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Abstract

An accurate estimate of limb position is necessary for movement planning. Where we
localize our unseen hand after a reach depends on felt hand position, or proprioception,
but this is usually neglected in favour of predicted sensory consequences based on
efference copies of motor commands. Both sources of information should contribute, so
here we set out to further investigate how much of hand localization depends on
proprioception and how much on predicted sensory consequences. We use a passive
training paradigm with rotated visual feedback that eliminates the possibility to update
predicted sensory consequences, but still recalibrates proprioception. After this training
we measure participants’ hand location estimates based on both efference-based
predictions and afferent proprioceptive signals with self-generated hand movements as
well as based on proprioception only with robot-generated movements. We find
indistinguishable shifts in hand localization after robot- and self-generated hand
movements, and changes in open-loop reaches. Both motor and proprioceptive changes
are only slightly smaller as those after training with self-generated movements,
confirming that proprioception plays a large role in estimating limb position and in
planning movements. (data: https://doi.org/10.17605/osf.io/zfdth, preprint:
https://doi.org/10.1101/384941)

Introduction 1

Sensory information is central to how we control all our movements. Our brain is even 2

thought to use predicted sensory consequences derived from efferent copies of motor 3

commands for motor control [1]. When training with rotated visual feedback of the 4

hand, we update these predictions [2]. Additionally, such training leads to a 5

recalibration of our sense of felt hand position - “proprioception” - to be more aligned 6

with the distorted visual feedback [3]. Both of these changes have been measured by 7

asking people to localize where their unseen hand is – before and after training [4–8]. 8

While our lab has previously found that proprioception accounts for a large portion of 9

the change in hand localization [9], it is far from clear how much each process 10

contributes or how to tease them apart. Here we use passive training, that removes the 11

need to update predicted sensory consequences, in an attempt to isolate the 12

contribution of proprioception to hand localization. 13

The predicted sensory consequences of movements may play several important roles 14

in motor learning and control. Predicted sensory consequences allow us to correct our 15
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movements before sensory error signals are available, they can be used to select 16

movements that best achieve our goals and they may inform us on the location of our 17

limbs. Hence measuring predicted sensory consequences is valuable in movement 18

research. In visuomotor rotation adaptation tasks, the actual sensory outcome is 19

systematically different from the expected outcome, so that participants update their 20

predictions on the outcome of the trained movements. In previous experiments, people 21

were asked to make a movement and then indicate the location of, or “localize,” their 22

unseen, right hand, before and after training with rotated visual feedback [5,7]. Since 23

there was no visual information available to the participants, the predicted sensory 24

consequences of the movement should be used in localizing the unseen hand. Both 25

studies found a significant shift in hand localization, providing evidence that predicted 26

sensory consequences are indeed updated as a result of visuomotor rotation adaptation. 27

However, our lab has shown that our sense of where we feel our hand to be, 28

proprioception, is also reliably recalibrated after visuomotor rotation adaptation 29

[3,9–18]. This has also been shown by other labs [19] and a comparable proprioceptive 30

change is induced with force-field adaptation [20]. As proprioception also informs us on 31

the location of our limbs, we have on occasion used a task that is very similar to hand 32

localization to investigate this [3,6,21,22]. Although proprioceptive recalibration has 33

been largely ignored as an explanation for changes in hand localization, we and others 34

have shown that it accounts for a substantial part of the changes in localization, along 35

with updates in predicted sensory consequences [9,19]. Nevertheless, it is far from clear 36

how much proprioception and prediction each contribute to hand localization. 37

Here we intend to further examine the contribution of proprioception to hand 38

localization. To do this, we use passive training, where a robot arm moves the 39

participant’s arm out, so that the cursor always directly goes to the target [19,23,24]. 40

This means there is no efference copy available and no visuomotor error-signal, both of 41

which are required to update predicted sensory consequences. However, we impose a 42

discrepancy between vision and proprioception that drives proprioceptive recalibration. 43

