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ABSTRACT

Invasive non-typhoidal Salmonella (NTS) is among the leading causes of blood stream infections in sub-Saharan Africa
and other developing regions, especially among pediatric populations. Invasive NTS can be difficult to treat and have high
case-fatality rates, in part due to emergence of strains resistant to broad-spectrum antibiotics. Furthermore, improper treatment
contributes to increased antibiotic resistance and death. Point of care (POC) diagnostic tests that rapidly identify invasive NTS
infection, and differentiate between resistant and non-resistant strains, may greatly improve patient outcomes and decrease
resistance at the community level. Here we present for the first time a model for NTS dynamics in high risk populations that can
analyze the potential advantages and disadvantages of four strategies involving POC diagnostic deployment, and the resulting
impact on antimicrobial treatment for patients. Our analysis strongly supports the use of POC diagnostics coupled with targeted
antibiotic use for patients upon arrival in the clinic for optimal patient and public health outcomes. We show that even the use of
imperfect POC diagnostics can significantly reduce total costs and number of deaths, provided that the diagnostic gives results
quickly enough that patients are likely to return or stay to receive targeted treatment.

Introduction
Invasive Salmonellosis can be caused by Salmonella enterica serovar Typhi or Paratyphi A and B, S. Paratyphi C, or invasive
non-typhoidal Salmonella (NTS) serotypes, including S. Enteriditis and S. Typhimurium. Together, these species are responsible
for a gamut of infections from gastroenteritis, typhoid fever, enteric fever to septicemia. NTS, the focal organism of our
study, are a major global threat afflicting an estimated 93 million people annually worldwide1. The manifestation of NTS
infection can vary considerably from mild gastroenteritis to sepsis. Manifestation of NTS infection is divided into invasive
and non-invasive disease, of which the former is responsible for approximately 3.4 million illnesses and over 600,000 deaths
annually world-wide2, 3. Microbiologically treated invasive NTS disease can have a case fatality rate of 20-47% in African
adults and children, and accounts for around 39% of community-acquired blood stream infections in sub-Saharan Africa4–6.
Infants and small children and immuno-compromised individuals such as those with HIV infection or pregnant women, are at
highest risk for NTS due to their compromised or naı̈ve immune system. The focus of this study will be on immuno-naı̈ve and
immuno-compromised populations that are at high risk for invasive NTS.

A novel genotype of Salmonella enterica subsp. enterica serovar Typhimurium (multi-locus sequence type [ST] 313)7 is
increasing in prevalence in Sub-Saharan Africa, and different from ST -19 which is predominant in the rest of the world. These
strains are associated with predominantly the invasive form of the disease, behave differently from classical NTS strains and
are3 evolving to transmit between people directly. The outbreaks are also often associated with increased prevalence of HIV5–7.
Malawi saw an outbreak of NTS from 1998-2004 resulting in 4,956 reported cases of invasive bacteremia disease in Blantyre, a
city of about a million people6. In a pediatric cohort in Siaya, Kenya, the pediatric prevalence of bacteremia was 11% and 20%
of the total pediatric deaths observed in the study were due to bacteremia and 15% of the deaths to Salmonella in particular8.
More recently, ST313 has become increasingly resistant to first-line antibiotics and often exhibits multi-drug resistance (MDR),
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which is associated with a second wave of outbreaks6, 7, 9. Multi-drug resistant NTS represents a threat not only to health in
sub-Saharan Africa, but to the world.

Current diagnostics for Salmonella infections, including invasive NTS, are inadequate to guide timely surveillance and
decision making. Blood culture, which takes 1-5 days to result and has low sensitivity in clinical samples, remains the gold
standard for diagnosis of NTS. Further, culture methodologies require laboratory resources and trained technical personnel,
which is not always readily available in resource limited provinces. Immunoassays are available that either target a pathogen-
specific antigen (antigen test) or measure the antibody responses to the pathogen (serological tests). Antigen tests have moderate
sensitivity and variable specificity, depending on the choice of the recognition ligand (such as antibody) used for the assay.
Rapid serological assays are often used for diagnosis of invasive NTS10, but these methods are unsuitable for use in regions
endemic for NTS, as most individuals from such regions are exposed to the pathogen and will demonstrate an antibody response.
For instance, a seroprevalance study in Malawi showed that all infants were exposed to NTS by 16 months of age, and had
anti-salmonella IgG antibodies in blood, and would consequently test positive with a serology-based diagnostic irrespective
of whether they were infected or not. Polymerase Chain Reaction (PCR) assays offer greater specificity of detection in some
cases, but require laboratory resources, cold-chain reagents and trained personnel. They are also known to demonstrate variable
sensitivity of outcomes, especially in culture-negative cases. Further, high specificity PCR reactions may be ineffective in
rapidly evolving antimicrobial strains of the pathogen.

Better diagnostic tests are needed to improve case finding and management and disease surveillance. Underestimation
of NTS prevalence is common due to inadequate and un-affordable diagnostics. There has been a dearth of methods for the
effective surveillance, diagnosis and treatment of invasive NTS infections in resource limited areas of the world11. Further,
Nadjm et al. showed that current WHO guidelines were unable to diagnose almost one-third of children with invasive bacterial
disease frequently caused by NTS12. Further, half of the isolates were also shown to demonstrate antimicrobial resistance,
requiring further characterization to warrant effective treatment. It is important to note that given the acute manifestation of
NTS infections, including invasive disease, any diagnostic test performed to guide intervention should be rapid and usable
at the point of care (POC). However, POC diagnostics for use in resource poor regions of the world such as sub-Saharan
Africa, where the disease is endemic, should be able to operate with minimal power requirements, technical expertise, and
laboratory infrastructure, while being inexpensive and robust for use. Triage diagnostics, even with lower sensitivity but a
rapid time to result, can facilitate decision making and treatment at the POC. Indeed, the return to the clinic for securing
diagnostics information and initiating treatment is not an option for many individuals in resource poor regions13. The absence
of such specific rapid diagnostics to identify causal organisms and further characterize antimicrobial strains is one of the major
limitations to effective treatment of invasive NTS, thereby minimizing associated mortality and morbidity. Indeed, such rapid
POC diagnostic tests have already proved to be cost effective in regions endemic for malaria and with high multidrug resistance9.
Therefore, the intent of this study is to determine when it is most beneficial to deploy a diagnostic for NTS infection, which
type of diagnostic test is best to guide situational awareness and improve patient outcome, and outline these findings in a cost
benefit analysis.

A major reason for timely and targeted treatment is to prevent mortality associated with antibiotic resistance, and also
minimize its further spread by use of inappropriate treatment strategies. For the purposes of this discussion, antibiotic resistance
is defined as resistance of a bacteria to a broad spectrum antibiotic that was originally effective for treatment of the disease in
question (aka NTS). The improper use of antibiotics can accelerate emergence of resistant bacterial strains. In a study in Ghana,
rates of NTS resistance to particular antimicrobials ranged from 25% to 62%, with 54% of strains being multi-resistant14. In
Congo, 80% of NTS strains sampled were multi-drug resistant15. In Kenya, where this study is based, NTS antibiotic resistance
rates were found to be similar, with more than half of the isolates demonstrating resistance to at least one common antibiotic, and
74% demonstrating multi-drug resistance16. The choice of antibiotics and the treatment regiment used are completely different
for drug-sensitive, resistant and multi-drug resistant manifestations of the disease. Broad spectrum antibiotics commonly
used to treat NTS such as chloramphenicol, ampicillin, gentamicin, ciprofloxacin, and trimethroprim-sulfamethoxazole6, 16 are
replaced by more expensive and elusive third generation cephalosporins and fluoroquinolones5 in drug-resistant manifestations
of the disease. Without correct treatment, resistance proliferates and death rates increase. Effective diagnostics at the POC,
evaluation of antimicrobial resistance, and monitoring prognosis can facilitate targeted treatment of the disease, saving lives
and minimizing further spread of dangerous resistant phenotypes within the community.

While diagnostics can be helpful in determining the correct therapeutic strategy for a given patient, minimizing the misuse
of antibiotics, and thereby controlling the emergence of drug resistance, it is unclear whether the added expense, time, and
questionable dependability of some diagnostic methods out-weigh these benefits. The purpose of our work is use mathematical
modeling to determine the answer to this question. Such models have been developed, albeit with variable focus and for
other pathogens, before. Mathematical models of typhoid are reviewed in17, 18, including a landmark model by19, highlighting
the need for models and economic analysis. Feasey et al. considered the interaction between malaria, HIV, malnutrition,
and rainfall, and pediatric invasive NTS (iNTS)20. They used a structural equation model to observe the effect that each risk
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factor made in the decline of pediatric iNTS with response to public health investments and the connection amongst the risk
factors. In the current literature, there are very few mathematical models for Salmonella, and none for NTS at a population
scale. Models that explicitly include point of care (POC) diagnostics and their impact on patient and community outcomes
are also uncommon. Thus, the goal of our work is to develop a comprehensive mathematical approach to derive cost-benefit
analysis for the development and deployment of diagnostics, considering all parameters that influence outcome (acuteness
of infection, economic stability of the population in consideration, nature of the population, endemicity of the pathogens,
immuno-compromised versus healthy population and others) for invasive NTS infections.

