together all the 200 

cropped and filtered spatiotemporal RFs of all cells of that type across all recordings. The 3-di-201 

mensional spatiotemporal RF was collapsed to 2 dimensions by extracting the intensities along 202 

one spatial axis.  203 

 204 

Estimation of Contrast response functions 205 

Contrast response functions were estimated from the static nonlinearity computed by con-206 

volving the spatiotemporal RFs with the checkerboard noise stimulus (Chichilnisky, 2001). This 207 

yielded an instantaneous generator signal for each frame of the stimulus that was used to generate 208 

a histogram of observed spike counts for each generator signal. This histogram was fit with a 209 

logistic function. The slope (b) and offset (a) were parameters from the logistic function fit to the 210 

SNL: (c/(1+exp(-b(x-a))). To check that the static nonlinearity was accurately fit, simulated spikes 211 

were generated from a model Linear-Nonlinear Poisson neuron in response to a checkerboard 212 

white noise stimulus. A logistic function was used in the simulation for the nonlinearity. When 213 

total spike counts were matched between simulated and real neurons, the model fitting produced 214 

estimates of the slope and offset within 1% of the values set in simulation. 215 

 216 

Accuracy of the LNP model 217 

An important caveat in the RF measurements presented here is that they are linear esti-218 

mates. These estimates have been shown in some circumstances to accurately capture the stimulus 219 

features that drive RGC spiking (Chichilnisky, 2001; Keat et al., 2001; Pillow et al., 2005). How-220 

ever, for some RGC types, stimulus features interact nonlinearly in space and/or time (Hochstein 221 

and Shapley, 1976; Schwartz et al., 2012; Freeman et al., 2015). To determine the capacity of these 222 

linear RF estimates and contrast response functions to capture the relationship between the stimu-223 

lus and spiking, we cross-validated the model to a repeated checkerboard noise stimulus in a subset 224 

of experiments (retinas 2 and 3, Table 1). A 10 s checkerboard noise sequence (40x40 µm stixels, 225 

60 Hz refresh) was repeated 100 times. For a given RGC, the LNP model generated from the 226 

spatiotemporal RF and static nonlinearities estimated from the non-repeating checkerboard noise 227 
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 9 

was used to predict the response to the repeated checkerboard stimulus (not used in the original 228 

estimate of the STA or static nonlinearity). Across cells of all six types, spike trains generated by 229 

the LNP model captured 51-73% of the explainable variance (data not shown).  230 

 231 

Parameterizing stimulus responses 232 

Vector sum for drifting gratings: The total spike count from RGCs to 8 presentations of a 233 

grating drifting in each of 8 directions was calculated and normalized by the maximum count. This 234 

yielded 8 vectors that had magnitudes ranging between 0 and 1. The sum of these vectors identified 235 

the preferred direction of the RGC (Elstrott et al., 2008; Rivlin-Etzion et al., 2012) and the mag-236 

nitude of this vector was used to estimate the strength of tuning and classify dsRGCs from non-237 

dsRGCs in Figure 1A. The vector sum was not normalized to 1 to allow the vector magnitude to 238 

range from zero to infinity. This allowed the Gaussian mixture model to be fit to the log (base 2) 239 

of the vector sum: these distributions were approximately log-normal. 240 

  Firing rate for drifting gratings and checkerboard noise: The firing rates in response to 241 

drifting gratings were calculated by dividing the total spike count by the number of stimulus re-242 

peats (8), directions (8) and length of time that the grating was presented to the retina (8 or 10 s). 243 

For checkerboard noise, the total number of spikes during the presentation of the checkerboard 244 

noise was divided by the total time. 245 

  Parameters of the temporal RF from checkerboard stimuli: The time-to-peak and time-to-246 

trough were taken from the global maximum and minimum, respectively, in the temporal RF. The 247 

zero crossing was calculated as the time closest to the spike at which the temporal RF transitioned 248 

from positive to negative values for OFF cells and vice-versa for ON cells. The maximum and 249 

minimum values were taken as the global maximum and minimum in the temporal RF, respec-250 

tively. A phasic index (PI) was calculated from the temporal RF as the absolute value of the sum 251 

of the positive and negative areas divided by the sum of their absolute values (e.g. |(a+b)| / (|a| 252 

+|b|)). The PI ranges from zero to one: zero corresponds to a biphasic temporal RF with the area 253 

above and below zero being equal; one corresponds to a monophasic temporal RF. The biphasic 254 

index (Figure 6D) equaled 1 – PI (Petrusca et al., 2007). 255 

  Parameters of the spatial RF from checkerboard stimuli: The spatial RF diameter (e.g. 256 

Figure 6A) was defined as the diameter of a circle with the same area as the 1SD boundary of a 257 

two-dimensional Gaussian fit to the RF center (Chichilnisky and Kalmar, 2002; Gauthier et al., 258 
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2009). To plot the spatial RF mosaics (e.g. Figure 2A & D), RFs were filtered by convolving with 259 

a two-dimensional Gaussian filter with an SD of 0.75 stixels. Contour lines were then linearly 260 

interpolated in each RF using a fixed contour equivalent to 1 SD, 0.6065 of the peak (Yu et al., 261 