Thus, changes in hand localization after this type of training should be due to 44

proprioceptive recalibration only. We use the same experimental protocol as before [9], 45

so that we can compare localization shifts between the two different types of training, 46

and can better assess the contributions of predicted sensory consequences and 47

proprioception to hand localization. 48

Methods 49

We set out to test the relative contributions of proprioception and efference-based 50

prediction to hand localization. We use visual training with robot-generated hand 51

movements to prevent updates of predicted sensory consequences, but still elicit 52

proprioceptive recalibration. 53

Participants 54

Twenty-five right-handed participants were recruited for this study. One participant was 55

excluded for not following task instructions, and three were excluded for low 56

performance on a task that ensures attention during the passive training. All analyses 57

presented here pertain to the remaining twenty-one participants (13 females and 8 males, 58

mean age: 20.1 +/- 2.3 years), but the data of the three low-performing participants is 59

included in the online dataset [25]. All had normal or corrected-to-normal vision, and 60

provided prior, written informed consent in accordance with the ethical guidelines set by 61

the York Human subjects Review Subcommittee and received credit toward an 62

undergraduate psychology course. Participants were screened verbally, and all reported 63
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Fig 1. Setup and tasks: a) Participants moved their unseen right hand with visual
feedback on hand position provided through a mirror (middle surface) half-way between
their hand and the monitor (top surface). A touchscreen located just above the hand
was used to collect responses for the localization tasks (bottom surface). b) Training
task. The target, shown as a yellow disc, is located 10 cm away from the home position
at 45°. In the rotated training tasks, the cursor (shown here as a green circle) represents
the hand position rotated 30° relative to the home position. c) No-cursor reach task.
Targets are located 10 cm away from the home position at 15°, 25°, 35°, 45°, 55°, 65°,
and 75°, shown by the yellow circles here (only one was shown on each trial). While
reaching to one of these targets, no visual feedback on hand position is provided. d)
Localization task. The participants’ unseen, right hands moved out, and subsequently
participants indicated the direction of the hand movement by indicating a location on
an arc using a touch screen with their visible left index finger

being right handed and not having any history of visual, neurological, and/or motor 64

dysfunction. Published data from 21 further participants is used for comparison [9]. 65

Setup 66

Participants sat in a height-adjustable chair to ensure that they could easily see and 67

reach all targets presented on a reflective screen (see Fig 1). During all tasks, they held 68

the vertical handle on a two-joint robot manipulandum (Interactive Motion 69

Technologies Inc., Cambridge, MA) with their right hand so that their thumb rested on 70

top of the handle. A monitor (Samsung 510 N, refresh rate 60 Hz) was mounted 11 cm 71

above the reflective screen, such that images displayed on the monitor appeared to lie in 72

the horizontal plane where the right hand was moving. The reflective screen was 73

mounted horizontally 18 cm above the robot manipulandum. A touch screen was 74

mounted 13 cm underneath the reflective surface, so that subjects could indicate the 75

location of the unseen right-hand locations (specifically the unseen thumb) with their 76

visible left hand, which was lit up with a small spot light (only in localization tasks). 77
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Table 1. Task order

# trials training type

aligned rotated Exposure training Classic training

50 90 training training
- 21 no-cursor no-cursor
- 60 training training
25 25 active delayed localization active delayed localization
21 21 no-cursor no-cursor
10 60 training training
25 25 passive delayed localization passive delayed localization
21 21 no-cursor no-cursor
10 60 training training
25 25 active delayed localization (active online localization)
21 21 no-cursor no-cursor
10 60 training training
25 25 passive delayed localization (passive online localization)
21 21 no-cursor no-cursor

The room lights were dimmed and the participants’ view of their right hand was blocked 78

by the reflective screen, as well as a dark cloth draped between the touch screen and 79

participants’ right shoulders. 80

Procedure 81

The first part of the experiment used training with a cursor aligned with the hand and 82

the second part had training with a cursor rotated around the start position (Fig 1b; 83

white rows in Table 1). During the training with rotated feedback, the cursor was 84

gradually rotated 30° clockwise. This introduced a discrepancy between the actual, or 85

felt, hand position and the visual feedback, that should evoke proprioceptive 86

recalibration. However, the movements were robot generated, so that there were no 87

predicted sensory consequences based on the outgoing motor command. Hence the 88

prediction errors that are thought to lead to motor learning were absent as well. After 89

both types of training, participants did open-loop reaches as well as two kinds of hand 90

localization tasks, to test the effect of training on proprioceptive and predictive hand 91

estimates. 92

Exposure training 93

In what we call ‘exposure training’ the participants did not move their hand toward the 94

target, but the robot did. In this task (Table 1), the right hand was represented by a 95

cursor (green disk, 1 cm in diameter, Fig 1b) located directly above participant’s thumb. 96

The robot moved the participant’s unseen right hand (and the cursor) along a direct 97

path toward a visual yellow target disk and back to the starting position (1 cm in 98

diameter, Fig 1b). The home position was located approximately 20 cm in front of 99

participants and the visual target located 10 cm from the home position at 45° (Fig 1b). 100