To develop and evaluate the model, we identified the most common diagnostic approaches (not all-inclusive, but predomi-
nant) for NTS infection. We derived the associated costs for these selected diagnostic approaches considered from literature, as
described here. Neither the list of diagnostics nor the costs are intended to be exhaustive, but are used to provide a relative, but
accurate, estimate of cost versus benefit, when employed in the model- thus demonstrating a methodology for making such
assessments quantitatively and accurately. Diagnostics considered in this study include Polymerase Chain Reaction (PCR),
bacterial culture (BC), and antibody-based tests (primarily serological measurements). PCR tests cost about 10 USD, require 24
hours to return results, and are approximately 90 percent accurate10, 21. Bacterial cultures cost about 5 USD, also require nearly
24 hours to results, and are less reliable than PCR, (40-80 percent accuracy rate, depending on the situation)10, 22, 23, and even
lower (∼30 percent) for fecal samples10, 22. Fecal culture cannot discriminate gastro-intestinal manifestation of the disease from
invasive Salmonellosis. Antibody tests cost about 1 USD, require 15 minutes to results, and range in accuracy from 78 to 100
percent10, 22, 24. As such, antibody based tests which largely satisfy the requirements of POC use with respect to simplicity and
cost are lacking in specificity, and are unable to discriminate between invasive and gastrointestinal disease, and are associated
with high false-positive rates in endemic populations. In fact, a seroprevalence study of healthy children in Malawi revealed
that they all had anti-Salmonella IgG antibodies by the age of 16 months, which suggests that infants have been universally
exposed to either non-typhoidal salmonellae or cross-reactive antigens at a young age25. Of course, specific costs, sensitivity
and specificity rates, and time to return results will vary across companies providing the tests and the tests themselves, so we
used the prices and turn-around times listed here as generic estimators of relative costs. Given these expenses, the intent of this
study is to consider when it is most beneficial to deploy a differential diagnostic, which diagnostic is best, and outline these
findings in a cost-benefit analysis. Such analysis can be used in future when new diagnostic methods are being considered for
development and deployment to assess whether the technology can truly impact care in a given situation.

In many regions of the world, antibiotics are prescribed according to symptom severity rather than according to the results
of an empirical diagnostic22. Our model and analysis is based on the at-risk population size and protocols of the clinic
systems in Siaya, Kenya8. This area is representative of regions with poor infrastructure and health access as well as high
at-risk populations in which NTS seems to thrive. Health authorities in Kenya suggest no antibiotic be given to patients with
gastrointestinal symptoms unless a fever is also present, rather administering supportive care such as oral re-hydration salts and
fluids to mildly symptomatic patients16, 26, 27. Antibiotic treatment is not usually advised for uncomplicated cases because there
is no evidence that the recovery rate is accelerated, therefore the patient outcome would be similar28. Also, unnecessary use of
antibiotics can cause negative side effects in the individual, and promote antimicrobial resistance development6. However, some
studies have shown that an individual can be a potential carrier for Salmonella infection for a longer period of time without
an extended treatment regimen22, while others suggest prolonging carrier shedding with treatment29. Antibiotic treatment
may be necessary for infants, elderly and immuno-compromised patients even if they are mildly symptomatic29. Patients with
fever are often given broad-spectrum antibiotics (unless misdiagnosed as malaria, and antimalarials are initially prescribed). A
severely symptomatic patient needs to be treated properly and quickly because enteric fever has a high mortality rate, upwards
of 30%, without proper treatment. The mortality rate drops to as low 0.5% when the correct treatment is given5. Thus it is
imperative to treat patients with invasive fever quickly. With the rapid increase in multi-drug resistance, and the prevalence
of HIV co-infection, tailored and targeted treatment is critical for survival, and for minimizing the long term impact on the
population. We assume in this study that when patients arrive to the clinic they are classified as either “mildly symptomatic” or
“severely symptomatic”, where “mildly symptomatic” patients experience diarrhea and gastrointestinal symptoms only, and
“severely symptomatic” patients experience fever, suggesting invasive infection.

In many developing nations, people are able to obtain and administer antibiotics without prescriptions from a medical
professional16, 30, 31. For example, in Kenya, 24% of children under 5 were reported to have fever in the past two weeks,
55% of them sought medical care, and 44% received antibiotics. Similarly, 16% of children under 5 were reported to have
diarrhea in the past 2 weeks, 56% sought medical care, and 17% received antibiotics31. While this current approach is the
most immediately accessible and initially inexpensive, it allows antibiotics to be administered haphazardly without regard to
the antibiotic’s ability to treat the present strain. Such improper administration of antibiotics results in increased antibiotic
resistance. Accordingly, different combinations of antibiotic treatment and diagnostic deployment may be better able to achieve
the goal of efficiently minimizing the infectious population and improving patient outcomes.

Herein, we report the development of our model for NTS dynamics at a population level, and then demonstrate application
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of the same to various relevant scenarios. We used an Susceptible-Infectious-Recovered (SIR) type mechanistic population-level
model to allow us to assess how use of diagnostics affects disease dynamics, total infection rate, and progression, and deaths
caused by NTS in at-risk populations. A cost-benefit analysis was applied to determine which scenarios limited the overall
costs. To our knowledge, this is the first population-level mathematical model of NTS and the first mathematical model that
incorporates diagnostics and targeted treatment for NTS.

Scenario Setup
The primary goal of this modeling effort is to determine the costs and benefits of deploying POC diagnostics for the control of
NTS while minimizing antimicrobial resistance in high-risk groups. The potential for POC diagnostics to improve patient care is
considered through a series of scenarios differentiated by which group of infectious individuals receive a diagnostic. Infectious
individuals are classified by the severity of their symptoms to form the different groups: mildly symptomatic (gastroenteritis)
and severely symptomatic (invasive disease with fever). As stated before, these scenarios are meant to illustrate the utility of
the model under multiple scenarios and provide motivation for investment in POC diagnostics, thus are not exhaustive. The
distinction between symptom intensity determines which patients receive diagnostics in each of the four scenarios:

1. Full Diagnostic Deployment. All patients receive a POC diagnostic, and are prescribed targeted treatment based on
diagnostic results. They are given alternative treatment in the event of false positives or false negatives exhibited by
failure to recover.

2. Partial Deployment of Diagnostics. POC diagnostics are only given to mildly symptomatic patients with gastroenteritis
and no fever, and targeted antibiotics are prescribed as determined by the diagnostic results. Severely symptomatic
patients with fever are immediately empirically prescribed the broad spectrum antibiotic treatment without a diagnostic
due to often urgent needs of the patient. Then, if they do not respond to that, they are redirected (without a diagnostic) to
antibiotics appropriate for the resistant strain.

3. No Deployment, Antibiotics For All. Neither mildly symptomatic nor severely symptomatic patients receive a diagnostic,
but both groups immediately receive broad-spectrum antibiotic treatment and are redirected to the alternative treatment
for the resistant strain if they do not respond to the initial treatment. This assumes that, in contrast to Kenyan guidelines,
antibiotics are prescribed for diarrhea or people are self-treating with antibiotics.

4. No Deployment, Antibiotics For Severely Symptomatic. Neither mildly symptomatic nor severely symptomatic patients
receive a diagnostic. severely symptomatic (invasive) patients receive a broad spectrum antibiotic and patients that do not
recover are given a treatment appropriate for the resistant strain. Mildly symptomatic with gastroenteritis only are not
prescribed antibiotics and do not self-treat.

The first scenario assumes that a POC diagnostic is available and regularly used for both mildly symptomatic and severely
symptomatic individuals. The second scenario assumes that a physician will not wait for diagnostics to begin antibiotic
treatment for the very ill severely symptomatic individuals, but may order diagnostics for those who are ill but not yet serious
enough for hospitalization. The diagnostics require an added cost and initial expense and likely result in more prescriptions of
the costly resistant treatment as opposed to the scenarios where the less expensive broad spectrum antibiotic is given without
heed to resistance. However, if it can be shown that use of a diagnostic efficiently minimizes the infectious population and deaths
resulting from NTS disease, this would contribute to lessened long-term expenses and provide motivation for diagnostics to be
strategically deployed. The third and fourth scenarios are most common in Kenya16, 26. While physicians are recommended not
to treat mildly symptomatic cases with antibiotics, people can and often do obtain antibiotics without a prescription and some
physicians may prescribe antibiotics even though they are not recommended30, 32, 33. This would align with the third scenario,
while strict adherence to recommendations would correspond more to the fourth scenario. Both assume that diagnostics are
either not readily available or are rarely used or not appropriate. The third and fourth do the least to address the concern of
antibiotic resistance because of the higher risk of improper treatment.

Results
We focused the model on NTS spread in immuno-suppressed (immuno-naive and immuno-compromised) individuals in the
population. However, we also considered a version of the model that accounted for transmission from otherwise healthy adults
and environmental transmission from a water or food source (henceforth referred to as the “Environmental Compartment”, see
Supplemental Material for full model equations and analysis). While most healthy adults will be functionally immune to the
circulating strains, some may still be susceptible and/or may shed the pathogen. However, available evidence suggests that
a very small fraction of healthy adults become infected with and shed NTS. Im et al. 201634 found that prevalence in stool
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of healthy adults ranged from 6.1 - 17.2 (10.3) per 100k in Senegal and 16.5 - 35.1 (24.1) per 100k in Guinea-Bissau. Feasy
et al. 20125 found that only 5% of iNTS cases were in healthy adults, while the rest were HIV-positive. Similarly, Gordon
et al 200235 found that 77 of 78 adults with iNTS were HIV positive. Another study estimated that somewhere between 0
- 3.6% of people infected with NTS in developing countries in Africa end up being carriers for several weeks or months36.
While minimal, transmission from healthy adults (and potentially animals) could have an effect on our analysis. There is very
little known about the exact role that environmental transmission plays in NTS in developing nations in Africa that we are
considering here (see, e.g. Kariuki et al 201537). While NTS have been found in environmental samples and/or in animals
in some regions, the strains found in soil or animals are often not the same as those circulating in the humans38, 39. In fact
there is evidence that transmission is becoming functionally human-to-human in these low-resource areas37. Since animals and
humans live in close proximity and often share the same water sources in low-resource areas, we used one compartment to
account for all additional sources of infection not coming from the high-risk group. We allowed for a small constant input of
infectious doses of NTS to this Environmental compartment to account for long-term shedders. Otherwise, NTS is assumed
to pass back and forth between the Environmental compartment and the high-risk group. We found that while the extended
model with healthy adults and environmental transmission changed the magnitude of simulated outbreaks, it did not change the
qualitative patterns of our results and the relative costs and benefits of deployment of a POC diagnostic. Since general trends of
the high-risk only model were preserved by the more complex model (Figures 6 and 7, Supplemental Material), we present
results here for the simplified model. This is to preserve interpretability, to minimize uncertainty in parameters related to the
Environmental compartment, and because evidence points to most transmission in low-resource countries being effectively
direct and primarily in the high-risk population.