2017).  262 

 263 

Results 264 

In the following sections, we show the results of a functional classification applied to rat 265 

RGCs recorded on a large-scale MEA. This classification yields a natural set of three pairings 266 

between ON and OFF RGC types. We analyze the spatiotemporal RF properties and gain among 267 

these six cell types and compare the results across ON and OFF pairs.  268 

 269 

The rat retina contains at least three functional pairs of ON and OFF cells 270 

To analyze the RF structure across cell types, we took a serial approach to classifying RGCs 271 

(see Materials and Methods). In the first step, direction selective RGCs were separated from other 272 

cells based on their responses to gratings drifting in different directions and at different speeds 273 

(Figure 1A). In the second step, non-direction-selective RGCs were split into cells with stronger 274 

ON or OFF responses (Figure 1B). The dominant response polarity was determined from the spike-275 

triggered average (STA) to a checkerboard stimulus (see Materials and Methods). In the third, 276 

fourth and fifth steps, ON and OFF RGCs were serially classified by identifying a small number 277 

of response parameters that clustered RGC types. These response parameters included information 278 

about the mean firing rates, RF size, and duration/kinetics of temporal integration. This approach 279 

yielded three ON and three OFF RGC types. 280 

Across these six RGC types, the classification approach indicated a natural set of three 281 

pairs of ON and OFF cell types. For ON and OFF types to be paired, they must resemble one 282 

another more than they resemble other cell types, either morphologically (Wassle et al., 1981a) or 283 

functionally (Devries and Baylor, 1997). This kind of similarity was indicated by two observations. 284 

First, the parameter spaces used to classify ON and OFF RGCs were the same for each pair (Figure 285 

1C-E, steps 3-5). Second, the relative distribution of cells within those parameter spaces were 286 

similar for each pair. These two features ensured that the same response properties segregated each 287 

pair from all other recorded ON and OFF cells and did so in a similar fashion. These are the core 288 

criteria for defining an ON and OFF signaling pair. 289 
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 290 

The first pair of ON and OFF RGCs 291 

(Figure 1C, step 3) were distinguished by their 292 

mean spike rate to a drifting grating, the mean 293 

response to checkerboard noise, and the ratio 294 

between the trough and peak of their temporal 295 

RFs. A low trough-to-peak ratio indicates rel-296 

atively monophasic temporal integration and 297 

a ‘sustained’ responses to steps of light. Thus, 298 

this first pair of ON and OFF cells exhibited 299 

the highest firing rates to drifting gratings and 300 

checkerboard noise, relatively sustained re-301 

sponses, and weakly biphasic temporal inte-302 

gration. 303 

After removing this first pair of classi-304 

fied cells, the second pair of ON and OFF 305 

RGCs were classified in a new parameter 306 

space that compared spatial RF size, duration 307 

of temporal integration (time-to-zero), and the 308 

mean spike rate to checkerboard noise (Figure 309 

Figure 1: Serial Classification of RGCs yield three pairs of ON and OFF cells. A. In step 1 of the 
classification, direction selective RGCs are segregated from all other cells based on their responses to 
drifting gratings. Grating response 1 and 2 are the natural log of the vector magnitude to a grating with a 
spatial period of 320 µm drifting at 150 and 600 µm/s, respectively. Gratings were drifted in 8 directions 
to estimate the vector magnitudes of their tuning. B. In step 2, ON and OFF RGCs were segregated by 
the value of the extrema and time to trough of their temporal RFs estimated from their STA. C. In step 
3, a pair of ON and OFF RGCs (red points) were classified from all other ON and OFF cells, respectively. 
The parameter spaces used to classify these two types were identical and consisted of the mean spike 
rates to checkerboard noise (stixel size 40x40 µm, 60 Hz refresh) and a drifting grating (spatial period 
320 µm, speed, 150 µm/s), as well as the trough to peak ratio of their temporal RFs. D. In step 4, ON and 
OFF RGCs identified in step 3 were removed, and the remaining ON and OFF RGCs were classified in 
a new parameter space defined by the mean spike rate to checkerboard noise, RF radius, and the time to 
zero of the temporal RF. E. In step 5, ON and OFF RGCs identified in the two previous steps were 
removed and the remaining ON and OFF cells were classified in a new parameter space defined by the 
phasic index (estimated from the temporal RF, see Materials and Methods), time to zero of the temporal 
RF, and the peak time of the interspike-interval (ISI) distribution. At each step of the classification, 
groups of cells were distinguished by a two-Gaussian mixture model.  
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1D). For both ON and OFF RGCs, groups of cells exhibited high firing rates to checkerboard noise 310 

stimuli, large RFs, and brief temporal integration.  311 

In the final classification step (Figure 1E), the remaining unclassified RGCs were com-312 

pared in a parameter space consisting of the time-to-zero of the temporal RF, a phasic index cal-313 

culated on the temporal RF (see Materials and Methods), and the time of the peak in the interspike 314 

interval (ISI) distribution. Clusters of ON and OFF cells emerged in these spaces with the briefest 315 