In order to make sure participants were paying attention to the cursor, the cursor was 101

switched off for 2 screen refreshes (˜33.3ms) on 50% of the trials at a random distance 102

between 4 and 9 cm from the home position and participants were asked to report this 103

using a button press with the left hand. Performance on this task was used to screen 104

participants. 105
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During the first half of the experiment, the cursor and hand path were aligned 106

during exposure training. In the second part of the experiment, the “rotated” session, 107

the same visual training target at 45° was used, and the cursor kept moving straight to 108

this target. However, the robot-generated hand path gradually rotated 30° CCW (Fig 109

1b) with respect to the visible target and the cursor in increments of 0.75°/trial, so that 110

the full rotation was reached after 45 trials. This mimicked error-free responses to a 111

gradual visuomotor rotation of 30° CW. The initial training consisted of 50 trials in the 112

aligned part and 90 in the rotated part. In between open-loop reach tasks and 113

localization tasks (Table 1) extra training tasks were done, each of which consisted of 10 114

trials in the aligned part of the experiment and 60 trials in the rotated part (Table 1). 115

No-cursor reaching 116

The trials in no-cursor reaching (Table 1, light gray rows) serve as a classical measure of 117

motor adaptation. On each of these trials participants were asked to reach with their 118

unseen right hand to one of 7 visual targets, without any visual feedback of hand 119

position. The targets were 10 cm from the home position, located radially at: 15°, 25°, 120

35°, 45°, 55°, 65°, and 75° (Fig 1c). A trial started with the robot handle at the home 121

position and, after 500 ms, the home position disappeared and the target appeared, 122

cuing the participants to reach for the target. Once the participants thought they had 123

reached the target they held their position for 250 ms, and the target and the home 124

position disappeared, cuing participants to move back to the home position along a 125

straight, constrained path, to begin the next trial. If participants tried to move outside 126

of the path, a resistance force, with a stiffness of 2 N/(mm/s) and a viscous damping of 127

5 N/(mm/s), was generated perpendicular to the path. In every iteration of the 128

no-cursor reach task, each target was reached three times, for a total of 21 reaches in 129

pseudo-random order. The no-cursor reaching task was performed four times in the 130

aligned part of the experiment and five times in the rotated part of the experiment. 131

Localization 132

In this task (Fig 1d; Table 1, dark gray rows) participants indicated where they thought 133

their unseen right hand was after a movement. First, an arc appeared, spanning from 0° 134

to 90° and located 10 cm away from the home position and the participants’ unseen, 135

right hand moved out from the home position in a direction towards towards a point on 136

the arc. The hand was stopped by the robot at 10 cm from the home position and then, 137

to prevent the online proprioceptive signals from overriding the predictive signals [5,9], 138

the hand was moved back to the home position using the same kind of constrained path 139

as used for the return movements in the no-cursor task. Participants indicated with the 140

index finger of their visible, left hand on the touch screen mounted directly above the 141

robot handle where they thought their trained hand had crossed the arc. 142

Crucially, there were two variations of this task. First, in the ‘active’ localization 143

task participants generated the movement themselves, as they could freely move their 144

unseen right hand from the home position to any point on the arc. Second, there was a 145

‘passive’ localization task where the robot moved the participants’ hand out and back, 146

to the same locations the participants moved to in the preceding ‘active’ localization 147

task in a shuffled order (hence, active localization is done first). In active localization, 148

participants have access to both proprioceptive information as well as an efference-based 149

prediction of sensory consequences, but in passive localization, only proprioception 150

should be available. The active and passive localization task each consisted of 25 trials, 151

and each of the tasks was done a total of four times; twice after aligned and twice after 152

rotated training. 153
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Classic training 154

The paradigm described above is an exact replica of a paradigm we used earlier [9] with 155

two exceptions. First, we used exposure training here, instead of the standard reach 156

training with volitional movements, which we will call ‘classic’ training. Second, all 157

localization is delayed until the right hand has returned to the home position in this 158

study (see Table 1), so that instead of both delayed and online localization we have two 159

repetitions of each delayed localization task. With this paradigm we can compare 160

changes in localization and no-cursor reaches change after exposure training with 161

changes in the same measures after classic visuomotor adaptation training. 162

Analyses 163

Prior to any analyses, both the localization responses and the no-cursor reach data were 164

visually inspected and trials where the participants did not follow task instruction were 165

removed (e.g. several movements back and forth, or a touch-screen response on the 166

home position, instead of on the white arc). 167

Localization 168

Localization responses were taken as the (signed) angular difference between vectors 169

through the home position and the actual hand position as well as the location 170