We ran simulations for Scenarios 1–4 for each of “antibody”, bacteria culture (BC), and PCR POC diagnostics explicitly
considering both drug-sensitive and drug-resistant strains circulating (see Figures 1–2). Our model only considers here cost of
point of care (POC) diagnostics that can be used by already available staff and with minimal additional space or resources.
Table 1 gives the cost of each possible ordered combination of Antibiotic treatment to which a sensitive strain of the pathogen
responds (A), Resistant treatment to which the resistant strain responds (R), and Diagnostic deployment (D) in each of the
scenarios. For example, the column heading “Cost DAR” gives the cost of first using a Diagnostic, followed by Antibiotic
treatment, followed by the Resistant treatment (this would be an instance of improper treatment). Table 2 gives the number of
deaths from NTS (D) after 1,000 days of simulation, in addition to the percentage of improperly treated patients and the total
number of diagnostics used.

We found that the status quo baseline scenarios (Scenarios 3 and 4) generally resulted in the highest number of deaths,
larger outbreaks, and the highest costs. Because of the prolific but un-targeted use broad spectrum antibiotics in the baseline
scenarios, the resistant strains have a distinct advantage over the non-resistant strains as evidence by the initial increase in
number of infected for resistant strain curves (Is and Im in Figure 3) while the non-resistant strain dies out relatively quickly.
This indicates that, under our model assumptions and parameter values, if resistance were not present, NTS outbreaks would
not be sustainable in the human population without long-term zoonotic or human carriers. However, with antibiotic resistance,
sustained outbreaks can occur in the human population without outside reservoirs.

When diagnostics are partially deployed to mildly symptomatic individuals, the outbreak size is decreased along with a
decrease in number of deaths from NTS compared to no diagnostic use (Scenario 2, Figure 2 and Tables 1–2). Costs are also
decreased when antibody diagnostics are used, but for culture and PCR, total costs are larger than in Scenario 4 while still
less than Scenario 3. So, while partial diagnostic deployment does save lives and decrease NTS outbreak size, it does so at an
increased or only slightly decreased total cost (Tables 1–2). The cost per life saved ranges from 200-400 USD for Scenario
2. Importantly, the number of lives saved and costs of POC diagnostics and treatment depend on the parameter ρ , which is
the proportion of patients that return for diagnostic results and targeted treatment. Since the antibody diagnostic gives results
within minutes, we assume ρ = 1, or all patients stay. However, since results for BC and PCR may take several hours or a
day, we showed results two scenarios, ρ = 0.6 and ρ = 0.8 in Table 2. When ρ = 0.8, the improvement of Scenario 2 over
Scenarios 3 and 4 in terms of both cost and number of deaths from NTS is marked. However, gains are moderate but noticeable
when ρ = 0.6.

When diagnostics are fully deployed (Scenario 1) and directly inform choice of treatment, the outbreak peak is decreased
by a factor of 4 compared to Scenario 4 for the antibody diagnostic. For the antibody diagnostic scenario, the outbreak is
quenched within the first three months (Figure 1). In scenarios where more time-consuming diagnostics such as PCR and
culture were used, results depended on the value of ρ (Tables 1–2). Since diagnostics are applied universally in this scenario, it
is critical that most patients return or stay to get the diagnostic result and treatment. When ρ = 0.8, so 80% of patients return
for treatment and results the next day, Scenario 1 is hands-down the best option (Figure 1a). The outbreak is extinguished
quickly and costs per life save range from 7-22 USD. However, if ρ = 0.6, then Scenario 2 out-performs Scenario 1 in terms
of lives saved (Figures 1c-1d). The total costs, including diagnostics and antibiotics, were significantly less for Scenario 1
than in any other scenario when ρ = 0.8. In Scenario 1, when compliance is decreased to ρ = 0.6 by having to wait a day for
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Figure 1. Simulations of Scenario 1 (Full Diagnostic Deployment). Figures 1a–1b show outputs from infected compartments
of the differential equations for the antibody and PCR diagnostics, respectively. Is is the resistant strain and severely
symptomatic, Js is the sensitive strain and severely symptomatic, Im is the resistant strain and mildly symptomatic, Jm is the
sensitive strain and mildly symptomatic. Figures 1c–1d show total number of deaths through time for different values of ρ , the
proportion of patients who stay for diagnostic result and receive targeted treatment, for bacteria culture and PCR.

diagnostic results (Figures 1c-1d), 40% of severely symptomatic cases remain untreated, so the number of deaths is comparable
to Scenarios 3 and 4.

While data capturing a full outbreak of NTS is rare, we compared our results to a recorded outbreak in a location in Malawi
about the same population size as we consider here. To simulate this outbreak of a new strain, we ran scenario 3 with lower
initial conditions (5 people in each infectious category). The Blantyre district in Malawi serves a population of about 1 million
urban and rural-dwelling people6 and the study was over 7 years in the district’s government funded hospital. They recorded a
total of 4,956 cases of invasive NTS during the outbreak over 7 years. The hospital does not treat all sick people in the district,
and many who had NTS during this outbreak either did not seek treatment at this hospital, or were not properly diagnosed.
While we couldn’t find a health care usage study for Malawi, only 20-30% of the population in Tanzania sought health care at a
hospital for fever, with percents throughout Africa ranging from 20-80%40. We also know that in high-risk groups about half of
NTS cases are invasive (Table 5). Then, we conservatively estimated that the proportion of total NTS cases in the Blantyre
high-risk group observed by the hospital is: proportion invasive × proportion seeking care × proportion of population the
hospital serves = 0.5 ·0.5 ·0.5 = 0.06 or 6%. Then there were likely more than 39,000 cases of NTS in Blantyre during the
outbreak and, with a 25% death rate for iNTS cases, more than 4,800 deaths. Our model estimated 5,700 deaths during the
seven year outbreak (see Figure 6 in Supplemental Material).

The basic reproduction number, R0, is the expected number of secondary cases resulting from a single infectious case
introduced into a fully susceptible population. It is a measure of the capacity of a pathogen to spread within a population and
cause an epidemic. If R0 < 1 then it is unlikely for the disease to cause an epidemic, while if R0 > 1, and outbreak is likely.
For Scenario 4 (simplified model) with no POC diagnostics used, RJ

0 = 0.86 < 1 while RI
0 = 1.17 > 1. So, in the absence of
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Figure 2. Results from Scenario 2 (Partial Deployment of Diagnostics). Figures 2a–2b show outputs from the infected
compartments of the differential equations for the antibody and PCR diagnostics, respectively. Is is the resistant strain and
severely symptomatic, Js is the sensitive strain and severely symptomatic, Im is the resistant strain and mildly symptomatic, and
Jm is the sensitive strain and mildly symptomatic. Figures 2c–2d show total number of deaths through time for different values
of ρ , the proportion of patients who return for diagnostic results and receive targeted treatment, for bacteria culture and PCR.

diagnostics, the sensitive strain will die out while the resistant strain will persist due to large-scale improper use of antibiotics.
However, for Scenario 1, with full use of POC diagnostics, and the antibody diagnostic, RJ

0 = 0.81 < 1 and RI
0 = 0.77 < 1, and

both strains will die out. We found that the basic reproduction number for each scenario is highly sensitive to the transmission
rate, α , in a way that depends upon the scenario and diagnostic used (Figures 5a–5b). R0 is also sensitive to the proportion of
cases that become invasive, γ and β for sensitive and resistant strains respectively, with R0 increasing as both γ and β increase.
Finally, R0 is sensitive to the compliance rate, ρ , which depends on the time it takes to get the diagnostic result back (Figure
5b in Supplemental Material). Understanding how R0 changes as the parameters change informs both potential avenues of
intervention and changes in disease dynamics under particular scenarios.

We also used statistical sensitivity measures (Partial Rank Correlation Coefficients (PRCC) and extended Fourier Amplitude
Sensitivity Testing (eFAST)) to understand how the total number of deaths from NTS is related to the parameter values. Since
PRCC and eFAST reveal different aspects of how parameters influence a model, for a more complete sensitivity analysis it is
good practice to use both sensitivity measures41. PRCC values give information as to what extent changing the value of one
parameter will increase or decrease the value of the output parameter (where uncertainties in other parameters are discounted).
eFAST, on the other hand, provides insight into which uncertainties in parameters cause the most uncertainty in the model
output. Thus, the most important set of parameters from PRCC analysis reveal the parameters we should target if we wish
to most effectively reduce deaths (D), whereas the parameters tagged as important in the eFAST analysis tell us for which
parameters we should obtain more accurate values in order to reduce our uncertainty in the output, D.