ISI peaks, relatively biphasic 316 

temporal RFs, and long time-to-317 

zero crossings.  318 

These classification re-319 

sults indicated a set of pairings 320 

between ON and OFF RGCs 321 

among the cells identified in our 322 

MEA measurements. In the 323 

subsequent section we examine 324 

whether these cells form irre-325 

ducible types and compare their 326 

response properties across a 327 

broader range of parameters. 328 

 329 

Each identified ON and OFF 330 

cell type forms a mosaic 331 

A hallmark of cell types 332 

in the retina is that they tile 333 

space morphologically with dendritic fields and functionally with spatial RFs (Wassle and 334 

Riemann, 1978; Wassle et al., 1981b; Dacey, 1993; Devries and Baylor, 1997; Novelli et al., 2005; 335 

Field and Chichilnisky, 2007). Thus, we tested whether the clusters of ON and OFF cells identified 336 

in our serial classification tiled space to form a mosaic-like pattern with their spatial RFs. We 337 

measured RGC spatial RFs from STAs to checkerboard noise (see Materials and Methods) 338 

(Chichilnisky, 2001; Yu et al., 2017). Plotting the spatial RFs for each RGC type revealed that all 339 

six types exhibited a mosaic-like organization (Figures 2A & D). An analysis of the nearest 340 

Figure 2. Classified ON and OFF RGCs exhibit a mosaic-like 
organization. A. Spatial RFs of ON and OFF brisk sustained (pur-
ple), brisk transient (blue) and small transient (orange) RGCs iden-
tified in one retina. Spatial RFs are shown as a contour plotted at 
0.6065 of the peak amplitude (equivalent to 1 SD of Gaussian). 
Rectangle shows the outline of the MEA (900 x 1800 µm). B. Tem-
poral RFs of all cells shown in A, with ON cells on top and OFF 
cells on bottom. Thin lines are individual cells, thick lines are 
mean. Color conventions same as A. C. Inter-spike interval (ISI) 
distributions for all cells in A. Color and line conventions same as 
A and B. D-F. Same as A-C, but for a second retina. 
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neighbor distributions for RGCs of each type revealed non-random spatial RF organizations for 341 

each type across most retinas (Figure 3). Importantly, no information about the spatial location of 342 

cells was used at any step of the classification. Thus, the observation of mosaics is a validation 343 

that the classification yielded irreducible cell types.  344 

Another feature of RGC types is that response parameters should vary less within a type 345 

than across types. Thus, we checked that the temporal RFs (reflecting the temporal integration of 346 

visual input) were more similar within a type than across types. Temporal RFs were measured 347 

from the STA time courses to checkerboard noise (see Materials and Methods). Plotting the tem-348 

poral RFs for all six types revealed highly stereotyped temporal integration within a type and dis-349 

tinct temporal integration across types (Figures 2B & E). Finally, we compared (ISI) distributions 350 

across types. The ISIs reflect the spiking dynamics of each RGC. Similar to the temporal RFs, the 351 

ISI distributions were more similar within a type than across types for both ON and OFF RGCs 352 

(Figures 2C & F).  353 

These features of the six RGC types supported the conclusion that each represented an 354 

irreducible cell type. Henceforth, we refer to the first pair of classified RGCs (Figure 1C) as ON 355 

and OFF brisk sustained RGCs based on their short latency, sustained responses to visual stimuli, 356 

and previously used naming conventions (Caldwell and Daw, 1978; Devries and Baylor, 1997; 357 

Girman and Lund, 2010; Heine 358 

and Passaglia, 2011). Similarly, 359 

we refer to the second and third 360 

pairs of classified RGCs (Figures 361 

1D-E) as brisk transient and 362 

small transient RGCs respec-363 

tively.  364 

To further test whether 365 

the pairings of these types was 366 

warranted, we compared the tem-367 

poral RFs across all six RGC 368 

types in a reduced dimensional 369 

space defined by principal com-370 

ponents analysis (PCA). ON and 371 

Figure 3. Normalized nearest neighbor distributions (NNNDs) 
indicate mosaic-like arrangement of spatial RFs. A. NNNDs for 
brisk sustained, brisk transient, and small transient cells, ON cells 
are top, OFF cells are bottom. Data are from one retina. Black lines 
show expected NNNDs for randomly sampled cell locations (see 
Materials and Methods); dashed lines show 95% CI. B. P-values 
from a two-sample Kolmogorov-Smirnov (KS) test for observed 
NNNDs arising from random cell locations. Fill circles correspond 
to data shown in A.  
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OFF brisk sustained cells clustered together after accounting for their difference in response po-372 

larity (Figures 4A & B). Similarly, ON and OFF brisk transient and ON and OFF small transient 373 

cells were more similar to one another, respectively, than to the other identified types. To test that 374 