indicated on the touch screen. Prior to analyses, idiosyncratic differences in performing 171

this task were countered. Before conversion to degrees angle, a circle with a 10 cm 172

radius was fit to the touch screen responses of each participant and the offset of this 173

circle’s centre was subtracted from all response coordinates, so that all responses fell 174

close to the arc. Then, a smoothed spline was fit to every participant’s response errors 175

in each of the four localization tasks (aligned vs. rotated and active vs. passive) and 176

these were used to obtain localization errors at the same locations used for the no-cursor 177

reaches (15°, 25°, 35°, 45°, 55°, 65° and 75°), but only if that location fell within the 178

range of the data (i.e. we only interpolate). This way localization responses could be 179

compared across participants despite the freely chosen reach directions. At the 15° 180

location 7/21 participants didn’t have an estimate in one or more of the four 181

localization tasks (in the “classic” data it was also 7/21). While that data is shown in 182

the figures, we did not use it for analysis. 183

First we test if localization responses shifted following rotated exposure training 184

compared to aligned. We then test if the shift in localization responses is different for 185

active and passive localization, and we run analyses comparing localization after 186

exposure training with localization after “classic” training. Finally, we explore the 187

generalization of localization responses and if they are different between the groups 188

doing classic and exposure training. 189

Reach aftereffects 190

To assess any reach adaptation that may have occurred after exposure training we 191

analyzed reach endpoint errors in no-cursor trials. Reach endpoint errors were the 192

(signed) angular difference between a vector from the home position to reach endpoint 193

and a vector from the home position to the target. We obtained reach aftereffects by 194

subtracting reach endpoint errors after aligned training from those after rotated 195

training. No-cursor endpoint errors were analyzed to see if participants adapted the 196

direction of their reaching movements after rotated exposure training. We also tested if 197

any such change decayed, i.e. if it was the same immediately after exposure training, or 198

when a localization task was done in between exposure training and no-cursor reaches. 199
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Fig 2. Hand localization: The shifts of the angles of touchscreen responses in all
variations of the localization task, using spline-interpolated estimates for hand angles
matching the reach targets in the no-cursor reach block. a) Localization shifts after
exposure training. Dark blue: active localization shifts, Light blue: passive localization
shifts. b) Localization shifts after classic training. Dark red: active localization shifts,
Orange: passive localization shifts. The dashed line segments illustrate that the 15°
data is not used for statistical analyses (see Methods). c) Generalization curves of
active localization shifts after exposure training (blue) and classic training (red).
Shaded areas: 95% confidence intervals for the peak of the generalization curve (red and
blue lines through shaded area indicate 50% points). Downward black arrow: visual
trained target. Upward black arrow: hand location during training.

Furthermore, we tested if the generalization of reach aftereffects is different between 200

exposure and classic training and if there is any generalization of reach aftereffects. 201

Pre-processing and analyses were done in R 3.4.4 [26], using lme4, lmerTest and 202

various other packages. Most analyses used linear mixed effects models, since there is 203

some missing localization data. These were “converted” to more readable ANOVA-like 204

output, using a Satterthwaite approximation [27]. Highly similar results were obtained 205

with a Chi-square approximation. Data, scripts and a notebook with analyses have been 206

made available on the Open Science Framework [25] (https://osf.io/zfdth). 207

In short, this experiment allowed us to test how mere exposure to a 208

visual-proprioceptive discrepancy changes both reach aftereffects and hand localization 209

responses, and compare them with those obtained after more regular, “classic” training. 210

Results 211

In this study we intend to further elucidate the relative contributions of (updated) 212

predicted sensory consequences and (recalibrated) proprioception to hand localization. 213

We can parcel out these contributions by measuring hand localization after both 214

robot-generated and self-generated movements. Finally we compare the data from the 215

current experiment with those obtained in an earlier study that used an identical 216

paradigm, but trained with self-generated movements, or “classic” training. 217

Localization 218

Here we test our hypothesis that exposure training does not lead to changes in 219

predicted sensory consequences. Since the difference between active and passive 220

localization stems only from the presence or absence of predicted sensory consequences, 221

there should be no difference between the two if predicted sensory consequences are not 222
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changed by exposure training. At first glance, it seems there might be a difference 223

between active and passive localization shifts in exposure training (see Fig 2a), although 224

it is smaller than in classic training (Fig 2b). 225

To test if rotated exposure training induces changes in hand localization, we fit an 226

LME to the localization errors throughout the workspace using session (aligned or 227

rotated), movement type (active and passive) and hand angle (25°, 35°, 45°, 55°, 65° and 228