The model output of interest, total number of deaths from NTS, is most sensitive to parameters with large PRCC and/or
eFAST sensitivity indices. The parameter α (the transmission rate) returns the highest PRCC and eFAST sensitivity indices
for all four scenarios. Furthermore, in all scenarios, PRCC and eFAST are in strong agreement regarding the importance of
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>

(a)

>

(b)

Figure 3. Results from Scenario 3 (No Deployment, Antibiotics For All) and Scenario 4 (No Deployment, Antibiotics For
Severely Symptomatic Only). Figure 3a and Figure 3b do not display the Susceptible or Death from Disease populations in
order to better observe the Infectious compartments. Is is the resistant strain and severely symptomatic, Js is the sensitive strain
and severely symptomatic, Im is the resistant strain and mildly symptomatic, Jm is the sensitive strain and mildly symptomatic.
The outbreak in Scenario 3 is larger than those of Scenario 2 in Figure 2. Scenario 4 results in the largest outbreak compared to
all other scenarios.

Table 1. Costs of diagnostic deployment and antibiotic use for each scenario where A is the cost of standard antibiotic
treatment (effective on sensitive strain), R the cost of resistant strain treatment, and D the cost of the diagnostics. All costs are
in U.S. Dollars (USD).

Scenario Diagnostic Cost A Cost AR Cost DA Cost DAR Cost DR Total Cost
Used (USD) (USD) (USD) (USD) (USD) (USD)

1

Antibody 0 0 12,028 6,379 47,411 65,818
BC (ρ = 0.6) 0 0 240,548 103,573 142,916 487,037
PCR (ρ = 0.6) 0 0 333,506 42,741 123,966 500,213
BC (ρ = 0.8) 0 0 60,565 30,657 75,981 167,203
PCR (ρ = 0.8) 0 0 70,963 10,169 74,143 155,274

2

Antibody 7,478 534,847 2,581 12,454 309,942 867,302
BC (ρ = 0.6) 8,332 723,544 2,531 17,238 257,184 1,008,829
PCR (ρ = 0.6) 8,302 698,158 3,679 7,501 313,148 1,030,788
BC (ρ = 0.8) 7,931 653,079 3,039 19,539 289,468 973,056
PCR (ρ = 0.8) 7,896 622,510 4,408 8,335 346,210 989,359

3 None 9,744 1,014,473 0 0 0 1,024,217
4 None 10,151 973,402 0 0 0 983,553

each parameter. In Scenario 1, PRCC and eFAST both rank κa (rate of clearance of sensitive strain after receiving antibiotics)
as the second most important, followed by γ (proportion of non-resistant infections that are invasive). In Scenario 2, PRCC
and eFAST return β (proportion resistant infections that are severely symptomatic/invasive) and κ0

ar (rate of clearance of the
resistant strain after receiving broad spectrum and then resistant-appropriate antibiotics, with no diagnostics) as the next two
most important parameters, behind α . The top three parameters for Scenarios 3 and 4 are the same as for Scenario 2, for both
PRCC and eFAST.
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Table 2. Number of deaths from NTS, percent of cases improperly treated, and the number of diagnostics used in each
scenario run for 1,000 days.

Scenario Diagnostic Number Improperly Treated Num. Diagnostics
Used Deaths (People) (Percent) Deployed

1

Antibody 429 4.2% 2,118
BC (ρ = 0.6) 9,113 6.4% 21,460
PCR (ρ = 0.6) 8,382 2.6% 20,383
BC (ρ = 0.8) 1,840 6.7% 6,056
PCR (ρ = 0.8) 1,452 2.5% 5,009

2

Antibody 5,141 59.1% 5,329
BC (ρ = 0.6) 6,952 70.3% 4,226
PCR (ρ = 0.6) 6,710 67.1% 4,612
BC (ρ = 0.8) 6,268 66.2% 4,773
PCR (ρ = 0.8) 5,979 62.8% 5,118

3 None 7,512 93.3% None
4 None 9,441 92.8% None
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Figure 4. Subfigure 4a compares the number of deaths resulting from NTS with the percent of cases that are improperly
treated. Number of deaths (left axis, purple bars) increases with percent of improper treatment (right axis, blue dots) and with
time to POC result and patient compliance (“rho”). Subfigure 4b shows the number of lives saved (left axis, blue bars) in
comparison to Scenario 4 and the cost per life saved (right axis, orange dots). The cost per life saved generally decreases with
increased POC diagnostic deployment, targeted treatment, and patient compliance. If ρ = 0.6, or only 60% of patients return
for diagnostic results and treatment the next day, then it is better to treat the severely symptomatic right away and reserve
diagnostics for mild disease.

Discussion
Accurate diagnostics can definitely guide targeted treatment. But for the diagnostic method to be effective in guiding decisions,
preventing community impact and impacting situational awareness, several parameters other than sensitivity and specificity
need to be considered. These include, but are not limited to, cost, speed to result, relative ease of use, and requirement of
trained and experienced personnel. In this study, we have evaluated the impact of deployment of diagnostics for invasive NTS
infection in a resource limited population and assessed a) impact on the individual and b) impact on the population, especially
with respect to improved situational awareness and spread of antimicrobial resistance. In contrast to current understanding, full
deployment of diagnostics resulting in targeted antibiotic use, resulted in a 50-90% reduction in total costs in our model, where
the cost of diagnostics and antibiotics are also included (Figure 4). We inflated the cost of resistant antibiotic treatment to
reflect the extreme un-desirability of multi-drug resistant strains, and to highlight the cost of resistant cases to both individuals
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Table 3. PRCC values, first- and total-order indices with their p-values for measuring the sensitivity of Scenario 1, 2, 3 and 4’s
parameters to model R. Parameters were allowed to vary ±50% of their nominal values. The sample space was obtained using
Latin Hypercube sampling. Values with a * have a p value less than 0.05. κ0

∗ is the treatment/recovery rate when no diagnostic
is used and κ∗ is the rate with time to diagnostic result added (see Methods).

Scenario Test κ0
ar κ0

a κar κa κr µs µm σanti λanti α β γ θ

1
PRCC - - -0.0534 -0.7391* -0.4187* -0.0112 0.1262* -0.2693* -0.4131* 0.8998* 0.2666* 0.5571* -0.3641*
Si - - 0.0029* 0.0903* 0.0110* 0.0077* 0.0000 0.0038* 0.0120* 0.3014* 0.0053* 0.0609* 0.0078*
Sti - - 0.0164* 0.2031* 0.0545* 0.0261* 0.0022 0.0209* 0.0478* 0.5054* 0.0389* 0.1635* 0.0212*

2
PRCC -0.7819* -0.3438* -0.0424 -0.0118 -0.1590* -0.4053* -0.0149 -0.0865* -0.0043 0.9302* 0.7922* 0.2168* -0.2403*
Si 0.1361* 0.0092* 0.0000* 0.0000* 0.0008* 0.0386* 0.0000 0.0003* 0.0000 0.5343* 0.1311* 0.0042* 0.0061*
Sti 0.2173* 0.0482* 0.0002 0.0006* 0.0027* 0.0692* 0.0001 0.0011* 0.0002 0.6356* 0.2298* 0.0256* 0.0135*

3
PRCC -0.8158* -0.3415* - - - -0.4358* 0.0814* - - 0.9440* 0.8002* 0.2187* -0.4446*
Si 0.1521* 0.0078* - - - 0.0249* 0.0000 - - 0.5375 0.1283* 0.0029* 0.0123*
Sti 0.2235* 0.0362* - - - 0.0441* 0.0006 - - 0.6324* 0.2063* 0.0248* 0.0246*

4
PRCC -0.7757* -0.2838* - - - -0.4388* 0.0073 - - 0.9393* 0.7435* 0.1887* -0.5139*
Si 0.1191* 0.0061* - - - 0.0230* 0.0000 - - 0.5977* 0.1155* 0.0024* 0.0346*
Sti 0.1763* 0.0306* - - - 0.0405* 0.0005 - - 0.6726* 0.1802* 0.0170* 0.0592*

and public health. We did not explicitly assign a cost to morbidity or mortality, but did quantify the change in number of deaths
from NTS, and the size of an outbreak under considered scenarios. As has been observed for Salmonella Typhi (typhoid), our
study shows that early detection and appropriate treatment are much more effective and cheaper than the status quo9, 17, 42, 43.

We found that deploying point of care diagnostics with resulting targeted antibiotic use almost always results in both lives
saved, and a total reduction in cost, as well as a smaller community-wide outbreak. Specifically, our findings indicate that rapid
POC diagnostics that can guide therapuetic intervention with relevant antimicrobials in a timely manner are associated with
maximal benefit to both the patient and the community at large. There is evidence in Kenya that freely available health care and
proper treatment can reduce the prevalence of antibiotic-resistant strains of NTS16. Many lives can be saved by even partial
deployment of reasonably effective diagnostics (with moderate sensitivity and specificity). Once diagnostics are deployed and
used regularly, further increases in sensitivity and specificity can result in gains in terms of lives saved. The highest percentage
of improperly treated in full diagnostic deployment (Scenario 1) is still lower than the lowest percentage of improperly treated
in partial diagnostic deployment (Scenario 2). In particular, the use of an antibody diagnostic in Scenario 1 resulted in the
lowest percentage of improperly treated patients of any of the diagnostics in any scenario at 4.2%, as well as the lowest total
cost of any Scenario at $65k. Further contributing to the advisability of Scenario 1 with the antibody diagnostic is the lowest
number of deaths from NTS during the outbreak, at 429. However, if ρ = 0.6 so only 60% return for targeted treatment, then
Scenario 2 where sever cases are treated right away and diagnostics are reserved for mild symptoms, is more advisable for BC
and PCR.