this particular set of pairings was objectively the best three-group association across all six types, 375 

we fit a three-Gaussian mixture model to the 376 

data, using the first five PCs (Figures 4C & 377 

D). The Gaussian mixture model produced an 378 

exact match to the three-group description 379 

produced by combining ON and OFF cells 380 

across brisk sustained, brisk transient, and 381 

small transient cells (compare Figures 4A 382 

with C and B with D). This further supports 383 

the functional pairings established in the se-384 

rial classification (Figure 1).  385 

 386 

RGCs with larger spatial integration ex-387 

hibit briefer temporal integration of visual 388 

input  389 

We next compared the spatial and 390 

temporal integration of visual input across all 391 

six RGC types. Previous studies in primate 392 

and cat examining parasol and midget RGCs 393 

or alpha and beta RGCs, respectively, have 394 

indicated that spatial and temporal integra-395 

tion are inversely related (Frishman et al., 396 

1987; Lee, 1996; Troy and Shou, 2002). Here 397 

we examined whether this trend holds in the 398 

rodent retina, which has become a dominant 399 

model of visual processing (Huberman and 400 

Niell, 2011; Sanes and Masland, 2015). 401 

Space-time plots of average RFs for each 402 

Figure 4. Temporal RFs of ON and OFF pairs 
cluster together after accounting for polarity dif-
ferences. A. PCA applied to the temporal RFs of 
brisk sustained, brisk transient, and small transient 
cells from one experiment. The temporal RFs of OFF 
cells were multiplied by -1 to invert their polarity 
prior to PCA. Each circle represents one RGC, circles 
were colored by cell type determined by the classifi-
cation in Figure 1. B. Same analysis as A, but for a 
second retina and weights associated with PC 4 are 
plotted instead of PC 2. C. Same data as in A, but a 
three Gaussian mixture model was fit to the data in 
the space defined by the first 5 principal components, 
which captured >99% of the variance in the data. This 
fit finds the best 3-group description of the data (pro-
vided each group is well described by a multivariate 
Gaussian distribution). The Gaussian mixture model 
clustered the temporal RFs identically to the group-
ings defined by combining ON and OFF pair to-
gether. Even points that appear outside of their appro-
priate group (see arrowheads) in the two-dimensional 
plot are correctly classified by the Gaussian mixture 
model when it is fit with access to the first 5 or more 
PCs.  
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type revealed that types with larger RFs exhibited briefer temporal integration (Figures 5A-F). 403 

This relationship held across all seven analyzed retinas (Figure 5G). This comparison assumes that 404 

the spatiotemporal integration performed by each RGC is well captured by a single spatial filter 405 

and a single temporal filter. We checked the degree of independence between the spatial and tem-406 

poral RFs: where independence is defined as the STA being well-approximated by the outer prod-407 

uct of a spatial and temporal filter (DeAngelis et al., 1993; Golomb et al., 1994; Cai et al., 1997; 408 

Cowan et al., 2016). Singular value decomposition revealed that for each of the six RGC types we 409 

examined, > 90% of the variance in the STA was captured by the outer product of a single spatial 410 

and temporal filter (not shown). These results indicate that for these RGC types, spatiotemporal 411 

integration was well approximated by a single spatial and temporal filter. Furthermore, in the ro-412 

dent retina, as in other species, larger spatial integration implies briefer temporal integration. 413 

 414 

ON-OFF asymmetries in spatial and temporal integration depend on cell type  415 

Previous work has highlighted asymmetries in the size of spatial RFs between ON and OFF 416 

cells, with ON cells having larger RFs (Chichilnisky and Kalmar, 2002; Ratliff et al., 2010). To 417 

test whether this organization is ubiquitous across ON and OFF pathways in the rodent retina, we 418 

compared the size of spatial RFs for each pair of ON and OFF RGC types. Across seven retinas, 419 

ON brisk sustained RGCs exhibited larger spatial RFs than OFF brisk sustained RGCs (Figure 6A, 420 

purple). However, ON and OFF brisk transient RGCs exhibited the opposite relationship (Figure 421 

Figure 5. RGC types with larger spatial RFs exhibit briefer temporal RFs. A-F. Average space-
time RFs from one retina of ON (A-C) and OFF(D-F) brisk sustained, brisk transient, and small transi-
ent RGCs. G. Comparison of spatial integration (rf radius) to temporal integration (time to trough). 
Each point corresponds to one RGC type from one retina, filled (open) symbols are OFF (ON) RGCs. 
Brisk sustained are purple, brisk transient are blue, and small transient are orange. Dashed line is the 
best fit line to the data (slope = -0.531, y-intercept = 264.15 ms). Error bars are SE. 
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6A, blue). Furthermore, ON and OFF small transient cells exhibited nearly identical RF sizes (Fig-422 

ure 6A, orange). These comparisons were based on a two-dimensional Gaussian fit to the spatial 423 