75°), and all interactions as fixed effects and participant as random effect. There was an 229

effect of session (F(1,450.5)=155.8; p<0.001), showing that exposure training leads to 230

changes in hand localization. There was also an effect of hand angle (F(5,450.6)=6.54; 231

p<.001) and an interaction between hand angle and session (F(5,450.3)=8.25; p<.001), 232

which we’ll explore below, but no other effects (all p>.60). Since localization responses 233

did shift, we use the difference between hand localization after rotated training and 234

after aligned training (as plotted in Fig 2) for further tests. 235

If this shift in localization after exposure training partly reflects predicted sensory 236

consequences, then shifts in active localization, that rely on both (recalibrated) 237

proprioception and (updated) predictions should be different from shifts in passive 238

localization that only rely on (recalibrated) proprioception. We fit an LME to the 239

change in localization using movement type (active or passive localization) and hand 240

angle, as well as their interaction as fixed effects and participant as random effect. 241

There was no effect of movement type (F(1,211.8)=0.07; p=0.79). There was an effect 242

of hand angle (F(5,212.2)=10.8; p<0.001), but no interaction between hand angle and 243

movement type (F(5,211.8)=1.23, p=.29). The lack of an effect of movement type 244

suggests that predicted sensory consequences did not contribute to localization in this 245

paradigm. 246

In order to compare hand localization shifts after exposure training with those after 247

classic training [9], we fit an LME to localization shift using training type (exposure 248

vs. classic), movement type (active vs. passive) and hand angle and all interactions as 249

fixed effects and participant as random effect. There was a main effect of movement 250

type (F(1,422.0)=6.22; p=.013) and of hand angle (F(5,422.7)=8.19; p<.001), as well as 251

an interaction between training type and hand angle (F(5,422.7)=4.54; p<.001) and 252

between training type and movement type (F(1,422.0)=4.48, p=.035), but there was no 253

main effect of training type (F(1,39.1)=0.92, p=.34) and no other effects (all p>.14). 254

These results also suggest that the magnitude of the shifts in localization are comparable 255

between classic and exposure training, but that the pattern of generalization is different. 256

To address our main question, we will look at the interaction between training type 257

(exposure vs. classic) and movement type (active vs. passive) we found above. Since 258

there is no difference between active and passive localization shifts after exposure 259

training alone, the interaction between training type and movement type should be 260

caused by an effect of movement type on the localization shifts after classic training, as 261

we found previously [9]. This means that shifts in hand localization after exposure 262

training indeed rely on recalibrated proprioception alone, while after classic training, 263

there also is a contribution of predicted sensory consequences to active localization. 264

For completeness, we explore the potentially different generalization patterns of 265

localization shifts after classic and exposure training (Fig 2c). The LME indicates no 266

difference in overall amplitude of localization shifts between the groups, so the 267

interaction between training type and hand angle might stem from a generalization that 268

does not peak at the trained location after exposure training. Using the active 269

localization shifts only (which are larger, and arguably more similar to reach 270

aftereffects), we bootstrap a 95% confidence interval for the peak localization shift 271

across participants in each group. Here we include the data at 15° where it is available. 272

After classic training, the peak localization shift was at 48.8° (95% confidence: 31.6° - 273

62.8°; red area in Fig 2c), and after exposure training the peak localization shift was at 274
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Fig 3. Reach aftereffects: Changes of the angle of reach endpoints in the no-cursor
tasks. a) Reach aftereffects across the experiment. Light blue: first no-cursor task in
the rotated session (immediately following training), Dark blue, dashed line: the other
four repetitions of the task (with localization in between training and no-cursor tasks).
b) Reach aftereffects after classic and exposure training. Blue: exposure training, Red:
classic training. c) Generalization curves of reach aftereffects after exposure training
(blue) and classic training (red). Shaded areas: 95% confidence intervals for the peak of
the generalization curve (red and blue lines through shaded area indicate 50% points).
Downward black arrow: visual trained target. Upward black arrow: hand location
during training.