Spread of antimicrobial resistance is minimized when proper treatment is administered and the corollary is true with
improper or unnecessary use of antibiotics. Thus, high percentages of improperly treated patients are not desirable. Scenarios 3
and 4, with no diagnostics deployed, have high percentages of improperly treated people. The highest total cost of any of the
scenarios with the most deaths from disease (see Table 1) is also evident in these cases. Even with partial diagnostic deployment
(Scenario 2) if ρ = 0.8, lives are saved regardless of the diagnostic used (Table 1 and Figure 4), compared to no diagnostic
deployment (Scenarios 3 and 4) (reduced by 26 - 54%). Full POC diagnostic deployment (Scenario 1) that can not only identify
the cause, but also provide therapeutic intervention at the time of the visit, reduces the number of deaths significantly. Even
with diagnostics that are more time consuming, full-deployment results in significantly lower death rate with a 45% reduction
for a culture diagnostic, a 60% reduction for PCR, and a 96% reduction in deaths compared to Scenario 4 for antibody when
ρ = 0.8. Total cost of treatment for BC and PCR in Scenario 2 is higher than total cost of treatment for Scenario 4, however
(Table 2 and Figure 4). Counter-intuitive to expectations, our results show that the full deployment of diagnostics (Scenario 1,
ρ = 0.8) is in fact, cheaper than all other scenarios, and is the only scenario where cost for properly treated outweighs cost for
improperly treated (Table 2 and Figure 4). If ρ ≤ 0.6 then Scenario 2 is better than Scenario 1 with BC and PCR since less than
60% of people with iNTS will be treated under Scenario 1 (BC and PCR). It would be interesting in future work to consider a
hybrid version of Scenarios 1 and 2 for BC and PCR.

For full and partial deployment of POC diagnostics, bacterial culture and PCR diagnostics were found to present with
higher percentages of improper treatment than the antibody-based methods, suggesting that the the former two approaches
do not adequately minimize antibiotic resistance. While some of this is due to lower sensitivity and specificity, our analysis
suggests that the biggest factor is the time it takes to get a result back, which is directly related to ρ , the proportion of people
who return to get diagnostic results and targeted treatment. Rapid diagnostics are most effective in our model to minimize
impact and mitigate spread. Additionally, the percent of improperly treated NTS cases contributed significantly to higher total
costs at both an individual and population level.
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Apart from diagnostic use, the number of deaths from NTS can be reduced most significantly by decreasing the transmission
rate (α). When full diagnostics are deployed (Scenario 1), increasing κa, the rate at which the sensitive strain is cleared after
receiving antibiotics, or decreasing the proportion of non-resistant NTS people who progress to invasive disease (γ) are the most
effective ways to reduce deaths. In all other scenarios, it is more effective to increase κ0

ar, the rate at which the resistant strain is
cleared after receiving broad spectrum and then resistant-appropriate antibiotics, with no diagnostics, or to decrease β , the
proportion of NTS resistant individuals who are symptomatic. In the sensitivity analysis for Scenario 1 with antibody diagnostic
(Table 8), α , β , γ , κa, λanti, and σanti have significant p-values in each of PRCC values and eFAST single index Si and total
index Sti values. Once full diagnostics use with the antibody diagnostic (POC with very quick results, ρ = 1) is in place, the
sensitive parameters indicate the next best areas for improvement. The current primary methods of reducing transmission
are improved infrastructure and sanitation, education and surveillance, decreasing the carrier and reservoir populations, and
use of a vaccination. However, these improvements that reduce transmission rate, α , take a long time to implement and are
inherently tied to the socio-economic growth of the region, making a short-term solution necessary. The proportion of people
who progress to invasive disease (γ,β ) depends on the pathogen strain and on the health status of individuals in the community.
Improving nutrition, decreasing malaria spread, reducing HIV prevalence, improving treatment for HIV and malaria, and
generally improving public health access would reduce the number of invasive cases. However, as with transmission reduction,
these are long-term goals that would take years to implement. Time to recovery after treatment, κa, and the sensitivity and
specificity, λanti and σanti, can be improved with new drugs and better diagnostics. So, while the largest gain by far comes
from implementing moderately accurate POC diagnostics and targeted treatment in the first place, improvements in diagnostic
accuracy would improve outcomes even more. The rates at which a particular antibiotic clears invasive and non-invasive
NTS, κar and κa respectively, are among the most significant in each of our sensitivity analyses. So, as research in treatment
progresses, and duration of antibiotic treatment needed to clear the pathogen decreases, the number of deaths from NTS will
also decrease. Reducing this time, however, would require new drug discovery or approval of new dosages.

The transmission rate can be higher in small children and immuno-compromised adults and these rates vary even among
these high-risk groups. We chose a baseline transmission risk determined from computations of incidence in the general
population as a starting place to compute something like minimal risk for these groups. Our standard simplifying assumption of
even mixing within the population generally results in higher overall transmission than is observed in the field, warranting
conservative estimates of transmission. Our goal, then, was to calculate the impact of NTS and diagnostics/targeted treatment
on a mixed population of high-risk people. In future models, it would be interesting to consider the high-risk groups separately
to tease out the impact of targeted interventions in the sub-populations.

We also considered carriers or people with recrudescence and recurring infections that could act as sources for infecting the
community in our model via an “Environmental” compartment. HIV-infected adults35 are at particular risk of becoming carriers.
In fact, there is evidence that, unlike in the developed world, the NTS313 strain can be spread directly between humans rather
than strictly via zoonoses, facilitated by carriers and immuno-depressed and immuno-naive individuals44. Maximum duration of
shedding is believed to be 1 year for carriers and is 4-7 weeks for most other cases14, 28. The Environmental compartment also
included zoonotic reservoirs, while the simplified model set transmission proportional to the number of people infected. As seen
in Supplemental Material, the additional hosts served to increase the overall transmission, with magnitude depending on the
density of additional reservoirs and carriers and their contact with susceptible high-risk hosts. It did not change general patterns
in the effectiveness of diagnostic and treatment deployment. When reservoirs and carriers were not considered, our model did
not exhibit long-term persistence of non-resistant NTS, but rather isolated outbreaks. This is consistent with observations in
regions without significant carriers/reservoirs and with improved sanitation. However, it should be noted that in the absence of
diagnostics, a 20% increase in the transmission rate, α , would bring the non-resistant strain R0 above 1 and that without the
use of diagnostics, the resistant NTS strain has R0 > 1 and can persist long-term in the system without carriers. It would be
interesting to consider carriers and reservoirs in more detail in order to understand the potential roles of antiretrovirals and
sanitation on the system. However, further studies and data would be needed to parameterize such a detailed model.

NTS responds strongly to co-morbidities and risk factors such as HIV, malnutrition, malaria infection, and anemia, as well
as rural settings and age3, 5. It would therefore be interesting to consider how addressing these co-morbidites and risk factors
(i.e. treating malaria, antiretrovirals for HIV, improved nutrition) would change NTS dynamics. We only considered NTS
in this study, but propose to extend this approach to include multiple circulating pathogens, including bacteria, viruses, and
macro-parasites, that cause similar symptoms, to examine how a combination of empirical and diagnostic decision making
could best be deployed in high-disease-burden areas in future studies. In Kenya, the most common diarrheal infections are
caused by NTS, Rotaviruses, Salmonella Typhi, and E. coli16. There is currently no vaccine for NTS, but there has been research
in this area, making including vaccination a possible extension to our model45. To further develop this model, we would like to
explicitly quantify the cost in antibiotic resistance in some manner other than that represented by the cost of improper treatment.
A potential way to do this would be to track the variability of percent of resistant cases across scenarios. There is also potential
for the methods used here to be generalized and applied to other antibiotic-resistant bacteria case studies.
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In the interest of clarity along with sparsity of relevant data, we made several assumptions in our model that may need to
be relaxed or re-evaluated for a more accurate assessment for particular geography, populations, diagnostics, and available
antimicrobials. We assumed that upon recovery, all at-risk patients returned to a fully susceptible state. In fact, there may be a
period of immunity, which is supported by the fact that most healthy adults from endemic regions develop immunity from
Salmonellosis. This assumption may result in model outbreaks moving faster than is observed in the field. However, in total
numbers, our model output is comparable to an outbreak in Malawi6. We assumed everyone who was infected sought treatment.
Since the actual rate of seeking treatment is confounded by several factors, including distance from health provider, access to
health care, economic status, acquiring treatment from traditional healers or from non-licensed pharmaceutical vendors, among
other, this assumption will need re-visiting based on more focused data from different populations. We began our simulations
with equal numbers of drug-susceptible and drug-resistant infections and with a significant number of initial infections which
may or may not be likely under normal conditions. This assumption also avoids the initial, highly stochastic, invasion of a strain.
We assumed that, absent antibiotics, the resistant and sensitive strains are equally fit. Fitness of antimicrobial resistant strains is
an evolving field of study, and current research suggests that while many pathogens acquire resistance to antimicrobials at a
fitness cost, the human-adaptation and evolution of some strains may overcome these limitations46, 47. Finally, different culture,
PCR, and antibody diagnostics have pros and cons that were not fully addressed in this study nor explicitly included in the
parameter values. Some diagnostics can only detect certain strains, so must be targeted for the region considered, while others
are more general and more likely to detect and emerging strain. Most likely, a combination of diagnostic methods that provide
different information would be prudent in the field.