RF to identify the radius of a circle with an area equal to that encompassed within one standard 424 

deviation of the RF (see Materials and Methods). To test that this result did not depend on a para-425 

metric description of the RF, we repeated the comparison for the RF area estimated by the number 426 

of stimulus pixels that drove an appreciable change in firing rate for each RGC (see Materials and 427 

Methods). Qualitatively, the results were unchanged by the non-parametric analysis (Figure 6B). 428 

Thus, previously observed asymmetries do not generalize across cell types. 429 

 Previous studies have noted asymmetries in the temporal integration between ON and OFF 430 

pathways (Chichilnisky, 2001; Pandarinath et al., 2010) Thus, we next compared the duration of 431 

temporal integration between ON and OFF pairs. The duration of the temporal integration was 432 

estimated by the time-to-zero between the peak and the trough of the temporal RFs. Consistent 433 

with previous results, among brisk sustained RGCs, ON cells exhibited briefer temporal integra-434 

tion than OFF cells (Figure 6C, purple). How-435 

ever, the opposite was observed for brisk transi-436 

ent RGCs (Figure 6C, blue). Similar to the re-437 

sults obtained for spatial RFs, ON and OFF 438 

small transient cells exhibited similar durations 439 

of temporal integration (Figure 6C, orange).  440 

 In addition to the duration of temporal in-441 

tegration, RGCs can differ in the dynamics of in-442 

tegration. A key measure of their temporal dy-443 

namics is their biphasic index (a.k.a. degree of 444 

transience). For a shift invariant linear system, 445 

the biphasic index indicates key properties of 446 

temporal filtering (e.g. low-pass vs. bandpass) 447 

Figure 6. Comparison of spatial and temporal RF properties between ON and OFF RGC pairs. A. 
Spatial RF radii compared between pairs of ON and OFF RGCs. RF radii were derived from a two-dimen-
sional Gaussian fit to the spatial RF. Brisk sustained are purple, brisk transient are blue, and small transient 
are orange. Each point shows comparison from one retina. Gray error bars show SD, color bars show SE. 
B. Same as A, but compares RF area estimated non-parametrically from the STA (see Materials and Meth-
ods). C. Comparison of temporal integration estimated from the time to zero of the temporal RF (see Ma-
terials and Methods). Comparison of the biphasic index across pairs of ON and OFF RGCs. 
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and it indicates how transient vs. sustained the spiking response will be to a prolonged step in light 448 

intensity (Field et al., 2007; Petrusca et al., 2007). Higher biphasic indices indicate more strongly 449 

bandpass temporal filtering and more transient light responses. Comparing biphasic indices across 450 

ON and OFF pairs, revealed that among brisk sustained RGCs OFF cells exhibited more biphasic 451 

temporal integration than ON cells (Figure 6D, purple). However, biphasic indices were similar 452 

between ON and OFF cells for brisk and small transient RGCs (Figure 6D, blue and orange). These 453 

results indicate that ON-OFF asymmetries in the dynamics of temporal integration are present in 454 

some visual pathways, but not all.  455 

 456 

Asymmetries in linearity, gain and SNR among ON and OFF RGC types  457 

The analyses described above compare the spatial and temporal integration of visual input 458 

between ON and OFF RGC types. However, these analyses do not reveal differences in spiking 459 

output across cell types. The degree of linearity vs. rectification, gain, and signal-to-noise in the 460 

spiking output, are all key features dictating the signals provided to downstream brain areas. Pre-461 

vious work has noted that OFF cells are more strongly rectified in their spiking output than ON 462 

cells (Chichilnisky and Kalmar, 2002; Zaghloul et al., 2003; Turner and Rieke, 2016), thus path-463 

way asymmetries may extend beyond the integration of sensory input.  464 

To characterize and compare the transformation between visual input and spiking output, 465 

we estimated static nonlinearities that relate the filtered visual stimulus to the number of spikes 466 

produced by each neuron (Figure 7A) (Chichilnisky, 2001). These static nonlinearities can be 467 

thought of as contrast response functions, where contrast is defined as the similarity between the 468 

visual stimulus and the spatiotemporal RF.  469 

ON and OFF brisk sustained RGCs exhibited the most linear contrast response functions 470 

(Figure 7A, purple): their spike rates were modulated relatively symmetrically around zero con-471 

trast. Brisk transient and small transient cells were progressively more rectified in their spike out-472 

put (Figure 7A, blue and orange). ON and OFF brisk transient cells exhibited the largest changes 473 

in spike rate to large positive or negative contrasts, respectively (Figure 7A, blue).  474 

To relate spiking output to RF properties, we compared RF size to the strength of rectification, as 475 

assayed by the NL index, which was computed as the log of the ratios of the slope at the maximum 476 

generator signal to the slope at zero generator signal (Chichilnisky and Kalmar, 2002). This com-477 

parison revealed that cells with smaller RFs were more rectified in their spiking output than cells 478 
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with larger RFs (Figure 7B). Because temporal integration was inversely related to spatial integra-479 

tion (Figure 5G), longer temporal integration also implied greater rectification in spike output.  480 