62.1° (95% confidence: 50.0° - 75.6°; blue are in Fig 2c). This means that peak 275

localization after classic training is lower than after exposure training, but not vice 276

versa. Also note that the confidence interval for the peak localization shift after classic 277

training includes the trained target (45°), but not after exposure training [5]. In short, 278

the LME for localization shifts indicates a different generalization curve after exposure 279

and classic training, which might be partially explained by a different position of the 280

peak localization shift after exposure or classic training. 281

Reach aftereffects 282

Apart from proprioception and prediction, we want to see if rotated exposure training 283

has any effect on open-loop reaches and if these are robust. We measure whether 284

participants adapted their reach directions by assessing their reach errors in no-cursor 285

reach trials after aligned and rotated exposure training. In Fig 3, the changes in 286

no-cursor endpoint errors, or reach aftereffects, appear to be well over 5°. First, to test 287

if exposure training affects open-loop reach direction, we fit a linear mixed effects model 288

(LME) to reach endpoint error using session (aligned; all blocks, or rotated; only the 289

first block immediately after training) and target (15°, 25°, 35°, 45°, 55°, 65° and 75°), as 290

well as their interactions as fixed effects and participant as random effect. There is an 291

effect of session (F(1,260)=93.81, p<.001), that is: exposure training leads to 292

substantial reach aftereffects. There was no effect of target (F(6,260)=1.07, p=.37) and 293

no interaction (F(6,260)=1.00, p=.42). Since there is an effect of session, we now take 294

the differences in reach endpoint errors between the rotated and aligned session for 295

every participant and target as reach aftereffects, and use those for all further analyses. 296

To see if reach aftereffects decayed during the localization tasks, we compared reach 297

aftereffects in the initial no-cursor block, that immediately followed training, with those 298

in the later blocks that followed a localization task. We fit an LME to the reach 299

aftereffects with iteration (initial vs. later no-cursor blocks) and target (as above) as 300

well as their interaction as fixed effects and participant as random effect. There is no 301
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effect of iteration (F(1,260)=2.72, p=0.10). There was an effect of target 302

(F(6,260)=6.29, p<.001) but no interaction (F(6,260)=0.58, p=0.74). Hence, reach 303

aftereffects were not appreciably different right after training and after the localization 304

tasks. In other words, there was likely no noticeable decay of reach aftereffects during 305

the localization tasks, so that we can collapse the data across iterations. 306

Next we compare the reach aftereffects after classic training with those after 307

exposure training (Fig 3b). It appears as if there is little overall difference in magnitude, 308

but there might be a shift of the generalization curve. We fit an LME to reach 309

aftereffects with training type (classic vs. exposure), target (as above) as well as their 310

interaction as fixed effects and participant as random effect. There is no main effect of 311

training (F(1,40)=0.11, p=.74), indicating approximately equal magnitude of reach 312

aftereffects after the two training types. There is an effect of target (F(6,240)=8.36, 313

p<.001), indicating that reach aftereffects exhibit some form of a generalization curve. 314

There is also an interaction between training type and target (F(6,240)=2.27, p=.038), 315

indicating these generalization curves are different after the two training types. 316

We will explore these potentially different generalization curves here. In Fig 3c we 317

can observe that reach aftereffects after exposure training seem not to peak at the 318

trained target direction of 45° but a more forward direction. We test this by taking the 319

95% confidence interval of the centre of a normal curve fit to this data, bootstrapped 320

across participants, and find that the median peak of the generalization curve of reach 321

aftereffects after exposure training is at 66.3°, with a 95% confidence interval ranging 322

from 49.3° to 78.9°. This would indeed suggest that the reach aftereffects after exposure 323

training do not generalize around the trained direction of 45°, but at a more counter 324

clockwise location. For classic training, generalization of reach aftereffects peaks at 325

53.2°, with a 95% confidence interval spanning 42.1° to 66.5°. So for classic training the 326

95% confidence interval for peak reach aftereffects does include the trained target. 327

These confidence intervals also indicate that generalization of reach aftereffects does not 328

peak at different target position after exposure and classic training. However, we can 329

also observe that the full curve was not sampled after exposure training, so that curve 330

fitting is not optimal. This means that – given our data – the interaction between target 331

and training type found in the LME above can’t be explained by a shifted generalization 332

curve. This may be because our experiment was not set up to test this, and the similar 333

angles where generalization peaks in both localization and reach aftereffects, suggests 334

there may be a difference in where proprioception and prediction generalize strongest. 335