Despite these many assumptions, the core question of whether deployment of a diagnostic can improve patient outcomes
and mitigate the spread of antibiotic resistance is effectively answered by our work. This is true because the assumptions impact
each scenario equally. Each of these assumptions can be re-visited and investigated using our modeling approach to obtain
more granularity on deployment of diagnostics in a chosen population. In conclusion, our analysis gives tantalizing evidence
that POC diagnostic deployment coupled with improved treatment not only greatly reduces number of deaths and disease,
but significantly mitigates overall costs associated with NTS. Our model shows that even imperfect diagnostics (e.g. under
95% specificity and sensitivity) are much better than none at all for the individual, and the community, and suggest that it is
critical that the time to result and proper treatment should be minimized to improve outcomes. Diagnostics have the potential
to provide important situational awareness for local, state, country and even global public health decision makers. Since no
gold-standard diagnostics for NTS currently exist10, 48, we hope this research will motivate more investment in understanding
NTS dynamics and developing point of care diagnostic capabilities.

Methods
Description of the Model:
Systems of ordinary differential equations are used to model each of these scenarios by considering variations of a continuous-
time compartmental SIR-type model. In this framework, patients are either Susceptible (S), Infectious with Resistant NTS
(I), Infectious with Sensitive NTS (J), or Removed via death (R). To include other sources of NTS in the environment WI
and WJ are the environmental sources of resistant and sensitive NTS, respectively. The Susceptible compartment includes
immuno-compromised (e.g. HIV positive) and immuno-naive (e.g. infants or young children) individuals that are at high risk
for symptomatic NTS infections. The infectious compartment includes all infected and infectious individuals. The Removed
via death compartment includes only individuals who have died as a result of NTS.

While the reality of immune dynamics is more complicated than our simplifying assumption, we found significant evidence
that young children and HIV-positive people do not gain functional immunity to NTS. Even with previous exposure, children
do not gain immunity until around 36 months of age36, 49, 50, particularly with common added factors of malaria, malnutrition,
recent antimicrobial use, sickle cell, etc. HIV-positive people have also been observed to exhibit susceptibility to NTS after
infection (recrudescence is also observed)5, 51. So, due to unknowns about permanent immunity in immuno-compromised or
immuno-naive populations and the high number of strains circulating, individuals in the Infectious compartment who recover
return to the Susceptible compartment48.

S(t), I∗(t),J∗(t), R(t) and W∗(t) then give the population at time t that are in each of the compartments. The rate of
movement between the compartments is dictated by a combination of relevant parameters which are described below52. In each
scenario, patients are classified as either mildly symptomatic (subscript m, gastroenteritis) or severely symptomatic (subscript s,
invasive with fever) with sensitive strains of NTS (denoted by Jm and Js) and resistant strains (denoted Im and Is). ‘Sensitive’
strains of NTS respond to commonly prescribed broad-spectrum antimicrobials, while ‘resistant’ strains are resistant to one or
more common antimicrobials.

The proportion of individuals infected with the resistant strain who are mildly symptomatic is represented by β and the
proportion that are severely symptomatic is 1−β . Likewise, the proportion of individuals infected with the sensitive strain who
are mildly symptomatic is represented by γ and the proportion that are severely symptomatic is 1− γ . The mildly symptomatic
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Table 4. Time until diagnostic results received by clinic, assumed cost of each diagnostic, and assumed cost of antibiotic
treatment. Costs or antibiotics are estimated based on averages and capture the relative cost of first-line antibiotics and
antibiotics effective against resistant strains16.

Parameter Diagnostic Time (days) Cost (USD)

φ

Antibody 0.0104 1
BC 1 5
PCR 1 10

Broad Spectrum Antibiotic Treatment Course 8.38
Resistant Antibiotic Treatment Course 62.50

Table 5. Parameter descriptions, baseline values, parameter ranges, and references.

Parameters Definition Baseline Range
κa Broad Spectrum Antibiotic Treatment 1

14+φ
14 days22

κr Resistant Antibiotic Treatment 1
14+φ

10-14 days22

κar Broad Spectrum then Resistant Treatment 1
28+φ

24-28 days16, 22

κra Resistant Treatment then Broad Spectrum Treatment 1
28+φ

24-28 days22

µs Symptomatic Death Rate 0.0195 0.0179-0.04465, 53

µm Mildly Symptomatic Death Rate 0.0038 0.00027 - 0.00735, 16, 54

σPCR Diagnostic Sensitivity for PCR [0,1] 0.95 90-100%10, 23

λPCR Diagnostic Specificity for PCR [0,1] 0.95 90-100%10, 23

σBC Diagnostic Sensitivity for Bacteria Culture[0,1] 0.79 79%10, 23

λBC Diagnostic Specificity for Bacteria Culture [0,1] 0.89 89%10, 23

σAB Diagnostic Sensitivity for Antibody [0,1] 0.89 78-100%10, 23

λAB Diagnostic Specificity for Antibody [0,1] 0.92 90-94%10, 23

α Infection Rate 0.0000027 0.1*α–2*α5, 16

β Proportion of Resistant NTS Severe[0,1] 0.53 0.2-0.62, 16, 55

θ Natural Clearance Rate 0.175 0.123 - 0.305, 16

γ Proportion of Non-resistant NTS Severe [0,1] 0.47 0.2-0.555

αw Infection Rate from Environment 0 0.1α −2α5, 16

ψ Environmental Source of NTS 6 [assumed]
τ Shed Rate of Infectious into Environment 0.01 [assumed]
θw Natural Clearance Rate of NTS in the Environment 0.07 0.03–0.555

ρ

Fraction treated after receiving Antibody Diagnostic 1.0 0.8-1.0 [assumed]
Fraction treated after receiving BC Diagnostic 0.6 0.5-0.7 [assumed]
Fraction treated after receiving PCR Diagnostic 0.6 0.5-0.7 [assumed]

death rate for the high risk population, µm, was calibrated to give a case fatality rate of 2% with a range of 0.15%−4%54. The
symptomatic death rate, µs, was calibrated to give a mean case fatality rate of about 22% for the non-resistant strain and 35%
for the resistant in the high-risk population with no diagnostics used; a range of about 20% - 50% is observed in the literature4, 5.

We assumed that transmission of NTS in a community is proportional to the number of infectious individuals (I∗, J∗) at any
given time. Additionally, we modelled environmental sources of NTS such as zoonotic reservoirs and human long-term carriers
as the compartments WI and WJ . We calibrated the transmission rate, α , to correspond to an incidence of about 200 people
per 100,000 per year3. Computed incidence varies significantly across studies and regions, probably due to a combination of
limited data and variation in the high- and low-risk populations. Incidence in the general population ranges from 1.4−2,520
per 100k4, was 175-388 per 100k in children in the same study and 1800-9000 per 100k in HIV positive adults51. Feasy et
al. 2012 found similar numbers with 2000-7500 per 100k in HIV positive adults5. Mandomando et al. 2009 found iNTS
incidence of 240/100k and 108/100k56. To capture this variation, we considered a wider range of transmission rates in our
sensitivity analysis. We let the transmission rate, α , be the same for both resistant and non-resistant strains. The environmental
transmission rate, αw, has been found to range anywhere from 0.1α to 2α in environmental transmission models57–60. We
found no models for environmental transmission of NTS in humans. Though we analyzed our model outputs for this entire
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range, the qualitative nature of the model results did not change from the case when αw = 0. Therefore, for simplicity, the
results reported above correspond to the case when αw = 0.

In our model, κ∗ is the rate pathogen clearance from treatment, where 1/κ∗ is the average time for course of treatment and
full recovery. There are two types of treatment: a general antibiotic which successfully treats the sensitive strains of NTS, and
is denoted by parameters with the subscript a, and the resistant treatment which treats resistant strains of NTS and is denoted by
subscript r. When the strain of NTS is not responsive to the first treatment, the other treatment is applied and the treatment rates
become κar, or the rate at which a patient incorrectly receives the standard sensitive strain antibiotic treatment then the proper
resistant treatment, and κra, the rate at which a patient incorrectly receives the resistant treatment then the standard antibiotic
treatment. In some cases, the resistant treatment will also clear sensitive strain, in which case κra = κr. A treatment procedure
which takes a longer amount of time (e.g. use of a broad spectrum antibiotic and then a resistant treatment) would have a lesser
κ value, and thus move individuals from the Infectious compartment to Susceptible (i.e. infection cleared) at a slower rate. We
assume that everyone who needs treatment is given treatment. When diagnostics are used, we add the diagnostic result time
to the total treatment time (Tables 4 and 5). For example, if it takes an average of 14 days for the individual to recover after
being given standard antibiotic treatment and clinic receives the diagnostic result in 1 day, then the recovery rate, κa, for that
treatment would be 1

14+1 . When diagnostics are not used, we will not add the diagnostic result time to the time to clearance; the
treatment and clearance rates without diagnostics are referred to as κ0

∗ , i.e. φ = 0. For the example above, κ0
a = 1

14 .

The parameter σ corresponds to the sensitivity of the POC diagnostic; this is the proportion of resistant NTS infections
that the diagnostic correctly determines, resulting in the patient receiving the proper treatment. The remaining (1−σ) will
initially receive the improper treatment and then receive proper treatment with rate constant κar. The parameter λ corresponds
to the specificity of the diagnostic; this is the proportion of non-resistant NTS infections which the diagnostic determines.
The remaining (1−λ ) will receive the improper treatment. All terms involving the use of a diagnostic before treatment are
multiplied by a compliance constant, ρ . Because diagnostics are time-consuming, patients are at risk for leaving the clinic
post-diagnostic and not returning and ρ accounts for the probability that a patient returns and seeks treatment given time to
diagnostic result.