To test for asymmetries in the spiking output of ON and OFF cell types, we first examined 481 

NL indices: the logarithm of the ratio of the slope of at the maximum to the slope at zero. For brisk 482 

sustained and brisk transient RGCs, ON cells had larger NL indices (greater rectification) than 483 

OFF cells (Figure 7C, purple and blue). However, 484 

this relationship was reversed for small transient 485 

RGCs (Figure 7C, orange). Gain, the log of the slope 486 

of the contrast response function at zero contrast, was 487 

larger among OFF than ON cells for brisk sustained 488 

and brisk transient cells (Figure 7D, purple and blue), 489 

but small transient RGCs exhibited the opposite trend 490 

(Figure 7D, orange). Finally, the SNR was compared 491 

between ON and OFF pathways. The SNR was de-492 

fined as the gain (Figure 7E) divided by the standard 493 

deviation of the spike rate at zero contrast 494 

(Chichilnisky and Kalmar, 2002). Similar to gain, 495 

OFF brisk sustained and brisk transient cells exhib-496 

ited higher SNR than ON cells (Figure 7E, purple and 497 

blue). ON small transient cells exhibited a weak ten-498 

dency toward higher SNR than OFF small transient 499 

cells (Figure 7E, orange). Cumulatively, these anal-500 

yses summarize the relationships in spiking output 501 

across three pairs of ON and OFF RGCs and illustrate 502 

that each pair exhibits a distinct relationship between 503 

their degree of linearity, gain and SNR. 504 

Figure 7. Comparison of contrast response functions across RGC types. A. Contrast response func-
tions estimated from the static nonlinearites that relate visual stimuli filtered by the spatiotemporal RF to 
mean spike counts. Left and right show data from two retinas, top and bottom show ON and OFF RGCs, 
respectively. B. Comparison of nonlinearity index to rf radius. Brisk sustained are purple, brisk transient 
are blue, and small transient are orange. Filled (open) circles are OFF (ON) cells C. Nonlinear index com-
pared between pairs of ON and OFF RGCs. D. Gain compared between pairs of ON and OFF RGCs. E. 
Signal-to-noise ratio (SNR) compared between ON and OFF pairs. 
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 505 

Discussion 506 

In this study, we distinguished three functionally matched pairs of ON and OFF cells, 507 

which provided an opportunity to test the extent to which ON-OFF asymmetries generalize across 508 

a greater range of cell types. This comparison results in an expansion of the diversity of asymme-509 

tries present in the mammalian retina. Asymmetries between ON and OFF brisk sustained cells 510 

were consistent with previous observations. However, ON and OFF brisk transient cells exhibited 511 

asymmetries of opposite polarity and small transient cells exhibited nearly symmetric spatiotem-512 

poral integration. Thus, our work alters the conventional view that ON and OFF asymmetries are 513 

consistent across diverse RGC types. Below we comment on the method used to classify RGCs in 514 

this study, we suggest correspondences to morphologically defined cell types, and we relate the 515 

RF organization of RGCs in this study to that observed in other species. 516 

 517 

Functional Classifications of Rodent RGCs 518 

To functionally classify RGCs, we followed the unsupervised classification approach 519 

adopted by several previous studies of RGC diversity (Carcieri et al., 2003; Farrow and Masland, 520 

2011; Baden et al., 2016), with the following differences. The first difference was that RGCs were 521 

classified using data from individual recordings instead of pooling data across recordings. This 522 

reduced the impact of inter-experiment variability which can either blur distinctions between cell 523 

types or cause the identification of too many types. Second, relevant response features that distin-524 

guished each type were identified before classification. This improved the performance of the 525 

Gaussian mixture model because it produced well-separated clusters, thereby minimizing misclas-526 

sification rates. Only two or three features were selected at each classification step, which kept 527 

data requirements for classification relatively low. Third, the classification approach was serial. 528 

This mitigated ambiguity in choosing the right number of clusters because each step consisted of 529 

fitting just two clusters to the collection of ON cells and two more clusters to the collection of OFF 530 

cells (Figures 1C-E). Finally, because many RGCs were recorded in each experiment, this allowed 531 

the mosaic arrangement of RFs to provide complementary evidence that the clustered cells were 532 

an irreducible type (Wassle et al., 1981b; Devries and Baylor, 1997; Cook and Chalupa, 2000; 533 

Field and Chichilnisky, 2007; Anishchenko et al., 2010). Cumulatively, this combination of fea-534 

tures facilitated an analysis of the functional organization of six RGC types. 535 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 4, 2018. ; https://doi.org/10.1101/384891doi: bioRxiv preprint 

https://doi.org/10.1101/384891
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