In summary, our main hypotheses are confirmed; exposure training leads to shifts in 336

hand localization that are not different for active or passive localization, while 337

movement type does have an effect on localization shift after classic training. Exposure 338

training also causes robust reach aftereffects that are of comparable size to those found 339

with classic training. There is some evidence that the generalization of both localization 340

shifts and reach aftereffects are different after the two training types, and it appears 341

this can partially be explained by a different peak of the generalization curves, but our 342

data and analyses are not definitive. 343

Discussion 344

The position of limbs is important for planning and evaluating movements, and can be 345

estimated through predicted sensory consequences, as well as visual and proprioceptive 346

feedback. As in a previous study [9] here we quantify the contributions of predicted 347

sensory consequences and proprioceptive recalibration to where we localize our hand 348

after training with altered visual feedback of the hand. In classical adaptation 349

paradigms, both predictions are updated and proprioception is recalibrated. Predictions 350

are updated when they don’t match actual sensory consequences, and proprioception is 351
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recalibrated when it doesn’t match visual feedback. In this study we use “exposure” 352

training, where the participants do not have volitional control of their movements. By 353

design, this should eliminate efference copies and prevent updating predicted 354

consequences of movements, but since the proprioceptive and visual feedback is the 355

same, exposure training still allows proprioceptive recalibration. Before and after 356

training, participants localize their hand, both after “active,” self-generated movements 357

that allow using predicted sensory consequences, and after “passive,” robot-generated 358

movements that only allow using proprioception. We calculate the training-induced 359

shift in both types of localization given the same actual hand position. After classical 360

training we previously reported larger shifts in active localization as compared to 361

passive [9]. As we expected, after exposure training there are substantial shifts in 362

localization, but no difference between active and passive localization, indicating that 363

predictions are not updated after exposure training. Furthermore, we find that exposure 364

training evokes substantial and robust reach aftereffects, indicating that recalibrated 365

proprioception is used to plan movements. 366

Our lab previously investigated proprioceptive recalibration and reach aftereffects 367

following visuomotor adaptation with classic training and matched exposure training. 368

There we also found that proprioceptive recalibration is of similar magnitude in both 369

training paradigms, but unlike here, reach aftereffects are usually much larger with 370

classic training [13,18,22–24]. And while proprioceptive recalibration and reach 371

aftereffects do proportionally increase with gradual increases in rotation size for classical 372

training, they do not for exposure training [24]. The similar magnitude of proprioceptive 373

recalibration and reach aftereffects following exposure training, but not classical 374

training, suggest that this sensory recalibration is partly driving this modest change in 375

movements. The effect of exposure training on movements is also demonstrated by 376

facilitation by exposure training of subsequent classic training [28] (but no interference) 377

and transfer of exposure training effects from one hand to the other [29]. In the current 378

study, we further demonstrate that exposure training affects movements and 379

proprioception, but also measure its potential effect on predictive estimates. 380

Results similar to what we find here were reported in a study by Cameron and 381

colleagues [19], using gain modulation of visual feedback of single-joint hand movements 382

around the elbow. Their within-subjects experiment included both training with 383

volitional movements as well as with passive movements and also tested perception of 384

movements that were either passive or active. They too found a robust change in 385

passive perception of hand movement (using a different measure), and these changes did 386

not differ between the two types of training. Similarly, they found shifts in what we 387

might call “active localization,” although the task is different, after both training types. 388

Like here, these shifts are larger after classic training as compared to exposure training. 389

They also found that passive exposure leads to reach aftereffects, although these were 390

smaller than those produced following “classical” training with altered visual gain. Both 391

our findings, and those of Cameron et al. [19] indicate that updating predicted sensory 392

consequences requires volitionally controlled movements that lead to prediction errors, 393

while proprioception recalibrates equally in both types of training, and that recalibrated 394

proprioception affects open-loop reaches. Our combined results suggest that updates in 395

predicted sensory consequences only provide a partial explanation for motor learning. 396

Two related concerns about exposure training and passive localization are that the 397

movements are not fully passive, so that efference-based predictions are still generated 398

or that predicted sensory consequences are generated through another route. Cameron 399

et al. [19] measured muscle activity (EMG) during passive movements and found no 400

difference with stationary baseline muscle activity. This suggests that any movements 401

generated in a passive condition are subthreshold, minimizing efference-based 402

predictions. The brain areas generating predicted sensory consequences could also rely 403
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on afferent signals. However, such afferent signals are present in both active and passive 404

movements, and if they would result in the same predictions, there would be no 405

difference between active and passive localization after classic training, and no 406

difference between the effects of exposure and classic training, and we find both are 407

different. Hence, while we can not fully exclude any predictive signals in passive 408

localization or exposure training, our data shows that any residual predictive signals in 409

the passive movements we used are qualitatively very different from normal 410

efference-based predicted sensory consequences. 411

In our classical training group, we not only see shifts for passive localization but 412

even larger shifts for active localization which is consistent with a change in both 413

proprioception and an update in predictions. In our exposure training, we did not find a 414

consistent difference between active and passive localization, and none at the trained 415

direction. Assuming that predictions were not updated in exposure training, a 416

maximum likelihood estimate (MLE) or “optimal integration” [30] would predict that 417

active localization should shift less than passive localization after exposure training. But 418

of course this is not the case in our findings (although it is the case for Cameron et al.). 419