The natural clearance rate, θ , is the rate at which the body clears NTS without the help of an antibiotic. For our model, the
severely symptomatic compartments (invasive disease) have a natural clearance rate of zero, meaning they require treatment
to recover5. However mildly symptomatic people who do not die from the disease are assumed to recover without treatment,
given time. 1/θ is the average time to natural recovery and pathogen clearance.

The shed rate τ is the rate of active shedding from infected individuals into the environment. An environmental source of
NTS, ψ was used to include animal or human carriers. If the environment has approximately 1 million animals and humans,
and 6% of the healthy animals and humans contract NTS and about 1% of those shed for several months, that equals about 600
individuals shedding. This value is then multiplied by the shedding rate τ to obtain a constant infusion. The clearance of NTS
in the environment θw was titrated to achieve a steady state in both WI and WJ that is greater than zero.

To maintain simplicity and keep results interpretable, the following assumptions are made in all four scenarios. Initial
conditions (the starting populations) are denoted S(0), Is(0),Js(0), Im(0),Jm(0),WI(0),WJ(0). Patients considered in this study
are the young, elderly or immuno-compromised in a region similar to Kenya. Also, patients in any of the four Infectious
compartments cannot move to other Infectious compartments; they are classified as either mildly symptomatic or severely
symptomatic, and as either resistant or nonresistant, and cannot change classification during the course of their treatment plan.
There are no long-term carrier classes, zoonotic or human, and no seasonality in the transmission rate. Rather than modeling
long-term dynamics, we are considering a single outbreak in a closed population for about 3 years (1,000 days), which reflects
observations in Africa3. We also assume that all people with NTS will report to a facility or health care provider that can
perform a POC diagnostic and give a prescription for the appropriate treatment.

Below are the differential equations governing Scenario 1 with full diagnostic deployment and treatment for both symp-
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tomatic and mildly symptomatic:

dS
dt

=−αS(Is + Js + Im + Jm)+ρ[σκrIs +(1−σ)κarIs +λκaJs +(1−λ )κraJs+

σκrIm +(1−σ)κarIm +λκaJm +(1−λ )κraJm]+θ(Im + Jm)−αwS(WI +WJ)
(1)

dIm

dt
= α(1−β )S(Is + Im)−ρ[σκrIm +(1−σ)κarIm]−µmIm −θ Im +αwWIS(1−β ) (2)

dJm

dt
= α(1− γ)S(Js + Jm)−ρ[λκaJm +(1−λ )κraJm]−µmJm −θJm +αwWJS(1− γ) (3)

dIs

dt
= αβS(Is + Im)−ρ[σκrIs +(1−σ)κarIs]−µsIs +αwWISβ (4)

dJs

dt
= αγS(Js + Jm)−ρ[λκaJs +(1−λ )κraJs]−µsJs +αwWJSγ (5)

dR
dt

= µs(Is + Js)+µm(Im + Jm) (6)

dWI

dt
= τ(Is + Im)−WIθw +ψ (7)

dWJ

dt
= τ(Js + Jm)−WJθw +ψ (8)

The equations for Scenarios 2 - 4 involve minor adaptations to Equations 1 - 8 and can be found in Supplementary Material.
For the simplified model results presented in the main text, we set αw = 0.

Model Analysis and Simulations
Basic Reproduction Number
The basic reproduction number, R0, for an infectious disease is the average number of secondary cases resulting from one
infectious person introduced into a fully susceptible population. If R0 > 1 then the pathogen can result in an outbreak, while if
R0 < 1 an outbreak is unlikely. It provides a measure for the rate at which a pathogen will spread in susceptible populations.
We computed the basic reproduction number for our simplified model scenarios using the next generation method61. The first
term of the basic reproduction numbers shown below is the average number of secondary infections generated by a severely
symptomatic individual and the second term is the average number of secondary infections generated by a mildly symptomatic
individual. Here, N is the total number of high-risk people in the population. For Scenario 1, the basic reproduction number for
the non-resistant strain is

RJ,1
0 =

αγN
µs +ρ(λκa +(1−λ )κra)

+
α(1− γ)N

θ +µm +ρ(λκa +(1−λ )κra)

and for the resistant strain is

RI,1
0 =

αβN
µs +ρ(σκr +(1−σ)κar)

+
α(1−β )N

θ +µm +ρ(σκr +(1−σ)κar)
.

For Scenario 4, the basic reproduction number for the non-resistant strain is

RJ,4
0 =

αγN
κ0

a +µs
+

α(1− γ)N
θ +µm

and for the resistant strain is

RI,4
0 =

αβN
κ0

ar +µs
+

α(1−β )N
θ +µm

.

The remaining reproduction numbers are in the Supplementary Material. The basic reproduction numbers are directly
proportional to transmission rate α . When diagnostics are deployed, the basic reproduction number is inversely proportional to
the sensitivity (σ ) and specificity (λ ) of the diagnostics along with the compliance rate (ρ) and treatment rates (κ∗) for resistant
and non-resistant strains.
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Simulations
We ran our model simulations for each of the scenarios at the baseline values found in Tables 4 and 5. We then assessed cost in
terms of both total number of people who died from either invasive or non-invasive NTS and in terms of total dollars spent
on diagnostics and treatment. We also assessed sensitivity of our model output to several parameter values. Scenarios 1–4
were simulated with each of the three possible diagnostics: PCR, BC, and antibody. Solutions were simulated using ode45 in
MATLAB and the following initial conditions:

S(0) = 36,864 Is(0) = Js(0) = Im(0) = Jm(0) = 256 R(0) = 0 WI(0) = 25 WJ(0) = 25,

giving an initial high-risk population of 37,888 people, about 3.7% of a total population of 1,000,000 people. The differential
equation solver ran for 1000 time units (days), producing results seen in Figures 1–2 and Tables 1–2.

Uncertainty Quantification
To find the sensitivity of the peak Death from NTS population (D) to changes in model input parameters, two different
approaches were taken: Partial Rank Correlation Coefficients (PRCC) and extended Fourier Amplitude Sensitivity Testing
(eFAST) (see41, 62). PRCC, a sampling based method, is the optimal analysis when nonlinear but monotonic relationships
exist between inputs and outputs62, while eFAST, a variance based method, is used in models that utilize nonlinear and
non-monotonic relationships between its input and output variables63, 64. PRCCs are a type of correlation coefficient that
provide information regarding the amount of monotonicity that remains between the given input variable and the chosen output
variable after linear effects of all but the chosen input variable have been removed. The sensitivity indices returned from eFAST,
on the other hand, give a measure of the fractional variance that can be explained by individual input parameters or groups of
parameters. First-order indices, Si, report the fraction of variance in the model output (peak value of D in our case) that can be
explained by the variance in a given model input parameter. STi, the total-order index for a specific input parameter, reports the
variance in model output (R) that remains when all variance caused by every other model input (every parameter except the
given parameter) is removed.

PRCCs and eFAST sensitivity indices are included in Tables 8–9 for Scenarios 1–4 respectively. For each of the model
input parameters, values were generated between 50% above and below the values found in Table 5. Each of these generated
values were drawn using a uniform distribution, and then PRCC and eFAST sensitivity indices were computed to determine
sensitivity of the peak value of R to changes in these model input parameters. It is important to note that ρ was not included in
the sensitivity analysis since it was an assumed quantity that we did not vary in this analysis.

We also performed an extended local sensitivity analysis on the basic reproduction number, R0, to show how parameters
affect the potential severity of an outbreak65. For this analysis, we examined the effect of changing ρ , as well as several other
parameters, on the basic reproduction number. In particular, we set all other parameters to the baseline values and then varied
the parameter being considered across its range. While this method of sensitivity analysis doesn’t capture the full variation that
PRCC and eFAST analysis does, it allows for visualization of the role each parameter plays in the model as it varies. Results
from this analysis are given in Figure 5.
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Supplementary Material 1: Equations for Full Model Note below that the κ0 notation means diagnostic time is NOT added
to the total treatment time since diagnostics are not applied, i.e. φ = 0. Scenario 2 equations:

dS
dt

=−αS(Is + Js + Im + Jm)+κ
0
arIs +κ

0
a Js +ρ[σκrIm +(1−σ)κarIm+

λκaJm +(1−λ )κraJm]+θ(Im + Jm)−αwS(WI +WJ)
(9)

dIm

dt
= α(1−β )S(Is + Im)−ρ[σκrIm +(1−σ)κarIm]−µmIm −θ Im +αwWIS(1−β ) (10)

dJm

dt
= α(1− γ)S(Js + Jm)−ρ[λκaJm +(1−λ )κraJm]−µmJm −θJm +αwWJS(1− γ) (11)

dIs

dt
= αβS(Is + Im)−κ

0
arIs −µsIs +αwWISβ (12)

dJs

dt
= αγS(Js + Jm)−κ

0
a Js −µsJs +αwWJSγ (13)

dR
dt

= µs(Is + Js)+µm(Im + Jm) (14)

dWI

dt
= τ(Is + Im)−WIθ (15)

dWJ

dt
= τ(Js + Jm)−WJθ (16)