  While this approach was reproducible across recordings, it did not classify all recorded 536 

cells, nor did it identify all of the functional types. Given an RGC density of ~1500 cells/mm2 in 537 

the dorsal region of rat retina targeted in these experiments (Danias et al., 2002), 10-15% of RGCs 538 

over the electrode array had well-sorted spikes and were tracked across multiple stimulus condi-539 

tions, requirements for the data analyzed here. Among recorded RGCs, 37+/-3% were not classi-540 

fied because too few cells of other types were sampled. Each stimulus used in this study was pre-541 

sented “full field”, which likely attenuated or silenced spiking in at least some RGC types (e.g. 542 

local-edge detectors; (van Wyk et al., 2006; Zhang et al., 2012)). Moreover, only six irreducible 543 

RGC types were identified. This falls well short of the ~30 (possibly 40) functionally distinct types 544 

that likely exist in the mammalian retina (Field and Chichilnisky, 2007; Völgyi et al., 2009; 545 

Sümbül et al., 2014; Sanes and Masland, 2015; Baden et al., 2016). A more complete functional 546 

classification of RGC types will be facilitated by using a wider variety of stimuli and developing 547 

approaches for recording and spike sorting a higher fraction of RGCs over the MEA (Segev et al., 548 

2004; Prentice et al., 2011; Marre et al., 2012; Yger et al., 2018). 549 

 550 

Correspondences to morphologically defined RGC types 551 

A major goal in retinal research is to generate a complete catalog of RGCs that specifies 552 

the correspondences between their function, morphology, and projections to the brain (Sanes and 553 

Masland). We did not determine the morphology of the recorded RGCs, however their RF sizes 554 

and response kinetics provide some plausible correspondences. The six RGC types examined here 555 

all had relatively large RFs and large well-isolated spikes on the MEA. These features indicate 556 

large dendritic fields and relatively large somas, suggesting correspondences to the A and C groups 557 

of RGCs identified by Sun and colleagues (Sun et al., 2002). The brisk sustained and brisk transient 558 

cells likely correspond to the delta and alpha cells identified by Peichl (Peichl, 1989). The ON and 559 

OFF small transient cells likely have smaller cell bodies and dendrites in the interior of the IPL 560 

because of their transient response properties (Borghuis et al., 2013), suggesting correspondences 561 

to the outer and inner B1 RGCs (Huxlin and Goodchild, 1997). We emphasize that these are hy-562 

pothesized correspondences that require additional experiments to test.  563 

 564 

Diverse contrast response functions across RGC types 565 
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 The contrast response functions (a.k.a. static nonlinearities) associated with each RGC type 566 

differed significantly across the six types we analyzed (Figure 7). Brisk sustained cells were the 567 

most linear, while small transient cells were the most rectified in their output. This trend was pre-568 

sent across both ON and OFF types. The degree of rectification in RGC output has been largely 569 

attributed to rectification in the excitatory synaptic inputs provided by bipolar cells (Zaghloul et 570 

al., 2003; Schwartz et al., 2012; Borghuis et al., 2013; Turner and Rieke, 2016). This predicts that 571 

the different bipolar cells feeding these distinct RGC types exhibit differing degrees of rectification 572 

in their output. These differences are likely shaped by inhibitory amacrine cells (Franke et al., 573 

2017). Importantly, differences in this rectification can play a substantial role in tuning how dif-574 

ferent cell types respond to natural scenes (Turner and Rieke, 2016). 575 

Several recent studies have also examined the benefit of distinct contrast response func-576 

tions for encoding, and how these functions can be optimized given constraints imposed by differ-577 

ent sources of noise within the retina. One benefit of diverse contrast response functions for en-578 

coding is that they could serve to decorrelate a population of neurons responding to complex stim-579 

uli. This decorrelation can reduce redundancy in the population code, thereby transmitting the 580 

same information with fewer spikes (Barlow, 1961; Vinje and Gallant, 2000; Pitkow and Meister, 581 

2012). Alternatively, different nonlinearities may reflect compensation for noise at different stages 582 

of retinal processing to achieve efficient coding (Brinkman et al., 2016). For example, if the dom-583 

inant source of noise is present before rectification, the most efficient coding is achieved by rela-584 

tively linear contrast response functions, while more strongly rectified functions are preferred 585 

when noise dominates after rectification. Determining how the contrast response functions we ob-586 

served either serve or constrain the encoding of natural scenes across six parallel processing 587 

streams is an important direction for future work. 588 

 589 

Functional asymmetries among ON and OFF pathways 590 

Asymmetries between ON and OFF pathways have been observed across a range of species 591 

and contexts. Among primate parasol RGCs, ON cells exhibit larger RFs, briefer temporal inte-592 

gration, and more linear contrast response functions than OFF cells (Chichilnisky and Kalmar, 593 

2002). Some of these asymmetries have been observed in other species and cell types. For exam-594 

ple, alpha cells in guinea pigs and brisk sustained cells in rabbits exhibit at least some overlapping 595 

asymmetries (Zaghloul et al., 2003; Ratliff et al., 2010; Buldyrev and Taylor, 2013).  596 
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The mechanisms that produce some of these asymmetries are clear. For example, system-597 

atic differences in spatial RF size likely reflect systematic differences in dendritic field size be-598 

tween some ON and OFF RGC types (Peichl et al., 1987; Dacey and Petersen, 1992; Tauchi et al., 599 