This suggests that perhaps these two signals are not optimally integrated which is 420

consistent with our comparisons of the variance between passive and active localization. 421

In ’t Hart and Henriques [9], we tested the prediction derived from MLE that hand 422

localization with two signals – proprioception and prediction in active localization – 423

should be more reliable, i.e. have lower variance, than hand localization with only one 424

signal – proprioception only in passive localization. However, we found no difference in 425

variance between active and passive localization, and recently replicated this in a much 426

larger dataset [31]. Taken together, this suggests these different sources of information 427

about unseen hand location are not optimally integrated. While localizing the unseen 428

hand is less precise than locating (pointing to) a remembered visual target or a seen and 429

felt hand location, we find that these bimodal estimates are rarely integrated optimally 430

[32–34], although others have [35]. A more recent study [36] has also shed doubt on 431

whether “optimal” or “Bayesian” integration is used for locating the hand with two 432

afferent signals. Analogously, here we again can’t find evidence that afferent and 433

efferent information combine as a maximum likelihood estimate. 434

It seems clear that the cerebellum plays a role in motor learning as it appears to 435

compute predicted sensory consequences, i.e. it implements a forward model [37–39]. 436

People with cerebellar damage do worse on motor learning tasks [40–43], and show 437

decreased shifts in hand localization tasks following motor learning [5,7]. This highlights 438

that the cerebellum, and likely predicted sensory consequences, are important for motor 439

learning, but does not explain the remaining shifts in hand localization. We previously 440

found that proprioceptive recalibration is intact in people with mild cerebellar ataxia 441

and that it is similar following exposure and classical training with a gradually 442

introduced cursor rotation [18]. The remaining changes in hand localization found in 443

cerebellar patients can be attributed to recalibrated proprioception which should be 444

intact [18]. Analogously, here we show that in a paradigm that stops updates of 445

predictions of sensory consequences, as supposedly in people with cerebellar damage, we 446

still see substantial shifts in localization. Again, the remaining localization shifts can be 447

explained if, along with predictions, the human brain uses afferent signals: recalibrated 448

proprioceptive estimates, to localize the hand. 449

Generalization 450

We do find some evidence that, after exposure training, the generalization curves for 451

localization shifts are not centred on the visual location of the trained target; they don’t 452

peak at 45° but at ˜62°. In contrast, after classic training the peak of the generalization 453

curve does peak close to the training target. It is possible that proprioceptive 454

PLOS 12/16

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2018. ; https://doi.org/10.1101/384941doi: bioRxiv preprint 

https://doi.org/10.1101/384941
http://creativecommons.org/licenses/by-nc/4.0/


recalibration is not anchored to the visual goal of the training task as it is not a 455

requirement to feel your hand at any specific point; rather, in classic training the visual 456

cursor has to be brought to a visual target to end a trial. While in exposure training 457

the movements are executed for the participants without error, their task is still to pay 458

attention to the visual cursor while it moves to the visual target; there are no task 459

demands on proprioception. Although we can’t substantiate this here, the generalization 460

curves of the reach aftereffects seem to mimic the generalization curves of localization 461

shifts, suggesting a relationship between changes in state estimates and changes in 462

movements. This needs to be tested further, but if these effects are true, they may 463

provide insight into how state estimates are used to produce movements, and also may 464

lead to a new method to disentangle the influence of recalibrated proprioception and 465

more traditional updated internal models on motor changes, such as reach aftereffects. 466

Either way, even though the experiment was not designed to investigate this, the shifted 467

generalization curves of changes in localization after classic and exposure training 468

suggest they are generated by different mechanisms. This is in line with our earlier 469

findings that proprioception generalizes differently from reach adaptation [11]. 470

Conclusion 471

To sum up, after a training paradigm designed to prevent updating of predicted sensory 472

consequences but allow recalibration of proprioception, we find substantial changes in 473

where people localize their hand. This means that recalibrated proprioceptive estimates 474

can explain shifts in hand localization. The distinct change in the direction of open-loop 475

reaches we observe here, suggests recalibrated proprioception can contribute to motor 476

adaptation in other contexts as well. Finally, we have some evidence that after exposure 477

training, the shift in hand localization does not generalize around the trained target 478

location. All of this confirms that different mechanisms underlie proprioceptive 479

recalibration and motor adaptation. 480
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