Scenario 3 equations:

dS
dt

=−αS(Is + Js + Im + Jm)+κ
0
ar(Is + Im)+κ

0
a (Js + Jm)+θ(Im + Jm)−αwS(WI +WJ) (17)

dIm

dt
= α(1−β )S(Is + Im)−κ

0
arIm −µmIm −θ Im +αwWIS(1−β ) (18)

dJm

dt
= α(1− γ)S(Js + Jm)−κ

0
a Jm −µmJm −θJm +αwWJS(1− γ) (19)

dIs

dt
= αβS(Is + Im)−κ

0
arIs −µsIs +αwWISβ (20)

dJs

dt
= αγS(Js + Jm)−κ

0
a Js −µsJs +αwWJSγ (21)

dR
dt

= µs(Is + Js)+µm(Im + Jm) (22)

dWI

dt
= τ(Is + Im)−WIθ (23)

dWJ

dt
= τ(Js + Jm)−WJθ (24)
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Scenario 4 equations:

dS
dt

=−αS(Is + Js + Im + Jm)+κ
0
arIs +κ

0
a Js +θ(Im + Jm)−αwS(WI +WJ) (25)

dIm

dt
= α(1−β )S(Is + Im)−µmIm −θ Im +αwWIS(1−β ) (26)

dJm

dt
= α(1− γ)S(Js + Jm)−µmJm −θJm +αwWJS(1− γ) (27)

dIs

dt
= αβS(Is + Im)−κ

0
arIs −µsIs +αwWISβ (28)

dJs

dt
= αγS(Js + Jm)−κ

0
a Js −µsJs +αwWJSγ (29)

dR
dt

= µs(Is + Js)+µm(Im + Jm) (30)

dWI

dt
= τ(Is + Im)−WIθ (31)

dWJ

dt
= τ(Js + Jm)−WJθ (32)

Supplementary Material 2: Basic Reproduction Number for Simple Model (no Env compartment)

For Scenario 2, the basic reproduction number for the non-resistant strain is

RJ,2
0 =

αγN
κ0

a +µs
+

α(1− γ)N
θ +µm +ρ(λκa +(1−λ )κra)

and for the resistant strain is

RI,2
0 =

αβN
κ0

ar +µs
+

α(1−β )N
θ +µm +ρ(σκr +(1−σ)κar)

.

For Scenario 3, the basic reproduction number for the non-resistant strain is

RJ,3
0 =

αγN
κ0

a +µs
+

α(1− γ)N
θ +µm +κ0

a

and for the resistant strain is

RI,3
0 =

αβN
κ0

ar +µs
+

α(1−β )N
θ +µm +κ0

ar
.

22/27

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted August 6, 2018. ; https://doi.org/10.1101/384933doi: bioRxiv preprint 

https://doi.org/10.1101/384933


Supplementary Material For Environmental/Outside Compartment Model

Table 6. Costs of diagnostic deployment and antibiotic use for each scenario with αw = 0.5∗α where A is the cost of
standard antibiotic treatment (effective on sensitive strain), R the cost of resistant strain treatment, and D the cost of the
diagnostics. All costs are in U.S. Dollars (USD).

Scenario Diagnostic Cost A Cost AR Cost DA Cost DAR Cost DR Total Cost
Used (USD) (USD) (USD) (USD) (USD) (USD)

1
Antibody 0 0 115,448 59,618 422,811 597,877
BC 0 0 348,864 182,898 492,758 1,024,519
PCR 0 0 509,918 72,421 503,883 1,086,221

2
Antibody 44,339 1,114,363 15,007 30,434 647,765 1,851,908
BC 44,087 1,235,844 13,165 35,852 440,452 1,769,400
PCR 44,480 1,218,513 19,371 14,732 548,027 1,845,124

3 None 51,958 1,665,318 0 0 0 1,717,277
4 None 44,567 1,397,902 0 0 0 1,442,468

Table 7. Number of deaths from NTS, percent of cases improperly treated, and the number of diagnostics used in each
scenario with αw = 0.5∗α run for 1,000 days. ρ = 0.6 for BC and PCR.

Scenario Diagnostic Number Improperly Treated Num. Diagnostics
Used Deaths (People) (Percent) Deployed

1
Antibody 4,031 4.2% 19,796
BC 14,756 6.7% 35,784
PCR 14,115 2.5% 35,589

2
Antibody 11,708 51.6% 12,224
BC 12,919 61.3% 7,982
PCR 12,759 58.6% 8,795

3 None 13,268 81.1% None
4 None 14,622 80.8% None
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Table 8. PRCC values, first- and total-order indices with their p-values for measuring the sensitivity of Scenario 1, 2, 3 and 4’s
non-environmental parameters to model R. Parameters were allowed to vary ±50% of their nominal values. The sample space
was obtained using Latin Hypercube sampling. Values with a * have a p value less than 0.05. Recall that κ0

∗ is the
treatment/recovery rate when no diagnostic is used.

Scenario Test κ0
ar κ0

a κar κa κr µs µm σanti λanti α β γ θ

1
PRCC - - -0.1309* -0.7124* -0.4163* -0.0562 0.1102* -0.2127* -0.3795* 0.8643* 0.3319* 0.6461* -0.3615*
Si - - 0.0030* 0.1003* 0.0136* 0.0018* 0.0001 0.0039* 0.0146* 0.3093* 0.0123* 0.0811* 0.0095*
Sti - - 0.0142* 0.1642* 0.0390* 0.0122* 0.0028 0.0166* 0.0374* 0.4026* 0.0408* 0.1417* 0.0189*

2
PRCC -0.7446* -0.3471* -0.0013 0.0252 -0.0893* -0.3551* 0.0192 -0.0472 0.0473 0.9078* 0.8081* 0.2898* -0.3504
Si 0.1445* 0.0169* 0.0000* 0.0000* 0.0008* 0.0145* 0.0000* 0.0004* 0.0000* 0.4877* 0.2000* 0.0096* 0.0075*
Sti 0.1902* 0.0505* 0.0002 0.0004* 0.0021* 0.0280* 0.0001 0.0009 0.0002* 0.5347* 0.2589** 0.0331* 0.0123*

3
PRCC -0.7856* -0.3280* - - - -0.2978* 0.0263 - - 0.9188* 0.7898* 0.2269* -0.4181*
Si 0.1527* 0.0139* - - - 0.0133* 0.0000* - - 0.5098* 0.1556* 0.0068* 0.0159*
Sti 0.1963* 0.0405* - - - 0.0246* 0.0002 - - 0.5496* 0.2004* 0.0257* 0.0229*

4
PRCC -0.7550* -0.3057* - - - -0.2755* 0.0512 - - 0.9216* 0.7531* 0.2531* -0.4931*
Si 0.1303* 0.0124* - - - 0.0113* 0.0000* - - 0.5430* 0.1357* 0.0055* 0.0356*
Sti 0.1661* 0.0364* - - - 0.0219* 0.0002* - - 0.5770* 0.1746* 0.0213* 0.0484*

Table 9. PRCC values, first- and total-order indices with their p-values for measuring the sensitivity of Scenario 1, 2, 3 and 4’s
environmental parameters to model R. Parameters were allowed to vary ±50% of their nominal values. The sample space was
obtained using Latin Hypercube sampling. Values with a * have a p value less than 0.05.

Scenario Test αw ψ τ θw

1
PRCC 0.4952* 0.4340* 0.0905* -0.4960
Si 0.0142* 0.0062* 0.0017* 0.0172*
Sti 0.0207* 0.0113* 0.0057* 0.0242*

2
PRCC 0.3928* 0.2483* 0.1337* -0.4131*
Si 0.0150* 0.0064* 0.0025* 0.0191*
Sti 0.191* 0.0084* 0.0036* 0.0231*

3
PRCC 0.4073* 0.2640* 0.1951* -0.4712*
Si 0.0170* 0.0059* 0.0025* 0.0205*
Sti 0.0217* 0.0078* 0.0036* 0.0249*

4
PRCC 0.3375* 0.2165* 0.1912* -0.4253*
Si 0.0181* 0.0059* 0.0028* 0.0212*
Sti 0.0232* 0.0078* 0.0039* 0.0257*

24/27

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted August 6, 2018. ; https://doi.org/10.1101/384933doi: bioRxiv preprint 

https://doi.org/10.1101/384933


(a) (b)

Figure 5. Sensitivity of R0 components to the transmission rate, α (Figure 5a), for different diagnostics and Scenarios 1 and 4,
and to the compliance rate, ρ (Figure 5b). In subfigure 5a, blue lines are the sensitive strain and red the resistant strain. The flat
lines are in the absence of diagnostics (Scenario 4) and starred lines with full diagnostic deployment (Scenario 1). In subfigure
5b, the compliance rate is the proportion of people who return to the clinic to receive diagnostic results and an appropriate
treatment based on those results. R0 increases linearly with the transmission rate and decreases non-linearly with compliance.
The sensitivity of R0 on compliance does not depend on diagnostic type.
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Figure 6. Scenario 3 for low initial conditions to simulate the outbreak in Blantyre, Malawi.
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Scenario 1: Antibody

Scenario 1: Bacteria Culture

Scenario 1: PCR

1

Figure 7. Outcome change with the environmental/low-risk compartment as the outside transmission rate, αw, changes for
Scenario 1. While magnitude changes the general patterns remain the same except for very high values of outside transmission.
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Scenario 2: Antibody

Scenario 2: Bacteria Culture

Scenario 2: PCR

Scenario 3

Scenario 4

2

Figure 8. Outcome change with the environmental/low-risk compartment as the outside transmission rate, αw, changes for
Scenarios 2 - 4. While magnitude changes the general patterns remain the same except for very high values of outside
transmission.
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