1992; Ratliff et al., 2010). Asymmetries in contrast response functions between ON and OFF alpha 600 

cells reflect differences in baseline transmitter release from presynaptic bipolar cells (Zaghloul et 601 

al., 2003). Furthermore, differences in intrinsic cellular conductances and synaptic inputs conspire 602 

to yield differences in spontaneous firing, spatial nonlinearities, and other properties (Murphy and 603 

Rieke, 2006; Margolis and Detwiler, 2007; Zhang and Diamond, 2009; Buldyrev and Taylor, 2013; 604 

Turner and Rieke, 2016). 605 

One question raised by these observations is the extent to which these asymmetries mean-606 

ingfully shape downstream visual processing and perception. Asymmetries in ON and OFF re-607 

sponses originating in the retina clearly influence signals in LGN (Jiang et al., 2015), and shape 608 

the responses in primary visual cortex (Yeh et al., 2009; Jin et al., 2011; Komban et al., 2014; Lee 609 

et al., 2016). Furthermore, these asymmetries likely underlie psychophysical asymmetries between 610 

sensing and processing increments versus decrements of light (Pons et al., 2017).  611 

Several studies have indicated that ON-OFF asymmetries are optimizations to the statistics 612 

of natural scenes. First, a theoretical analysis indicates that the division of processing ON and OFF 613 

signals transmits more information with fewer spikes than alternative encoding strategies 614 

(Gjorgjieva et al., 2014). Second, the observation that at least some OFF pathways have smaller 615 

RFs than ON cells may allow the retina to transmit more information about natural scenes, which 616 

exhibit more regions of relative darkness (Ratliff et al., 2010). Similarly, several asymmetries can 617 

be predicted by applying efficient coding theory to natural scenes (Karklin and Simoncelli, 2011; 618 

Doi et al., 2012).  619 

Given previous work suggests that natural scenes and efficient coding can predict one set 620 

of asymmetries (e.g. ON cells having larger spatial RFs than OFF), why do different pathways 621 

exhibit different asymmetries? One possibility comes from a recent analysis of the spatial fre-622 

quency distribution of light and dark asymmetries in natural scenes (Cooper and Norcia, 2015). 623 

This work shows that intensity distributions are skewed toward darker values at low spatial fre-624 

quencies, but not at higher spatial frequencies. This may explain why cell types with the smallest 625 

RFs in this study exhibited nearly equivalent spatiotemporal integration (Figures 6A & B). Two 626 

other considerations may be important as well. First, previous analyses of natural scenes have 627 
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largely focused on static images, not on natural movies, or movies that consider head and eye 628 

movements. These temporal dynamics may interact with the differences in temporal integration 629 

across RGC types to cause different asymmetries to be optimal. Second, previous analyses have 630 

largely focused on just two pathways, one ON and one OFF (Karklin and Simoncelli, 2011). It is 631 

unclear that the conclusions for encoding natural scenes under this context will generalize if a 632 

system has more pathways to utilize for encoding visual scenes. To resolve these possibilities, a 633 

more complete analysis of the interactions between the natural movies (including head and eye 634 

movements; (Wallace et al., 2013)) and the spatiotemporal dynamics of RGC RFs will be required.  635 

Acknowledgements: We thank Jon Cafaro, Lindsey Glickfeld, Fred Rieke, and Kiersten Ruda for 636 

comments on the manuscript, and Teleza Westbrook, Alexander Sher, and Alan M. Litke for tech-637 

nical support. National Institutes of Health and National Eye Institutes R01s EY024567 (G.D.F) 638 

EY021271 (EJC), EY017992 (EJC), P30 EY019005 (EJC), the Karl Kirchgessner Foundation 639 

(G.D.F), the Whitehall Foundation (G.D.F), and the Whitehead Scholars Program (G.D.F). 640 

Declarations of Interests: The authors have no competing interests. 641 

Author Contributions: Conceptualization, S.R., E.J.C., G.D.F.; Data Collection, D.A, M.G., 642 

S.R., G.D.F.; Data Analysis., S.R., D.A., G.D.F., Writing & Editing, S.R., E.J.C., G.D.F.; Super-643 

vision, G.D.F.; Funding Acquisition, E.J.C., G.D.F.  644 

 645 

646 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 4, 2018. ; https://doi.org/10.1101/384891doi: bioRxiv preprint 

https://doi.org/10.1101/384891
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

Table 1 647 

Retina: 1 2 3 4 5 6 7 

ON brisk sustained 33 24 20 26 22 25 38 

ON brisk transient 51 40 50 39 48 53 37 

ON small transient 28 20 23 20 21 30 9 

OFF brisk sustained 34 27 26 31 33 33 23 

OFF brisk transient 52 30 44 36 37 40 48 

OFF small transient 15 10 7 10 14 21 12 

 648 

Table 1. RGC counts are provided for the six RGC types identified and examined across the seven 649 

retinal recordings used in this study. 650 

  651 
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